Algorithm Selection Predict which algorithm to use!

Dr. Marius Lindauer

The Problem

Availability of Algorithms

AutoM

Machine Learning		Satisfiab	ility Solving	Sorting			
SVM	K-nearest Neighbor	lingeling		Merge Ins	sertion		
3 VIM	Random Forest		cryptominisat		Quick sort		
Gradient Boosting		glucose	probSAT	Merge sort			
Deep Neural Network		CaDiCaL			Binary tree sort		
			syrup				

Manual Algorithm Selection

Goal: Select the algorithm with the best performance for a given instance

Dr. Marius Lindauer

99999

ToDo

Instance

Keynote AMIR: Algorithm Selection

Algorithm Selection Matters!

10 50 100 500 1000 5000

Average Running Time

Dr. Marius Lindauer

Open Algorithm Selection Challenge 2017 [Lindauer et al. AIJ 2019]

Domain	Average opt. Speedup			
Mixed Integer Programming (MIP)	10			
Maximum Satisfiability Problem (MAXSAT)	15			
Boolean Satisfiability Problem (SAT)	30			
Structure learning in Bayesian networks	41			
Constraint Satisfaction Problem (CSP)	61			
Quantified Boolean Formula (QBF)	264			

Machine Learning (OPENML-Weka; absolute impr.)	2%
--	----

Data available in ASIib [Bischl, Lindauer et al. AIJ 2016]

Manual Algorithm Selection

99999

ToDo

Instance

Keynote AMIR: Algorithm Selection

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

Instance Features = Numerical Representations

Counting Features

- How large/hard is the instance?
 - Examples: #variables, #constraints, #data points, #list entries, ...

• Probing Features

- Run a simple algorithm to check behavior
 - Examples: accuracy of decision tree, performance of local search SAT solver, ...
- Important properties of instance features
 - Informative about performance of algorithms
 - cheap-to-compute

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

UNI FREIBURG

Collecting Data

\rightarrow Check out aslib.net

??

??

??

??

??

??

??

??

??

??

??

??

Training performance data

Unknown test data

??

??

??

??

??

??

??

??

??

??

??

??

ToDo

TOPO TOPO TOPO

ToDo

~

Dr. Marius Lindauer

Keynote AMIR: Algorithm Selection

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

UNI FREIBURG

Dr. Marius Lindauer

Approaches

Dr. Marius Lindauer

Keynote AMIR: Algorithm Selection

Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

Idea: Similar instances should be assigned to the same algorithm

- Human-inspired strategy
- 1. cluster instances
- 2. Assign best algorithm in each cluster

Algorithm Selection: Idea #1 [Kadiolgu et al. 2010]

- Very easy to implement
- Only a single model
- Very fast to train model

- Unsupervised learning
 - \rightarrow clusters could be wrong
- Typically worse performance than other approaches

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

UNI FREIBURG

Algorithm Selection: Idea #2 [Xu et al. 2010]

Idea: Predict the performance of each algorithm and select the best performing one.

FREI

Algorithm Selection: Idea #2 [Xu et al. 2010]

- Easy to implement
- Supervised learning
- Can be used for more than algorithm selection

Training of *n* models for *n* algorithms
Learns a harder task than necessary

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

UNI FREIBURG

Algorithm Selection: Idea #3 [Xu et al. 2011]

Idea: Learn a classification model for each pair of algorithms

20

AutoM

Algorithm Selection: Idea #3 [Xu et al. 2011]

Idea: For a new instance, use a voting scheme on pairwise predictions

BUR

FREI

Algorithm Selection: Idea #3 [Xu et al. 2010]

- Supervised learning
- Weighting of instances
- State-of-the-art approach

- Training of *n*²/2 models
 for *n* algorithms
- Predictions from n²/2 models

Predictions via Machine Learning

Goal: Predict the algorithm with the best performance for a given instance

UNI FREIBURG

Algorithm Selection: Idea #4 [Kotthoff 2015]

Idea: Learn pairwise regressions model for difference in performance

Č			erforma differenc
ToDo	10	5	5
TOPO	42	24	18
TODO	488	888	-400
Торо	452	123	329
торо	102	488	-386
	1	18	-17

formance ference

Dr. Marius Lindauer

Algorithm Selection: Idea #4 [Kotthoff 2015]

Idea: For a new instance, sum up differences in performance predictions

UNI FREIBURG

Algorithm Selection: Idea #4 [Kotthoff 2015]

- Supervised learning
- Takes performance difference in labels into account

- Training of *n*²/2 models
 for *n* algorithms
- Predictions from *n*²/2 models

Overview of Algorithm Selection Approaches

AutoML.org

27

Automate Automated Algorithm Selection

Comparison of Algorithm Selection Approaches

Applications	35.11	e aspee	d (1859	jolio-1.0-like	ite we he h	SP.IIte SATI	IIBO9-IIKE SATI	1811.11Ke
ASP-POTASSCO-	4.1	1.4	2.8	3.8	1.9	2.9	4.2	
CSP-2010-	1.5	1.0	2.1	2.1	2.6	2.5	3.1	
MAXSAT12-PMS-	6.5	2.7	1.6	4.9	2.1	3.4	8.6	
PREMARSHALLING-	2.9	3.6	1.2	1.3	1.1	1.5	2.3	
PROTEUS-2014	10.9	6.3	3.5	4.3	3.1	4.9	6.5	
QBF-2011-	7.7	4.9	2.3	2.8	2.8	3.7	9.8	
SAT11-HAND-	2.6	3.6	1.1	1.2	1.0	1.9	2.3	
SAT11-INDU-	1.2	1.1	1.2	1.3	1.2	1.1	1.2	
SAT11-RAND-	3.9	4.7	1.2	2.5	1.8	2.6	3.8	
SAT12-ALL-	1.5	1.1	1.2	1.1	1.1	1.4	1.8	
SAT12-HAND-	1.7	1.8	1.1	1.1	1.0	1.5	1.9	
SAT12-INDU-	1.2	0.8	1.2	1.2	1.1	1.3	1.3	
SAT12-RAND-	0.8	0.8	0.6	0.9	0.9	0.9	0.9	
geo. mean-	2.6	2.0	1.5	1.9	1.5	2.0	2.8	

Insight: Different applications require different selection approaches!

Challenges in Applying Algorithm Selection

- For each application, we potentially need a different approach
 - clustering vs. regression vs. pairwise classification vs. pairwise regression
- Each approach can be implemented with different machine learning algorithms
 - Random forest, SVM, deep neural network, gradient boosting
- Each machine learning algorithm requires optimal hyperparameter settings
 - Kernel width of SVM?
 - Pruning strength of trees?
 - o ...

 \rightarrow Effective application of algorithm selection in practice can be hard!

Algorithm Selection Design Choices

UNI FREIBURG

AutoML saves the day!

FRENCE

 Insight: Algorithm selection is yet another machine learning problem (with a special design spaces)

- Automated machine learning:
 - Automated search for best machine learning algorithm and its hyperparameter settings
 - Allows for automated deployment of algorithm selection in practice

Crash course: AutoML

Dr. Marius Lindauer

Keynote AMIR: Algorithm Selection

Crash course: AutoML

Crash course: AutoML

AutoML.org

35

AutoFolio on SAT [Lindauer et al. 2015]

Legend:

- Dot: one instance
- Metric: runtime
- Portfolio: set of SAT solvers
- x-axis: default selection approach
- y-axis: optimized selection approach

April 2019

AutoFolio [Lindauer et al. 2015]

AutoML.org

38

Average Running Time

5 - 10 fold speedup!

(on these examples)

Keynote AMIR: Algorithm Selection

April 2019

10000

Insights from AutoFolio [Lindauer et al. 2015]

- Most important design decision: How much time do I invest in instance feature computation?
- 2nd most important design decision:

Algorithm selection approach

Extensions of Algorithm Selection

Schedules of Algorithms

Idea: Instead of a single algorithm, we want to run several algorithms in a sequence

Idea #1: Pre-solving schedules [Xu et al. 2010]

Idea: First runs a static schedule of algorithms (independent of given instance). If it fails, use algorithm selection (based on instance features).

Challenge: Find a well-performing schedule \rightarrow hard optimization-problem

Idea #2: Predict schedule of algorithms

Idea: Predict a schedule of algorithms once in the beginning. The schedule is instance-dependent.

43

Idea #3: Sequential Predictions

Idea: Predict an algorithm and update your believe based on information of previous algorithm runs.

NH

Dr. Marius Lindauer

Online Algorithm Selection

Problem: Assumption of basic ML is

that trainings distributions representative of test distribution.

The Truth: Concept drifts are quite likely, i.e., training is not representative of test.

Idea: Each solved instance corresponds to new knowledge and the model can be updated.

Challenge: We need exploration to update our models.

Online Algorithm Selection as a Bandit Problem [Degroote et al. 2016]

FREBURG

Idea:

- Each algorithm is a bandit.
- For each instance, we have to decide whether
 - to exploit our current belief (model
 - 2. To explore algorithms
- Can be modelled with upper confidence bounds (UCB)
- Greedy policy is a surprisingly strong baseline [Degroote et al. 2016]

End-to-End Algorithm Selection

Insight: Most important part is the design of instance features.

Idea: Replace hand-designed features by a neural network

47

Idea: Replace hand-designed features by a neural network

Instances as Images

- 1. Each character translated into ASCII
 - ASCII can be seen as grayscale encoding
- For *n* characters in file, reshapeinto square root(*n*) x square root(*n*)
- 3. Compress into 128x128 pixels
- 4. Use CNN to classify image

 \rightarrow works fairly well, but worse than expert features

SAT instance as image

Open Challenges in Algorithm Selection

Open Challenges

FREBURG

1. Generic way for generating high-quality features

- For some domains, we still don't know good features
- Deep learning for instance features is still not mature

2. Efficient use of life-long learning?

• Greedy online algorithm selection can't be the final answer

3. Algorithm selection for **multi-core systems**

• How to balance exploitation and exploration if we can select *k* out of *n* algorithms?

Dr. Marius Lindauer

Keynote AMIR: Algorithm Selection

April 2019