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Algorithm Selection 
Predict which algorithm to use!
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The Problem
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Availability of Algorithms

Machine Learning

SVM

Random Forest

Deep Neural Network

Gradient Boosting

K-nearest 
Neighbor

Satisfiability Solving

lingeling

cryptominisat

glucose

probSAT

CaDiCaL 
syrup

Sorting

Merge Insertion

Quick sort

Merge sort

Binary tree sort
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Manual Algorithm Selection

Instance
Solve instance

Set of Algorithms

Performance

Goal: Select the algorithm with the best performance for a given instance
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Algorithm Selection Matters!

Running always the same algorithm

Selecting the best algorithm for 
each instance!
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Open Algorithm Selection Challenge 2017 
[Lindauer et al. AIJ  2019]
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Domain Average opt. Speedup

Mixed Integer Programming (MIP) 10

Maximum Satisfiability Problem (MAXSAT) 15

Boolean Satisfiability Problem (SAT) 30

Structure learning in Bayesian networks 41

Constraint Satisfaction Problem (CSP) 61

Quantified Boolean Formula (QBF) 264

Machine Learning (OPENML-Weka; absolute impr.) 2%

Data available in ASlib [Bischl, Lindauer et al. AIJ 2016]
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Manual Algorithm Selection

Instance
Solve instance

Portfolio of Algorithms

Performance

Goal: Select the algorithm with the best performance for a given instance
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Can we automate Algorithm Selection?  [Rice’76] 

Predictions via
Machine Learning

Instance

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Instance Features = Numerical Representations

● Counting Features
○ How large/hard is the instance?

■ Examples: #variables, #constraints, #data points, #list entries, …

● Probing Features
○ Run a simple algorithm to check behavior

■ Examples:  accuracy of decision tree, 
performance of local search SAT solver, …

● Important properties of instance features
○ Informative about performance of algorithms
○ cheap-to-compute

9



Keynote AMIR: Algorithm SelectionDr. Marius Lindauer April 2019

Algorithm Selection  [Rice’76] 

Predictions via
Machine Learning

Instance

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Collecting Data

10 5 88 10 9

42 24 30 32 10

488 888 55 487 87

452 123 188 78 480

102 488 300 330 51

1 18 6 8 88

Training performance data

?? ?? ?? ?? ??

?? ?? ?? ?? ??

?? ?? ?? ?? ??

?? ?? ?? ?? ??

?? ?? ?? ?? ??

?? ?? ?? ?? ??

Unknown test data

11

→ Check out aslib.net
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Algorithm Selection  [Rice’76] 

Predictions via
Machine Learning

Task

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Approaches

13



Keynote AMIR: Algorithm SelectionDr. Marius Lindauer April 2019

Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

Idea: Similar instances should be 
assigned to the same algorithm

● Human-inspired strategy
● 1. cluster instances
● 2. Assign best algorithm in 

each cluster
Fe

at
ur

e 
2

Feature 1
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Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

● Very easy to implement

● Only a single model

● Very fast to train model

● Unsupervised learning

→ clusters could be wrong

● Typically worse performance 

than other approaches
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Algorithm Selection  [Rice’76] 

Predictions via
Machine Learning

Task

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Algorithm Selection: Idea #2 [Xu et al. 2010]

Idea: Predict the performance of each algorithm and select the best performing one.

Feature Feature Feature

New Instance

Regression model #1 Regression model #2 Regression model #3
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Algorithm Selection: Idea #2 [Xu et al. 2010]

● Easy to implement

● Supervised learning

● Can be used for more than 

algorithm selection

● Training of n models 

for n algorithms

● Learns a harder task 

than necessary
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Algorithm Selection  [Rice’76] 

Predictions via
Machine Learning

Task

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Algorithm Selection: Idea #3 [Xu et al. 2011]

Idea: Learn a classification model for each pair of algorithms

10 5

42 24

488 888

452 123

102 488

1 18

1

1

0

1

0

0

Label

5

18

400

329

386

17

Weight

Very important instances

Less important instances
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Algorithm Selection: Idea #3 [Xu et al. 2011]

Idea: For a new instance, use a voting scheme on pairwise predictions

-- 0 0 1 0

1 -- 1 1 1

1 0 -- 1 0

0 0 0 -- 0

1 0 1 1 --

1

4

2

0

3

#Votes

Selected algorithm
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Algorithm Selection: Idea #3 [Xu et al. 2010]

● Supervised learning

● Weighting of instances

● State-of-the-art approach

● Training of n²/2 models 

for n algorithms

● Predictions from n²/2 models
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Algorithm Selection  [Rice’76] 

Predictions via
Machine Learning

Task

Numerical 
Representation

Goal: Predict the algorithm with the best performance for a given instance

Portfolio of Algorithms
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Algorithm Selection: Idea #4 [Kotthoff 2015] 

Idea: Learn pairwise regressions model for difference in performance 

10 5

42 24

488 888

452 123

102 488

1 18

Performance 
difference

5

18

-400

329

-386

-17
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Algorithm Selection: Idea #4 [Kotthoff 2015]

Idea: For a new instance, sum up differences in performance predictions

-- -2 -5 -100 50

2 -- 1 11 5

5 -1 -- 100 -5

100 -11 -100 -- -12

-50 -5 5 12 --

-57

19

99

-23

-38

Advantage

Selected algorithm

Most Votes
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Algorithm Selection: Idea #4 [Kotthoff 2015]

● Supervised learning

● Takes performance difference 

in labels into account

● Training of n²/2 models 

for n algorithms

● Predictions from n²/2 models
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Overview of Algorithm Selection Approaches

Feature

-- 0 0 1 0

1 -- 1 1 1

1 0 -- 1 0

0 0 0 -- 0

1 0 1 1 --
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Automate 
Automated Algorithm 

Selection
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Comparison of Algorithm Selection Approaches

Selection Tools 

Applications

Insight: 
Different 

applications 
require different 

selection 
approaches!
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Challenges in Applying Algorithm Selection

● For each application, we potentially need a different approach
○ clustering vs. regression vs. pairwise classification vs. pairwise regression

● Each approach can be implemented with different machine learning 
algorithms

○ Random forest, SVM, deep neural network, gradient boosting

● Each machine learning algorithm requires optimal hyperparameter settings
○ Kernel width of SVM?
○ Pruning strength of trees?
○ …

→ Effective application of algorithm selection in practice can be hard!
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Algorithm Selection Design Choices
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AutoML saves the day!

● Insight: Algorithm selection is yet another machine learning problem 

(with a special design spaces)

● Automated machine learning: 
○ Automated search for best machine learning algorithm and its hyperparameter settings

○ Allows for automated deployment of algorithm selection in practice 
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Crash course: AutoML
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Crash course: AutoML

π
𝛅

42

● Not very efficient

● Error-prone

● Requires expert 
knowledge

...
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Crash course: AutoML

π
𝛅

42

Not easy to parallelize

● Trade-off 
Exploration- 
Exploitation

● Data efficient
● State-of-the-art f(x)
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AutoFolio: Algorithm Selection + AutoML 
[Lindauer et al. 2015] 

Predictions via
Machine Learning

Instance

Solve Task

Numerical 
Representation

AutoML

builds

36

Algorithm selection 
design space
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AutoFolio on SAT [Lindauer et al. 2015] 

Legend:

● Dot: one instance

● Metric: runtime

● Portfolio: set of SAT solvers

● x-axis: default selection approach

● y-axis: optimized selection approach
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AutoFolio [Lindauer et al. 2015] 

5 - 10 fold speedup!
(on these examples)
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Insights from AutoFolio [Lindauer et al. 2015] 

● Most important design decision: 
How much time do I invest in instance feature computation?

● 2nd most important design decision:
Algorithm selection approach

39
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Extensions of 
Algorithm Selection

40
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Not 
solved

Not 
solved

Schedules of Algorithms

Idea: Instead of a single algorithm, 
we want to run several algorithms in a sequence

Not 
solved

Solved

Not 
solved

Solved Solved Solved Solved
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Not 
solved

Features

Idea #1: Pre-solving schedules [Xu et al. 2010]

Idea: First runs a static schedule of algorithms (independent of given instance). 
  If it fails, use algorithm selection (based on instance features).

Challenge: Find a well-performing schedule → hard optimization-problem

Not 
solved

Solved Solved Solved Solved

Insight [Gonard et al. 2016] : Pre-solving schedule has to take into account 
                                     prediction model and vice versa.
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Not 
solved

Not 
solved

Idea #2: Predict schedule of algorithms

Idea: Predict a schedule of algorithms once in the beginning.
   The schedule is instance-dependent.

Not 
solved

Solved Solved Solved Solved

Idea [Amadini et al. 2014]: Sort algorithms by probability to solve given instance.
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Not 
solved

Idea #3: Sequential Predictions

Idea: Predict an algorithm and update your believe 
          based on information of previous algorithm runs.

Solved Solved

Not 
solved
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Online Algorithm Selection

Problem: Assumption of basic ML is 
                that trainings distributions representative of test distribution.

The Truth: Concept drifts are quite likely, i.e., training is not representative of test.

Idea: Each solved instance corresponds to new knowledge 
          and the model can be updated. 

Challenge: We need exploration to update our models.
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Online Algorithm Selection as a Bandit Problem 
[Degroote et al. 2016]

Idea: 

● Each algorithm is a bandit.
● For each instance, we have to 

decide whether 
   1. to exploit our current belief       
       (model       ) 
   2. To explore algorithms

● Can be modelled with
upper confidence bounds (UCB)

● Greedy policy is a surprisingly 
strong baseline [Degroote et al. 2016]
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End-to-End Algorithm Selection

Insight: Most important part is the design of instance features.

Instance

Solve instance

Numerical 
Representation

Idea: Replace hand-designed features by a neural network
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Deep Learning for Algorithm Selection [Loreggia et al. 2016]

Instance

Solve instance

Idea: Replace hand-designed features by a neural network

Convert into 
image

48



Keynote AMIR: Algorithm SelectionDr. Marius Lindauer April 2019

Instances as Images

1. Each character translated into ASCII
○ ASCII can be seen as grayscale encoding

2. For n characters in file, reshape 

into square root(n) x square root(n)

3. Compress into 128x128 pixels

4. Use CNN to classify image

→ works fairly well, but worse than expert features SAT instance as image

49



Keynote AMIR: Algorithm SelectionDr. Marius Lindauer April 2019

Open Challenges in 
Algorithm Selection

50
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Open Challenges

1. Generic way for generating high-quality features
○ For some domains, we still don’t know good features
○ Deep learning for instance features is still not mature 

2. Efficient use of life-long learning?
○ Greedy online algorithm selection can’t be the final answer

3. Algorithm selection for multi-core systems
○ How to balance exploitation and exploration 

if we can select k out of n algorithms?
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Thank you!
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