Algorithm Selection
Predict which algorithm to use!
The Problem
Availability of Algorithms

Machine Learning
- K-nearest Neighbor
- SVM
- Random Forest
- Gradient Boosting
- Deep Neural Network

Satisfiability Solving
- lingeling
- cryptominisat
- glucose
- probSAT
- CaDiCaL
- syrup

Sorting
- Merge Insertion
- Quick sort
- Merge sort
- Binary tree sort
Manual Algorithm Selection

Goal: Select the algorithm with the best performance for a given instance.
Algorithm Selection Matters!

Running always the same algorithm
Selecting the best algorithm for each instance!

Average Running Time

10 50 100 500 1000 5000

Single Algorithm
Optimal Algorithm
Open Algorithm Selection Challenge 2017

[Lindauer et al. AIJ 2019]

<table>
<thead>
<tr>
<th>Domain</th>
<th>Average opt. Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Integer Programming (MIP)</td>
<td>10</td>
</tr>
<tr>
<td>Maximum Satisfiability Problem (MAXSAT)</td>
<td>15</td>
</tr>
<tr>
<td>Boolean Satisfiability Problem (SAT)</td>
<td>30</td>
</tr>
<tr>
<td>Structure learning in Bayesian networks</td>
<td>41</td>
</tr>
<tr>
<td>Constraint Satisfaction Problem (CSP)</td>
<td>61</td>
</tr>
<tr>
<td>Quantified Boolean Formula (QBF)</td>
<td>264</td>
</tr>
<tr>
<td>Machine Learning (OPENML-Weka; absolute impr.)</td>
<td>2%</td>
</tr>
</tbody>
</table>

Data available in **ASlib** [Bischl, Lindauer et al. AIJ 2016]
Manual Algorithm Selection

Portfolio of Algorithms

Instance → Solve instance

Goal: Select the algorithm with the best performance for a given instance
Can we automate Algorithm Selection? [Rice’76]

Goal: Predict the algorithm with the best performance for a given instance

Instance → Numerical Representation → Predictions via Machine Learning → Portfolio of Algorithms
Instance Features = Numerical Representations

● Counting Features
 ○ How large/hard is the instance?
 ■ Examples: #variables, #constraints, #data points, #list entries, …

● Probing Features
 ○ Run a simple algorithm to check behavior
 ■ Examples: accuracy of decision tree, performance of local search SAT solver, …

● Important properties of instance features
 ○ Informative about performance of algorithms
 ○ cheap-to-compute
Algorithm Selection [Rice’76]

Goal: Predict the algorithm with the best performance for a given instance
Collecting Data

Training performance data

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>88</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>24</td>
<td>30</td>
<td>32</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>888</td>
<td>55</td>
<td>487</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>452</td>
<td>123</td>
<td>188</td>
<td>78</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>488</td>
<td>300</td>
<td>330</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>6</td>
<td>8</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

Unknown test data

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

→ Check out aslib.net
Algorithm Selection [Rice’76]

Task

Numerical Representation

Portfolio of Algorithms

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance
Approaches
Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

Idea: Similar instances should be assigned to the same algorithm

- Human-inspired strategy
- 1. cluster instances
- 2. Assign best algorithm in each cluster
Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

- Very easy to implement
- Only a single model
- Very fast to train model

- Unsupervised learning
 → clusters could be wrong
- Typically worse performance than other approaches
Algorithm Selection \cite{Rice’76}

Goal: *Predict* the algorithm with the best **performance** for a given instance
Algorithm Selection: Idea #2 [Xu et al. 2010]

Idea: Predict the performance of each algorithm and select the best performing one.
Algorithm Selection: Idea #2 [Xu et al. 2010]

- Easy to implement
- Supervised learning
- Can be used for more than algorithm selection

- Training of n models for n algorithms
- Learns a harder task than necessary
Algorithm Selection

[Reference: Rice’76]

Goal: Predict the algorithm with the best performance for a given instance
Idea: Learn a classification model for each pair of algorithms

<table>
<thead>
<tr>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very important instances</td>
<td>400</td>
</tr>
<tr>
<td>Less important instances</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>42</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>488</td>
<td>888</td>
<td>400</td>
</tr>
<tr>
<td>452</td>
<td>123</td>
<td>329</td>
</tr>
<tr>
<td>102</td>
<td>488</td>
<td>386</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Algorithm Selection: Idea #3 [Xu et al. 2011]

Idea: For a new instance, use a voting scheme on pairwise predictions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

#Votes

- 1
- 4
- 2
- 0
- 3

Selected algorithm: 4 votes
Algorithm Selection: Idea #3 [Xu et al. 2010]

- Supervised learning
- Weighting of instances
- State-of-the-art approach

- Training of $n^2/2$ models for n algorithms
- Predictions from $n^2/2$ models
Algorithm Selection [Rice’76]

Goal: Predict the algorithm with the best performance for a given instance
Idea: Learn pairwise regressions model for difference in performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Performance difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>42</td>
<td>24</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>488</td>
<td>888</td>
<td></td>
<td>-400</td>
</tr>
<tr>
<td>452</td>
<td>123</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>102</td>
<td>488</td>
<td></td>
<td>-386</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td></td>
<td>-17</td>
</tr>
</tbody>
</table>
Idea: For a new instance, sum up differences in performance predictions

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-5</th>
<th>-100</th>
<th>50</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td>-100</td>
<td>50</td>
<td>-57</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>11</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td></td>
<td>100</td>
<td>-5</td>
<td>99</td>
</tr>
<tr>
<td>100</td>
<td>-11</td>
<td>-100</td>
<td></td>
<td>-12</td>
<td>-23</td>
</tr>
<tr>
<td>-50</td>
<td>-5</td>
<td>5</td>
<td>12</td>
<td></td>
<td>-38</td>
</tr>
</tbody>
</table>

Most Votes: 19

Selected algorithm: -100

[Keythoff 2015]
Algorithm Selection: Idea #4 [Kotthoff 2015]

- Supervised learning
- Takes performance difference in labels into account

- Training of \(n^2/2 \) models for \(n \) algorithms
- Predictions from \(n^2/2 \) models
Overview of Algorithm Selection Approaches

Clustering

Regression

Pairwise Classification

Pairwise Regression

Predictions

Predictions
Automate
Automated Algorithm Selection
Comparison of Algorithm Selection Approaches

Insight:
Different applications require different selection approaches!

<table>
<thead>
<tr>
<th>Applications</th>
<th>Selection Tools</th>
<th>3S-like</th>
<th>aspeed</th>
<th>claspholio-1.0-like</th>
<th>ISAC-like</th>
<th>ME-ASP-like</th>
<th>SATzilla'09-like</th>
<th>SATzilla'11-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP-POTASSCO</td>
<td>4.1</td>
<td>1.4</td>
<td>2.8</td>
<td>3.8</td>
<td>1.9</td>
<td>2.9</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>CSP-2010</td>
<td>1.5</td>
<td>1.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.6</td>
<td>2.5</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>MAXSAT12-PMS</td>
<td>6.5</td>
<td>2.7</td>
<td>1.6</td>
<td>4.9</td>
<td>2.1</td>
<td>3.4</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>PREMARSHALLING</td>
<td>2.9</td>
<td>3.6</td>
<td>1.2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.5</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>PROTEUS-2014</td>
<td>10.9</td>
<td>6.3</td>
<td>3.5</td>
<td>4.3</td>
<td>3.1</td>
<td>4.9</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>QBF-2011</td>
<td>7.7</td>
<td>4.9</td>
<td>2.3</td>
<td>2.8</td>
<td>2.8</td>
<td>3.7</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>SAT11-HAND</td>
<td>2.6</td>
<td>3.6</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.9</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>SAT11-INDU</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>SAT11-RAND</td>
<td>3.9</td>
<td>4.7</td>
<td>1.2</td>
<td>2.5</td>
<td>1.8</td>
<td>2.6</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>SAT12-ALL</td>
<td>1.5</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>SAT12-HAND</td>
<td>1.7</td>
<td>1.8</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.5</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>SAT12-INDU</td>
<td>1.2</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>SAT12-RAND</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>geo. mean</td>
<td>2.6</td>
<td>2.0</td>
<td>1.5</td>
<td>1.9</td>
<td>1.5</td>
<td>2.0</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>
Challenges in Applying Algorithm Selection

- For each application, we potentially need a different approach
 - clustering vs. regression vs. pairwise classification vs. pairwise regression
- Each approach can be implemented with different machine learning algorithms
 - Random forest, SVM, deep neural network, gradient boosting
- Each machine learning algorithm requires optimal hyperparameter settings
 - Kernel width of SVM?
 - Pruning strength of trees?
 - ...

→ Effective application of algorithm selection in practice can be hard!
Algorithm Selection Design Choices
AutoML saves the day!

- Insight: Algorithm selection is yet another machine learning problem (with a special design spaces)

- Automated machine learning:
 - Automated search for best machine learning algorithm and its hyperparameter settings
 - Allows for automated deployment of algorithm selection in practice
Crash course: AutoML

Machine Learning Algorithm

Design Options

select

Performance (e.g., RMSE)

π

\(\Delta \)

42

X

Black-Box

f(x)
Crash course: AutoML

Machine Learning Algorithm

\[f(x) \]

Design Options

X

Performance (e.g., RMSE)

- Not very efficient
- Error-prone
- Requires expert knowledge

select

...
Crash course: AutoML

- Trade-off
- Exploration-Exploitation
- Data efficient
- State-of-the-art

Not easy to parallelize
AutoFolio: Algorithm Selection + AutoML

[Lindauer et al. 2015]
AutoFolio on SAT [Lindauer et al. 2015]

Legend:
- Dot: one instance
- Metric: runtime
- Portfolio: set of SAT solvers
- x-axis: default selection approach
- y-axis: optimized selection approach
AutoFolio [Lindauer et al. 2015]

5 - 10 fold speedup!
(on these examples)
Insights from AutoFolio [Lindauer et al. 2015]

- Most important design decision:
 How much time do I invest in instance feature computation?
- 2nd most important design decision:
 Algorithm selection approach
Extensions of Algorithm Selection
Schedules of Algorithms

Idea: Instead of a single algorithm, we want to run several algorithms in a sequence.
Idea #1: Pre-solving schedules [Xu et al. 2010]

Idea: First runs a static schedule of algorithms (independent of given instance). If it fails, use algorithm selection (based on instance features).

Challenge: Find a well-performing schedule → hard optimization-problem

Insight [Gonard et al. 2016]: Pre-solving schedule has to take into account prediction model and vice versa.
Idea #2: Predict schedule of algorithms

Idea: Predict a schedule of algorithms once in the beginning. The schedule is instance-dependent.

Idea [Amadini et al. 2014]: Sort algorithms by probability to solve given instance.
Idea #3: Sequential Predictions

Idea: Predict an algorithm and update your believe based on information of previous algorithm runs.
Online Algorithm Selection

Problem: Assumption of basic ML is that trainings distributions representative of test distribution.

The Truth: Concept drifts are quite likely, i.e., training is not representative of test.

Idea: Each solved instance corresponds to new knowledge and the model can be updated.

Challenge: We need exploration to update our models.
Online Algorithm Selection as a Bandit Problem
[Degroote et al. 2016]

Idea:

- Each algorithm is a bandit.
- For each instance, we have to decide whether
 1. to exploit our current belief (model 🤔)
 2. To explore algorithms
- Can be modelled with upper confidence bounds (UCB)
- Greedy policy is a surprisingly strong baseline [Degroote et al. 2016]
End-to-End Algorithm Selection

Insight: Most important part is the design of instance features.

Idea: Replace hand-designed features by a neural network
Idea: Replace hand-designed features by a neural network

Deep Learning for Algorithm Selection [Loreggia et al. 2016]

Instance

<table>
<thead>
<tr>
<th>Input layer</th>
<th>32 conv. 3x3 Max pool 2x2 Dropout 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x128</td>
<td></td>
</tr>
</tbody>
</table>

Convert into image

<table>
<thead>
<tr>
<th>64 conv. 2x2 Max pool 2x2 Dropout 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 conv. 2x2 Max pool 2x2 Dropout 0.3</td>
</tr>
</tbody>
</table>

Fully connected 1000 nodes Dropout 0.5

Output layer N solvers

Solve instance
Instances as Images

1. Each character translated into ASCII
 - ASCII can be seen as grayscale encoding

2. For \(n \) characters in file, reshape
 into square root\((n)\) x square root\((n)\)

3. Compress into 128x128 pixels

4. Use CNN to classify image

→ works fairly well, but worse than expert features

SAT instance as image
Open Challenges in Algorithm Selection
Open Challenges

1. Generic way for **generating high-quality features**
 - For some domains, we still don’t know good features
 - Deep learning for instance features is still not mature

2. Efficient use of **life-long learning**?
 - Greedy online algorithm selection can’t be the final answer

3. Algorithm selection for **multi-core systems**
 - How to balance exploitation and exploration if we can select k out of n algorithms?
Thank you!