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Foreword

“I’d like to use machine learning, but I can’t invest much time.” That is something
you hear all too often in industry and from researchers in other disciplines. The
resulting demand for hands-free solutions to machine learning has recently given
rise to the field of automated machine learning (AutoML), and I’m delighted that
with this book, there is now the first comprehensive guide to this field.

I have been very passionate about automating machine learning myself ever
since our Automatic Statistician project started back in 2014. I want us to be
really ambitious in this endeavor; we should try to automate all aspects of the
entire machine learning and data analysis pipeline. This includes automating data
collection and experiment design; automating data cleanup and missing data imputa-
tion; automating feature selection and transformation; automating model discovery,
criticism, and explanation; automating the allocation of computational resources;
automating hyperparameter optimization; automating inference; and automating
model monitoring and anomaly detection. This is a huge list of things, and we’d
optimally like to automate all of it.

There is a caveat of course. While full automation can motivate scientific
research and provide a long-term engineering goal, in practice, we probably want to
semiautomate most of these and gradually remove the human in the loop as needed.
Along the way, what is going to happen if we try to do all this automation is that
we are likely to develop powerful tools that will help make the practice of machine
learning, first of all, more systematic (since it’s very ad hoc these days) and also
more efficient.

These are worthy goals even if we did not succeed in the final goal of automation,
but as this book demonstrates, current AutoML methods can already surpass human
machine learning experts in several tasks. This trend is likely only going to intensify
as we’re making progress and as computation becomes ever cheaper, and AutoML
is therefore clearly one of the topics that is here to stay. It is a great time to get
involved in AutoML, and this book is an excellent starting point.

This book includes very up-to-date overviews of the bread-and-butter techniques
we need in AutoML (hyperparameter optimization, meta-learning, and neural
architecture search), provides in-depth discussions of existing AutoML systems, and
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viii Foreword

thoroughly evaluates the state of the art in AutoML in a series of competitions that
ran since 2015. As such, I highly recommend this book to any machine learning
researcher wanting to get started in the field and to any practitioner looking to
understand the methods behind all the AutoML tools out there.

San Francisco, USA Zoubin Ghahramani
Professor, University of Cambridge and
Chief Scientist, Uber
October 2018



Preface

The past decade has seen an explosion of machine learning research and appli-
cations; especially, deep learning methods have enabled key advances in many
application domains, such as computer vision, speech processing, and game playing.
However, the performance of many machine learning methods is very sensitive
to a plethora of design decisions, which constitutes a considerable barrier for
new users. This is particularly true in the booming field of deep learning, where
human engineers need to select the right neural architectures, training procedures,
regularization methods, and hyperparameters of all of these components in order to
make their networks do what they are supposed to do with sufficient performance.
This process has to be repeated for every application. Even experts are often left
with tedious episodes of trial and error until they identify a good set of choices for
a particular dataset.

The field of automated machine learning (AutoML) aims to make these decisions
in a data-driven, objective, and automated way: the user simply provides data,
and the AutoML system automatically determines the approach that performs best
for this particular application. Thereby, AutoML makes state-of-the-art machine
learning approaches accessible to domain scientists who are interested in applying
machine learning but do not have the resources to learn about the technologies
behind it in detail. This can be seen as a democratization of machine learning: with
AutoML, customized state-of-the-art machine learning is at everyone’s fingertips.

As we show in this book, AutoML approaches are already mature enough to
rival and sometimes even outperform human machine learning experts. Put simply,
AutoML can lead to improved performance while saving substantial amounts of
time and money, as machine learning experts are both hard to find and expensive.
As a result, commercial interest in AutoML has grown dramatically in recent years,
and several major tech companies are now developing their own AutoML systems.
We note, though, that the purpose of democratizing machine learning is served much
better by open-source AutoML systems than by proprietary paid black-box services.

This book presents an overview of the fast-moving field of AutoML. Due
to the community’s current focus on deep learning, some researchers nowadays
mistakenly equate AutoML with the topic of neural architecture search (NAS);
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but of course, if you’re reading this book, you know that – while NAS is an
excellent example of AutoML – there is a lot more to AutoML than NAS. This
book is intended to provide some background and starting points for researchers
interested in developing their own AutoML approaches, highlight available systems
for practitioners who want to apply AutoML to their problems, and provide an
overview of the state of the art to researchers already working in AutoML. The
book is divided into three parts on these different aspects of AutoML.

Part I presents an overview of AutoML methods. This part gives both a solid
overview for novices and serves as a reference to experienced AutoML researchers.

Chap. 1 discusses the problem of hyperparameter optimization, the simplest and
most common problem that AutoML considers, and describes the wide variety of
different approaches that are applied, with a particular focus on the methods that are
currently most efficient.

Chap. 2 shows how to learn to learn, i.e., how to use experience from evaluating
machine learning models to inform how to approach new learning tasks with new
data. Such techniques mimic the processes going on as a human transitions from
a machine learning novice to an expert and can tremendously decrease the time
required to get good performance on completely new machine learning tasks.

Chap. 3 provides a comprehensive overview of methods for NAS. This is one of
the most challenging tasks in AutoML, since the design space is extremely large and
a single evaluation of a neural network can take a very long time. Nevertheless, the
area is very active, and new exciting approaches for solving NAS appear regularly.

Part II focuses on actual AutoML systems that even novice users can use. If you
are most interested in applying AutoML to your machine learning problems, this is
the part you should start with. All of the chapters in this part evaluate the systems
they present to provide an idea of their performance in practice.

Chap. 4 describes Auto-WEKA, one of the first AutoML systems. It is based
on the well-known WEKA machine learning toolkit and searches over different
classification and regression methods, their hyperparameter settings, and data
preprocessing methods. All of this is available through WEKA’s graphical user
interface at the click of a button, without the need for a single line of code.

Chap. 5 gives an overview of Hyperopt-Sklearn, an AutoML framework based
on the popular scikit-learn framework. It also includes several hands-on examples
for how to use system.

Chap. 6 describes Auto-sklearn, which is also based on scikit-learn. It applies
similar optimization techniques as Auto-WEKA and adds several improvements
over other systems at the time, such as meta-learning for warmstarting the opti-
mization and automatic ensembling. The chapter compares the performance of
Auto-sklearn to that of the two systems in the previous chapters, Auto-WEKA and
Hyperopt-Sklearn. In two different versions, Auto-sklearn is the system that won
the challenges described in Part III of this book.

Chap. 7 gives an overview of Auto-Net, a system for automated deep learning
that selects both the architecture and the hyperparameters of deep neural networks.
An early version of Auto-Net produced the first automatically tuned neural network
that won against human experts in a competition setting.
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Chap. 8 describes the TPOT system, which automatically constructs and opti-
mizes tree-based machine learning pipelines. These pipelines are more flexible than
approaches that consider only a set of fixed machine learning components that are
connected in predefined ways.

Chap. 9 presents the Automatic Statistician, a system to automate data science
by generating fully automated reports that include an analysis of the data, as well
as predictive models and a comparison of their performance. A unique feature of
the Automatic Statistician is that it provides natural-language descriptions of the
results, suitable for non-experts in machine learning.

Finally, Part III and Chap. 10 give an overview of the AutoML challenges, which
have been running since 2015. The purpose of these challenges is to spur the
development of approaches that perform well on practical problems and determine
the best overall approach from the submissions. The chapter details the ideas
and concepts behind the challenges and their design, as well as results from past
challenges.

To the best of our knowledge, this is the first comprehensive compilation of
all aspects of AutoML: the methods behind it, available systems that implement
AutoML in practice, and the challenges for evaluating them. This book provides
practitioners with background and ways to get started developing their own AutoML
systems and details existing state-of-the-art systems that can be applied immediately
to a wide range of machine learning tasks. The field is moving quickly, and with this
book, we hope to help organize and digest the many recent advances. We hope you
enjoy this book and join the growing community of AutoML enthusiasts.
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Chapter 1
Hyperparameter Optimization

Matthias Feurer and Frank Hutter

Abstract Recent interest in complex and computationally expensive machine
learning models with many hyperparameters, such as automated machine learning
(AutoML) frameworks and deep neural networks, has resulted in a resurgence
of research on hyperparameter optimization (HPO). In this chapter, we give an
overview of the most prominent approaches for HPO. We first discuss blackbox
function optimization methods based on model-free methods and Bayesian opti-
mization. Since the high computational demand of many modern machine learning
applications renders pure blackbox optimization extremely costly, we next focus
on modern multi-fidelity methods that use (much) cheaper variants of the blackbox
function to approximately assess the quality of hyperparameter settings. Lastly, we
point to open problems and future research directions.

1.1 Introduction

Every machine learning system has hyperparameters, and the most basic task in
automated machine learning (AutoML) is to automatically set these hyperparam-
eters to optimize performance. Especially recent deep neural networks crucially
depend on a wide range of hyperparameter choices about the neural network’s archi-
tecture, regularization, and optimization. Automated hyperparameter optimization
(HPO) has several important use cases; it can

• reduce the human effort necessary for applying machine learning. This is
particularly important in the context of AutoML.

M. Feurer (�)
Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg,
Germany
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• improve the performance of machine learning algorithms (by tailoring them
to the problem at hand); this has led to new state-of-the-art performances for
important machine learning benchmarks in several studies (e.g. [105, 140]).

• improve the reproducibility and fairness of scientific studies. Automated HPO
is clearly more reproducible than manual search. It facilitates fair comparisons
since different methods can only be compared fairly if they all receive the same
level of tuning for the problem at hand [14, 133].

The problem of HPO has a long history, dating back to the 1990s (e.g., [77,
82, 107, 126]), and it was also established early that different hyperparameter
configurations tend to work best for different datasets [82]. In contrast, it is a rather
new insight that HPO can be used to adapt general-purpose pipelines to specific
application domains [30]. Nowadays, it is also widely acknowledged that tuned
hyperparameters improve over the default setting provided by common machine
learning libraries [100, 116, 130, 149].

Because of the increased usage of machine learning in companies, HPO is also of
substantial commercial interest and plays an ever larger role there, be it in company-
internal tools [45], as part of machine learning cloud services [6, 89], or as a service
by itself [137].

HPO faces several challenges which make it a hard problem in practice:

• Function evaluations can be extremely expensive for large models (e.g., in deep
learning), complex machine learning pipelines, or large datesets.

• The configuration space is often complex (comprising a mix of continuous, cat-
egorical and conditional hyperparameters) and high-dimensional. Furthermore,
it is not always clear which of an algorithm’s hyperparameters need to be
optimized, and in which ranges.

• We usually don’t have access to a gradient of the loss function with respect to
the hyperparameters. Furthermore, other properties of the target function often
used in classical optimization do not typically apply, such as convexity and
smoothness.

• One cannot directly optimize for generalization performance as training datasets
are of limited size.

We refer the interested reader to other reviews of HPO for further discussions on
this topic [64, 94].

This chapter is structured as follows. First, we define the HPO problem for-
mally and discuss its variants (Sect. 1.2). Then, we discuss blackbox optimization
algorithms for solving HPO (Sect. 1.3). Next, we focus on modern multi-fidelity
methods that enable the use of HPO even for very expensive models, by exploiting
approximate performance measures that are cheaper than full model evaluations
(Sect. 1.4). We then provide an overview of the most important hyperparameter
optimization systems and applications to AutoML (Sect. 1.5) and end the chapter
with a discussion of open problems (Sect. 1.6).
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1.2 Problem Statement

Let A denote a machine learning algorithm with N hyperparameters. We denote
the domain of the n-th hyperparameter by �n and the overall hyperparameter
configuration space as � = �1 × �2 × . . .�N . A vector of hyperparameters is
denoted by λ ∈ �, and A with its hyperparameters instantiated to λ is denoted
by Aλ.

The domain of a hyperparameter can be real-valued (e.g., learning rate), integer-
valued (e.g., number of layers), binary (e.g., whether to use early stopping or not), or
categorical (e.g., choice of optimizer). For integer and real-valued hyperparameters,
the domains are mostly bounded for practical reasons, with only a few excep-
tions [12, 113, 136].

Furthermore, the configuration space can contain conditionality, i.e., a hyper-
parameter may only be relevant if another hyperparameter (or some combination
of hyperparameters) takes on a certain value. Conditional spaces take the form of
directed acyclic graphs. Such conditional spaces occur, e.g., in the automated tuning
of machine learning pipelines, where the choice between different preprocessing
and machine learning algorithms is modeled as a categorical hyperparameter, a
problem known as Full Model Selection (FMS) or Combined Algorithm Selection
and Hyperparameter optimization problem (CASH) [30, 34, 83, 149]. They also
occur when optimizing the architecture of a neural network: e.g., the number of
layers can be an integer hyperparameter and the per-layer hyperparameters of layer
i are only active if the network depth is at least i [12, 14, 33].

Given a data set D, our goal is to find

λ∗ = argmin
λ∈�

E(Dtrain,Dvalid )∼DV(L,Aλ,Dtrain,Dvalid), (1.1)

where V(L,Aλ,Dtrain,Dvalid) measures the loss of a model generated by algo-
rithm A with hyperparameters λ on training data Dtrain and evaluated on validation
data Dvalid . In practice, we only have access to finite data D ∼ D and thus need to
approximate the expectation in Eq. 1.1.

Popular choices for the validation protocol V(·, ·, ·, ·) are the holdout and cross-
validation error for a user-given loss function (such as misclassification rate);
see Bischl et al. [16] for an overview of validation protocols. Several strategies
for reducing the evaluation time have been proposed: It is possible to only test
machine learning algorithms on a subset of folds [149], only on a subset of
data [78, 102, 147], or for a small amount of iterations; we will discuss some of
these strategies in more detail in Sect. 1.4. Recent work on multi-task [147] and
multi-source [121] optimization introduced further cheap, auxiliary tasks, which
can be queried instead of Eq. 1.1. These can provide cheap information to help HPO,
but do not necessarily train a machine learning model on the dataset of interest and
therefore do not yield a usable model as a side product.
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1.2.1 Alternatives to Optimization: Ensembling and
Marginalization

Solving Eq. 1.1 with one of the techniques described in the rest of this chapter
usually requires fitting the machine learning algorithm A with multiple hyperpa-
rameter vectors λt . Instead of using the argmin-operator over these, it is possible
to either construct an ensemble (which aims to minimize the loss for a given
validation protocol) or to integrate out all the hyperparameters (if the model under
consideration is a probabilistic model). We refer to Guyon et al. [50] and the
references therein for a comparison of frequentist and Bayesian model selection.

Only choosing a single hyperparameter configuration can be wasteful when
many good configurations have been identified by HPO, and combining them
in an ensemble can improve performance [109]. This is particularly useful in
AutoML systems with a large configuration space (e.g., in FMS or CASH), where
good configurations can be very diverse, which increases the potential gains from
ensembling [4, 19, 31, 34]. To further improve performance, Automatic Franken-
steining [155] uses HPO to train a stacking model [156] on the outputs of the
models found with HPO; the 2nd level models are then combined using a traditional
ensembling strategy.

The methods discussed so far applied ensembling after the HPO procedure.
While they improve performance in practice, the base models are not optimized
for ensembling. It is, however, also possible to directly optimize for models which
would maximally improve an existing ensemble [97].

Finally, when dealing with Bayesian models it is often possible to integrate
out the hyperparameters of the machine learning algorithm, for example using
evidence maximization [98], Bayesian model averaging [56], slice sampling [111]
or empirical Bayes [103].

1.2.2 Optimizing for Multiple Objectives

In practical applications it is often necessary to trade off two or more objectives,
such as the performance of a model and resource consumption [65] (see also
Chap. 3) or multiple loss functions [57]. Potential solutions can be obtained in two
ways.

First, if a limit on a secondary performance measure is known (such as the
maximal memory consumption), the problem can be formulated as a constrained
optimization problem. We will discuss constraint handling in Bayesian optimization
in Sect. 1.3.2.4.

Second, and more generally, one can apply multi-objective optimization to search
for the Pareto front, a set of configurations which are optimal tradeoffs between the
objectives in the sense that, for each configuration on the Pareto front, there is no
other configuration which performs better for at least one and at least as well for all
other objectives. The user can then choose a configuration from the Pareto front. We
refer the interested reader to further literature on this topic [53, 57, 65, 134].
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1.3 Blackbox Hyperparameter Optimization

In general, every blackbox optimization method can be applied to HPO. Due to
the non-convex nature of the problem, global optimization algorithms are usually
preferred, but some locality in the optimization process is useful in order to make
progress within the few function evaluations that are usually available. We first
discuss model-free blackbox HPO methods and then describe blackbox Bayesian
optimization methods.

1.3.1 Model-Free Blackbox Optimization Methods

Grid search is the most basic HPO method, also known as full factorial design [110].
The user specifies a finite set of values for each hyperparameter, and grid search
evaluates the Cartesian product of these sets. This suffers from the curse of dimen-
sionality since the required number of function evaluations grows exponentially
with the dimensionality of the configuration space. An additional problem of grid
search is that increasing the resolution of discretization substantially increases the
required number of function evaluations.

A simple alternative to grid search is random search [13].1 As the name suggests,
random search samples configurations at random until a certain budget for the search
is exhausted. This works better than grid search when some hyperparameters are
much more important than others (a property that holds in many cases [13, 61]).
Intuitively, when run with a fixed budget of B function evaluations, the number of
different values grid search can afford to evaluate for each of the N hyperparameters
is only B1/N , whereas random search will explore B different values for each; see
Fig. 1.1 for an illustration.

Fig. 1.1 Comparison of grid search and random search for minimizing a function with one
important and one unimportant parameter. This figure is based on the illustration in Fig. 1 of
Bergstra and Bengio [13]

1In some disciplines this is also known as pure random search [158].
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Further advantages over grid search include easier parallelization (since workers
do not need to communicate with each other and failing workers do not leave holes
in the design) and flexible resource allocation (since one can add an arbitrary number
of random points to a random search design to still yield a random search design;
the equivalent does not hold for grid search).

Random search is a useful baseline because it makes no assumptions on the
machine learning algorithm being optimized, and, given enough resources, will,
in expectation, achieves performance arbitrarily close to the optimum. Interleaving
random search with more complex optimization strategies therefore allows to
guarantee a minimal rate of convergence and also adds exploration that can improve
model-based search [3, 59]. Random search is also a useful method for initializing
the search process, as it explores the entire configuration space and thus often
finds settings with reasonable performance. However, it is no silver bullet and often
takes far longer than guided search methods to identify one of the best performing
hyperparameter configurations: e.g., when sampling without replacement from a
configuration space with N Boolean hyperparameters with a good and a bad setting
each and no interaction effects, it will require an expected 2N−1 function evaluations
to find the optimum, whereas a guided search could find the optimum in N + 1
function evaluations as follows: starting from an arbitrary configuration, loop over
the hyperparameters and change one at a time, keeping the resulting configuration
if performance improves and reverting the change if it doesn’t. Accordingly, the
guided search methods we discuss in the following sections usually outperform
random search [12, 14, 33, 90, 153].

Population-based methods, such as genetic algorithms, evolutionary algorithms,
evolutionary strategies, and particle swarm optimization are optimization algo-
rithms that maintain a population, i.e., a set of configurations, and improve this
population by applying local perturbations (so-called mutations) and combinations
of different members (so-called crossover) to obtain a new generation of better
configurations. These methods are conceptually simple, can handle different data
types, and are embarrassingly parallel [91] since a population of N members can be
evaluated in parallel on N machines.

One of the best known population-based methods is the covariance matrix
adaption evolutionary strategy (CMA-ES [51]); this simple evolutionary strategy
samples configurations from a multivariate Gaussian whose mean and covariance
are updated in each generation based on the success of the population’s individ-
uals. CMA-ES is one of the most competitive blackbox optimization algorithms,
regularly dominating the Black-Box Optimization Benchmarking (BBOB) chal-
lenge [11].

For further details on population-based methods, we refer to [28, 138]; we discuss
applications to hyperparameter optimization in Sect. 1.5, applications to neural
architecture search in Chap. 3, and genetic programming for AutoML pipelines in
Chap. 8.
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1.3.2 Bayesian Optimization

Bayesian optimization is a state-of-the-art optimization framework for the global
optimization of expensive blackbox functions, which recently gained traction in
HPO by obtaining new state-of-the-art results in tuning deep neural networks
for image classification [140, 141], speech recognition [22] and neural language
modeling [105], and by demonstrating wide applicability to different problem
settings. For an in-depth introduction to Bayesian optimization, we refer to the
excellent tutorials by Shahriari et al. [135] and Brochu et al. [18].

In this section we first give a brief introduction to Bayesian optimization, present
alternative surrogate models used in it, describe extensions to conditional and
constrained configuration spaces, and then discuss several important applications
to hyperparameter optimization.

Many recent advances in Bayesian optimization do not treat HPO as a blackbox
any more, for example multi-fidelity HPO (see Sect. 1.4), Bayesian optimization
with meta-learning (see Chap. 2), and Bayesian optimization taking the pipeline
structure into account [159, 160]. Furthermore, many recent developments in
Bayesian optimization do not directly target HPO, but can often be readily applied
to HPO, such as new acquisition functions, new models and kernels, and new
parallelization schemes.

1.3.2.1 Bayesian Optimization in a Nutshell

Bayesian optimization is an iterative algorithm with two key ingredients: a prob-
abilistic surrogate model and an acquisition function to decide which point to
evaluate next. In each iteration, the surrogate model is fitted to all observations
of the target function made so far. Then the acquisition function, which uses the
predictive distribution of the probabilistic model, determines the utility of different
candidate points, trading off exploration and exploitation. Compared to evaluating
the expensive blackbox function, the acquisition function is cheap to compute and
can therefore be thoroughly optimized.

Although many acquisition functions exist, the expected improvement (EI) [72]:

E[I(λ)] = E[max(fmin − y, 0)] (1.2)

is common choice since it can be computed in closed form if the model prediction
y at configuration λ follows a normal distribution:

E[I(λ)] = (fmin − μ(λ)) �

(
fmin − μ(λ)

σ

)
+ σφ

(
fmin − μ(λ)

σ

)
, (1.3)

where φ(·) and �(·) are the standard normal density and standard normal distribu-
tion function, and fmin is the best observed value so far.

Fig. 1.2 illustrates Bayesian optimization optimizing a toy function.
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1.3.2.2 Surrogate Models

Traditionally, Bayesian optimization employs Gaussian processes [124] to model
the target function because of their expressiveness, smooth and well-calibrated

Fig. 1.2 Illustration of Bayesian optimization on a 1-d function. Our goal is to minimize the
dashed line using a Gaussian process surrogate (predictions shown as black line, with blue tube
representing the uncertainty) by maximizing the acquisition function represented by the lower
orange curve. (Top) The acquisition value is low around observations, and the highest acquisition
value is at a point where the predicted function value is low and the predictive uncertainty is
relatively high. (Middle) While there is still a lot of variance to the left of the new observation, the
predicted mean to the right is much lower and the next observation is conducted there. (Bottom)
Although there is almost no uncertainty left around the location of the true maximum, the next
evaluation is done there due to its expected improvement over the best point so far
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uncertainty estimates and closed-form computability of the predictive distribution.
A Gaussian process G (

m(λ), k(λ,λ′)
)

is fully specified by a mean m(λ) and a
covariance function k(λ,λ′), although the mean function is usually assumed to be
constant in Bayesian optimization. Mean and variance predictions μ(·) and σ 2(·)
for the noise-free case can be obtained by:

μ(λ) = kT∗ K−1y, σ 2(λ) = k(λ,λ) − kT∗ K−1k∗, (1.4)

where k∗ denotes the vector of covariances between λ and all previous observations,
K is the covariance matrix of all previously evaluated configurations and y are
the observed function values. The quality of the Gaussian process depends solely
on the covariance function. A common choice is the Mátern 5/2 kernel, with its
hyperparameters integrated out by Markov Chain Monte Carlo [140].

One downside of standard Gaussian processes is that they scale cubically in
the number of data points, limiting their applicability when one can afford many
function evaluations (e.g., with many parallel workers, or when function evaluations
are cheap due to the use of lower fidelities). This cubic scaling can be avoided
by scalable Gaussian process approximations, such as sparse Gaussian processes.
These approximate the full Gaussian process by using only a subset of the original
dataset as inducing points to build the kernel matrix K. While they allowed Bayesian
optimization with GPs to scale to tens of thousands of datapoints for optimizing the
parameters of a randomized SAT solver [62], there are criticism about the calibration
of their uncertainty estimates and their applicability to standard HPO has not been
tested [104, 154].

Another downside of Gaussian processes with standard kernels is their poor
scalability to high dimensions. As a result, many extensions have been proposed
to efficiently handle intrinsic properties of configuration spaces with large number
of hyperparameters, such as the use of random embeddings [153], using Gaussian
processes on partitions of the configuration space [154], cylindric kernels [114], and
additive kernels [40, 75].

Since some other machine learning models are more scalable and flexible than
Gaussian processes, there is also a large body of research on adapting these models
to Bayesian optimization. Firstly, (deep) neural networks are a very flexible and
scalable models. The simplest way to apply them to Bayesian optimization is as a
feature extractor to preprocess inputs and then use the outputs of the final hidden
layer as basis functions for Bayesian linear regression [141]. A more complex, fully
Bayesian treatment of the network weights, is also possible by using a Bayesian
neural network trained with stochastic gradient Hamiltonian Monte Carlo [144].
Neural networks tend to be faster than Gaussian processes for Bayesian optimization
after ∼250 function evaluations, which also allows for large-scale parallelism. The
flexibility of deep learning can also enable Bayesian optimization on more complex
tasks. For example, a variational auto-encoder can be used to embed complex inputs
(such as the structured configurations of the automated statistician, see Chap. 9)
into a real-valued vector such that a regular Gaussian process can handle it [92].
For multi-source Bayesian optimization, a neural network architecture built on
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factorization machines [125] can include information on previous tasks [131] and
has also been extended to tackle the CASH problem [132].

Another alternative model for Bayesian optimization are random forests [59].
While GPs perform better than random forests on small, numerical configuration
spaces [29], random forests natively handle larger, categorical and conditional
configuration spaces where standard GPs do not work well [29, 70, 90]. Further-
more, the computational complexity of random forests scales far better to many
data points: while the computational complexity of fitting and predicting variances
with GPs for n data points scales as O(n3) and O(n2), respectively, for random
forests, the scaling in n is only O(n log n) and O(log n), respectively. Due to
these advantages, the SMAC framework for Bayesian optimization with random
forests [59] enabled the prominent AutoML frameworks Auto-WEKA [149] and
Auto-sklearn [34] (which are described in Chaps. 4 and 6).

Instead of modeling the probability p(y|λ) of observations y given the config-
urations λ, the Tree Parzen Estimator (TPE [12, 14]) models density functions
p(λ|y < α) and p(λ|y ≥ α). Given a percentile α (usually set to 15%), the
observations are divided in good observations and bad observations and simple
1-d Parzen windows are used to model the two distributions. The ratio p(λ|y<α)

p(λ|y≥α)
is

related to the expected improvement acquisition function and is used to propose new
hyperparameter configurations. TPE uses a tree of Parzen estimators for conditional
hyperparameters and demonstrated good performance on such structured HPO
tasks [12, 14, 29, 33, 143, 149, 160], is conceptually simple, and parallelizes
naturally [91]. It is also the workhorse behind the AutoML framework Hyperopt-
sklearn [83] (which is described in Chap. 5).

Finally, we note that there are also surrogate-based approaches which do not
follow the Bayesian optimization paradigm: Hord [67] uses a deterministic RBF
surrogate, and Harmonica [52] uses a compressed sensing technique, both to tune
the hyperparameters of deep neural networks.

1.3.2.3 Configuration Space Description

Bayesian optimization was originally designed to optimize box-constrained, real-
valued functions. However, for many machine learning hyperparameters, such as the
learning rate in neural networks or regularization in support vector machines, it is
common to optimize the exponent of an exponential term to describe that changing
it, e.g., from 0.001 to 0.01 is expected to have a similarly high impact as changing
it from 0.1 to 1. A technique known as input warping [142] allows to automatically
learn such transformations during the optimization process by replacing each input
dimension with the two parameters of a Beta distribution and optimizing these.

One obvious limitation of the box-constraints is that the user needs to define
these upfront. To avoid this, it is possible to dynamically expand the configura-
tion space [113, 136]. Alternatively, the estimation-of-distribution-style algorithm
TPE [12] is able to deal with infinite spaces on which a (typically Gaussian) prior is
placed.



1 Hyperparameter Optimization 13

Integers and categorical hyperparameters require special treatment but can be
integrated fairly easily into regular Bayesian optimization by small adaptations of
the kernel and the optimization procedure (see Sect. 12.1.2 of [58], as well as [42]).
Other models, such as factorization machines and random forests, can also naturally
handle these data types.

Conditional hyperparameters are still an active area of research (see Chaps. 5
and 6 for depictions of conditional configuration spaces in recent AutoML systems).
They can be handled natively by tree-based methods, such as random forests [59]
and tree Parzen estimators (TPE) [12], but due to the numerous advantages of
Gaussian processes over other models, multiple kernels for structured configuration
spaces have also been proposed [4, 12, 63, 70, 92, 96, 146].

1.3.2.4 Constrained Bayesian Optimization

In realistic scenarios it is often necessary to satisfy constraints, such as memory
consumption [139, 149], training time [149], prediction time [41, 43], accuracy of a
compressed model [41], energy usage [43] or simply to not fail during the training
procedure [43].

Constraints can be hidden in that only a binary observation (success or failure)
is available [88]. Typical examples in AutoML are memory and time constraints to
allow training of the algorithms in a shared computing system, and to make sure
that a single slow algorithm configuration does not use all the time available for
HPO [34, 149] (see also Chaps. 4 and 6).

Constraints can also merely be unknown, meaning that we can observe and model
an auxiliary constraint function, but only know about a constraint violation after
evaluating the target function [46]. An example of this is the prediction time of a
support vector machine, which can only be obtained by training it as it depends on
the number of support vectors selected during training.

The simplest approach to model violated constraints is to define a penalty
value (at least as bad as the worst possible observable loss value) and use it
as the observation for failed runs [34, 45, 59, 149]. More advanced approaches
model the probability of violating one or more constraints and actively search for
configurations with low loss values that are unlikely to violate any of the given
constraints [41, 43, 46, 88].

Bayesian optimization frameworks using information theoretic acquisition func-
tions allow decoupling the evaluation of the target function and the constraints
to dynamically choose which of them to evaluate next [43, 55]. This becomes
advantageous when evaluating the function of interest and the constraints require
vastly different amounts of time, such as evaluating a deep neural network’s
performance and memory consumption [43].
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1.4 Multi-fidelity Optimization

Increasing dataset sizes and increasingly complex models are a major hurdle in HPO
since they make blackbox performance evaluation more expensive. Training a single
hyperparameter configuration on large datasets can nowadays easily exceed several
hours and take up to several days [85].

A common technique to speed up manual tuning is therefore to probe an
algorithm/hyperparameter configuration on a small subset of the data, by training
it only for a few iterations, by running it on a subset of features, by only using one
or a few of the cross-validation folds, or by using down-sampled images in computer
vision. Multi-fidelity methods cast such manual heuristics into formal algorithms,
using so-called low fidelity approximations of the actual loss function to minimize.
These approximations introduce a tradeoff between optimization performance and
runtime, but in practice, the obtained speedups often outweigh the approximation
error.

First, we review methods which model an algorithm’s learning curve during
training and can stop the training procedure if adding further resources is predicted
to not help. Second, we discuss simple selection methods which only choose
one of a finite set of given algorithms/hyperparameter configurations. Third, we
discuss multi-fidelity methods which can actively decide which fidelity will provide
most information about finding the optimal hyperparameters. We also refer to
Chap. 2 (which discusses how multi-fidelity methods can be used across datasets)
and Chap. 3 (which describes low-fidelity approximations for neural architecture
search).

1.4.1 Learning Curve-Based Prediction for Early Stopping

We start this section on multi-fidelity methods in HPO with methods that evaluate
and model learning curves during HPO [82, 123] and then decide whether to
add further resources or stop the training procedure for a given hyperparameter
configuration. Examples of learning curves are the performance of the same con-
figuration trained on increasing dataset subsets, or the performance of an iterative
algorithm measured for each iteration (or every i-th iteration if the calculation of
the performance is expensive).

Learning curve extrapolation is used in the context of predictive termination [26],
where a learning curve model is used to extrapolate a partially observed learning
curve for a configuration, and the training process is stopped if the configuration
is predicted to not reach the performance of the best model trained so far in the
optimization process. Each learning curve is modeled as a weighted combination of
11 parametric functions from various scientific areas. These functions’ parameters
and their weights are sampled via Markov chain Monte Carlo to minimize the loss
of fitting the partially observed learning curve. This yields a predictive distribution,
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which allows to stop training based on the probability of not beating the best known
model. When combined with Bayesian optimization, the predictive termination cri-
terion enabled lower error rates than off-the-shelve blackbox Bayesian optimization
for optimizing neural networks. On average, the method sped up the optimization
by a factor of two and was able to find a (then) state-of-the-art neural network for
CIFAR-10 (without data augmentation) [26].

While the method above is limited by not sharing information across different
hyperparameter configurations, this can be achieved by using the basis functions as
the output layer of a Bayesian neural network [80]. The parameters and weights of
the basis functions, and thus the full learning curve, can thereby be predicted for
arbitrary hyperparameter configurations. Alternatively, it is possible to use previous
learning curves as basis function extrapolators [21]. While the experimental results
are inconclusive on whether the proposed method is superior to pre-specified
parametric functions, not having to manually define them is a clear advantage.

Freeze-Thaw Bayesian optimization [148] is a full integration of learning curves
into the modeling and selection process of Bayesian optimization. Instead of
terminating a configuration, the machine learning models are trained iteratively for
a few iterations and then frozen. Bayesian optimization can then decide to thaw one
of the frozen models, which means to continue training it. Alternatively, the method
can also decide to start a new configuration. Freeze-Thaw models the performance
of a converged algorithm with a regular Gaussian process and introduces a special
covariance function corresponding to exponentially decaying functions to model the
learning curves with per-learning curve Gaussian processes.

1.4.2 Bandit-Based Algorithm Selection Methods

In this section, we describe methods that try to determine the best algorithm
out of a given finite set of algorithms based on low-fidelity approximations of
their performance; towards its end, we also discuss potential combinations with
adaptive configuration strategies. We focus on variants of the bandit-based strategies
successive halving and Hyperband, since these have shown strong performance,
especially for optimizing deep learning algorithms. Strictly speaking, some of the
methods which we will discuss in this subsection also model learning curves, but
they provide no means of selecting new configurations based on these models.

First, however, we briefly describe the historical evolution of multi-fidelity
algorithm selection methods. In 2000, Petrak [120] noted that simply testing various
algorithms on a small subset of the data is a powerful and cheap mechanism to
select an algorithm. Later approaches used iterative algorithm elimination schemes
to drop hyperparameter configurations if they perform badly on subsets of the
data [17], if they perform significantly worse than a group of top-performing
configurations [86], if they perform worse than the best configuration by a user-
specified factor [143], or if even an optimistic performance bound for an algorithm
is worse than the best known algorithm [128]. Likewise, it is possible to drop
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hyperparameter configurations if they perform badly on one or a few cross-
validation folds [149]. Finally, Jamieson and Talwalkar [69] proposed to use the
successive halving algorithm originally introduced by Karnin et al. [76] for HPO.

Fig. 1.3 Illustration of successive halving for eight algorithms/configurations. After evaluating all
algorithms on 1

8 of the total budget, half of them are dropped and the budget given to the remaining
algorithms is doubled

Successive halving is an extremely simple, yet powerful, and therefore popular
strategy for multi-fidelity algorithm selection: for a given initial budget, query all
algorithms for that budget; then, remove the half that performed worst, double the
budget 2 and successively repeat until only a single algorithm is left. This process is
illustrated in Fig. 1.3. Jamieson and Talwalkar [69] benchmarked several common
bandit methods and found that successive halving performs well both in terms
of the number of required iterations and in the required computation time, that
the algorithm theoretically outperforms a uniform budget allocation strategy if the
algorithms converge favorably, and that it is preferable to many well-known bandit
strategies from the literature, such as UCB and EXP3.

While successive halving is an efficient approach, it suffers from the budget-
vs-number of configurations trade off. Given a total budget, the user has to decide
beforehand whether to try many configurations and only assign a small budget to
each, or to try only a few and assign them a larger budget. Assigning too small a
budget can result in prematurely terminating good configurations, while assigning
too large a budget can result in running poor configurations too long and thereby
wasting resources.

2More precisely, drop the worst fraction η−1
η

of algorithms and multiply the budget for the
remaining algorithms by η, where η is a hyperparameter. Its default value was changed from 2
to 3 with the introduction of HyperBand [90].
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HyperBand [90] is a hedging strategy designed to combat this problem when
selecting from randomly sampled configurations. It divides the total budget into
several combinations of number of configurations vs. budget for each, to then call
successive halving as a subroutine on each set of random configurations. Due to the
hedging strategy which includes running some configurations only on the maximal
budget, in the worst case, HyperBand takes at most a constant factor more time
than vanilla random search on the maximal budget. In practice, due to its use
of cheap low-fidelity evaluations, HyperBand has been shown to improve over
vanilla random search and blackbox Bayesian optimization for data subsets, feature
subsets and iterative algorithms, such as stochastic gradient descent for deep neural
networks.

Despite HyperBand’s success for deep neural networks it is very limiting to not
adapt the configuration proposal strategy to the function evaluations. To overcome
this limitation, the recent approach BOHB [33] combines Bayesian optimization and
HyperBand to achieve the best of both worlds: strong anytime performance (quick
improvements in the beginning by using low fidelities in HyperBand) and strong
final performance (good performance in the long run by replacing HyperBand’s
random search by Bayesian optimization). BOHB also uses parallel resources
effectively and deals with problem domains ranging from a few to many dozen
hyperparameters. BOHB’s Bayesian optimization component resembles TPE [12],
but differs by using multidimensional kernel density estimators. It only fits a model
on the highest fidelity for which at least |�| + 1 evaluations have been performed
(the number of hyperparameters, plus one). BOHB’s first model is therefore fitted
on the lowest fidelity, and over time models trained on higher fidelities take over,
while still using the lower fidelities in successive halving. Empirically, BOHB was
shown to outperform several state-of-the-art HPO methods for tuning support vector
machines, neural networks and reinforcement learning algorithms, including most
methods presented in this section [33]. Further approaches to combine HyperBand
and Bayesian optimization have also been proposed [15, 151].

Multiple fidelity evaluations can also be combined with HPO in other ways.
Instead of switching between lower fidelities and the highest fidelity, it is possible to
perform HPO on a subset of the original data and extract the best-performing con-
figurations in order to use them as an initial design for HPO on the full dataset [152].
To speed up solutions to the CASH problem, it is also possible to iteratively remove
entire algorithms (and their hyperparameters) from the configuration space based on
poor performance on small dataset subsets [159].

1.4.3 Adaptive Choices of Fidelities

All methods in the previous subsection follow a predefined schedule for the
fidelities. Alternatively, one might want to actively choose which fidelities to
evaluate given previous observations to prevent a misspecification of the schedule.
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Multi-task Bayesian optimization [147] uses a multi-task Gaussian process
to model the performance of related tasks and to automatically learn the tasks’
correlation during the optimization process. This method can dynamically switch
between cheaper, low-fidelity tasks and the expensive, high-fidelity target task based
on a cost-aware information-theoretic acquisition function. In practice, the proposed
method starts exploring the configuration space on the cheaper task and only
switches to the more expensive configuration space in later parts of the optimization,
approximately halving the time required for HPO. Multi-task Bayesian optimization
can also be used to transfer information from previous optimization tasks, and we
refer to Chap. 2 for further details.

Multi-task Bayesian optimization (and the methods presented in the previous
subsection) requires an upfront specification of a set of fidelities. This can be
suboptimal since these can be misspecified [74, 78] and because the number of
fidelities that can be handled is low (usually five or less). Therefore, and in order to
exploit the typically smooth dependence on the fidelity (such as, e.g., size of the data
subset used), it often yields better results to treat the fidelity as continuous (and, e.g.,
choose a continuous percentage of the full data set to evaluate a configuration on),
trading off the information gain and the time required for evaluation [78]. To exploit
the domain knowledge that performance typically improves with more data, with
diminishing returns, a special kernel can be constructed for the data subsets [78].
This generalization of multi-task Bayesian optimization improves performance and
can achieve a 10–100 fold speedup compared to blackbox Bayesian optimization.

Instead of using an information-theoretic acquisition function, Bayesian opti-
mization with the Upper Confidence Bound (UCB) acquisition function can also
be extended to multiple fidelities [73, 74]. While the first such approach, MF-
GP-UCB [73], required upfront fidelity definitions, the later BOCA algorithm [74]
dropped that requirement. BOCA has also been applied to optimization with more
than one continuous fidelity, and we expect HPO for more than one continuous
fidelity to be of further interest in the future.

Generally speaking, methods that can adaptively choose their fidelity are very
appealing and more powerful than the conceptually simpler bandit-based methods
discussed in Sect. 1.4.2, but in practice we caution that strong models are required
to make successful choices about the fidelities. When the models are not strong
(since they do not have enough training data yet, or due to model mismatch), these
methods may spend too much time evaluating higher fidelities, and the more robust
fixed budget schedules discussed in Sect. 1.4.2 might yield better performance given
a fixed time limit.

1.5 Applications to AutoML

In this section, we provide a historical overview of the most important hyperparam-
eter optimization systems and applications to automated machine learning.
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Grid search has been used for hyperparameter optimization since the 1990s [71,
107] and was already supported by early machine learning tools in 2002 [35].
The first adaptive optimization methods applied to HPO were greedy depth-first
search [82] and pattern search [109], both improving over default hyperparam-
eter configurations, and pattern search improving over grid search, too. Genetic
algorithms were first applied to tuning the two hyperparameters C and γ of an RBF-
SVM in 2004 [119] and resulted in improved classification performance in less time
than grid search. In the same year, an evolutionary algorithm was used to learn a
composition of three different kernels for an SVM, the kernel hyperparameters and
to jointly select a feature subset; the learned combination of kernels was able to
outperform every single optimized kernel. Similar in spirit, also in 2004, a genetic
algorithm was used to select both the features used by and the hyperparameters of
either an SVM or a neural network [129].

CMA-ES was first used for hyperparameter optimization in 2005 [38], in that
case to optimize an SVM’s hyperparameters C and γ , a kernel lengthscale li for
each dimension of the input data, and a complete rotation and scaling matrix. Much
more recently, CMA-ES has been demonstrated to be an excellent choice for parallel
HPO, outperforming state-of-the-art Bayesian optimization tools when optimizing
19 hyperparameters of a deep neural network on 30 GPUs in parallel [91].

In 2009, Escalante et al. [30] extended the HPO problem to the Full Model
Selection problem, which includes selecting a preprocessing algorithm, a feature
selection algorithm, a classifier and all their hyperparameters. By being able to
construct a machine learning pipeline from multiple off-the-shelf machine learning
algorithms using HPO, the authors empirically found that they can apply their
method to any data set as no domain knowledge is required, and demonstrated the
applicability of their approach to a variety of domains [32, 49]. Their proposed
method, particle swarm model selection (PSMS), uses a modified particle swarm
optimizer to handle the conditional configuration space. To avoid overfitting,
PSMS was extended with a custom ensembling strategy which combined the best
solutions from multiple generations [31]. Since particle swarm optimization was
originally designed to work on continuous configuration spaces, PSMS was later
also extended to use a genetic algorithm to optimize the pipeline structure and
only use particle swarm optimization to optimize the hyperparameters of each
pipeline [145].

To the best of our knowledge, the first application of Bayesian optimization to
HPO dates back to 2005, when Frohlich and Zell [39] used an online Gaussian
process together with EI to optimize the hyperparameters of an SVM, achieving
speedups of factor 10 (classification, 2 hyperparameters) and 100 (regression, 3
hyperparameters) over grid search. Tuned Data Mining [84] proposed to tune the
hyperparameters of a full machine learning pipeline using Bayesian optimization;
specifically, this used a single fixed pipeline and tuned the hyperparameters of the
classifier as well as the per-class classification threshold and class weights.

In 2011, Bergstra et al. [12] were the first to apply Bayesian optimization to
tune the hyperparameters of a deep neural network, outperforming both manual
and random search. Furthermore, they demonstrated that TPE resulted in better
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performance than a Gaussian process-based approach. TPE, as well as Bayesian
optimization with random forests, were also successful for joint neural architecture
search and hyperparameter optimization [14, 106].

Another important step in applying Bayesian optimization to HPO was made by
Snoek et al. in the 2012 paper Practical Bayesian Optimization of Machine Learning
Algorithms [140], which describes several tricks of the trade for Gaussian process-
based HPO implemented in the Spearmint system and obtained a new state-of-the-
art result for hyperparameter optimization of deep neural networks.

Independently of the Full Model Selection paradigm, Auto-WEKA [149] (see
also Chap. 4) introduced the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem, in which the choice of a classification algorithm is
modeled as a categorical variable, the algorithm hyperparameters are modeled as
conditional hyperparameters, and the random-forest based Bayesian optimization
system SMAC [59] is used for joint optimization in the resulting 786-dimensional
configuration space.

In recent years, multi-fidelity methods have become very popular, especially
in deep learning. Firstly, using low-fidelity approximations based on data subsets,
feature subsets and short runs of iterative algorithms, Hyperband [90] was shown
to outperform blackbox Bayesian optimization methods that did not take these
lower fidelities into account. Finally, most recently, in the 2018 paper BOHB:
Robust and Efficient Hyperparameter Optimization at Scale, Falkner et al. [33]
introduced a robust, flexible, and parallelizable combination of Bayesian optimiza-
tion and Hyperband that substantially outperformed both Hyperband and blackbox
Bayesian optimization for a wide range of problems, including tuning support vector
machines, various types of neural networks, and reinforcement learning algorithms.

At the time of writing, we make the following recommendations for which tools
we would use in practical applications of HPO:

• If multiple fidelities are applicable (i.e., if it is possible to define substantially
cheaper versions of the objective function of interest, such that the performance
for these roughly correlates with the performance for the full objective function
of interest), we recommend BOHB [33] as a robust, efficient, versatile, and
parallelizable default hyperparameter optimization method.

• If multiple fidelities are not applicable:

– If all hyperparameters are real-valued and one can only afford a few dozen
function evaluations, we recommend the use of a Gaussian process-based
Bayesian optimization tool, such as Spearmint [140].

– For large and conditional configuration spaces we suggest either the random
forest-based SMAC [59] or TPE [14], due to their proven strong performance
on such tasks [29].

– For purely real-valued spaces and relatively cheap objective functions, for
which one can afford more than hundreds of evaluations, we recommend
CMA-ES [51].
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1.6 Open Problems and Future Research Directions

We conclude this chapter with a discussion of open problems, current research
questions and potential further developments we expect to have an impact on
HPO in the future. Notably, despite their relevance, we leave out discussions on
hyperparameter importance and configuration space definition as these fall under
the umbrella of meta-learning and can be found in Chap. 2.

1.6.1 Benchmarks and Comparability

Given the breadth of existing HPO methods, a natural question is what are the
strengths and weaknesses of each of them. In order to allow for a fair com-
parison between different HPO approaches, the community needs to design and
agree upon a common set of benchmarks that expands over time, as new HPO
variants, such as multi-fidelity optimization, emerge. As a particular example for
what this could look like we would like to mention the COCO platform (short
for comparing continuous optimizers), which provides benchmark and analysis
tools for continuous optimization and is used as a workbench for the yearly
Black-Box Optimization Benchmarking (BBOB) challenge [11]. Efforts along
similar lines in HPO have already yielded the hyperparameter optimization library
(HPOlib [29]) and a benchmark collection specifically for Bayesian optimization
methods [25]. However, neither of these has gained similar traction as the COCO
platform.

Additionaly, the community needs clearly defined metrics, but currently different
works use different metrics. One important dimension in which evaluations differ
is whether they report performance on the validation set used for optimization or
on a separate test set. The former helps to study the strength of the optimizer
in isolation, without the noise that is added in the evaluation when going from
validation to test set; on the other hand, some optimizers may lead to more
overfitting than others, which can only be diagnosed by using the test set. Another
important dimension in which evaluations differ is whether they report perfor-
mance after a given number of function evaluations or after a given amount of
time. The latter accounts for the difference in time between evaluating different
hyperparameter configurations and includes optimization overheads, and therefore
reflects what is required in practice; however, the former is more convenient and
aids reproducibility by yielding the same results irrespective of the hardware used.
To aid reproducibility, especially studies that use time should therefore release an
implementation.

We note that it is important to compare against strong baselines when using
new benchmarks, which is another reason why HPO methods should be published
with an accompanying implementation. Unfortunately, there is no common software
library as is, for example, available in deep learning research that implements all
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the basic building blocks [2, 117]. As a simple, yet effective baseline that can
be trivially included in empirical studies, Jamieson and Recht [68] suggest to
compare against different parallelization levels of random search to demonstrate
the speedups over regular random search. When comparing to other optimization
techniques it is important to compare against a solid implementation, since, e.g.,
simpler versions of Bayesian optimization have been shown to yield inferior
performance [79, 140, 142].

1.6.2 Gradient-Based Optimization

In some cases (e.g., least-squares support vector machines and neural networks) it
is possible to obtain the gradient of the model selection criterion with respect to
some of the model hyperparameters. Different to blackbox HPO, in this case each
evaluation of the target function results in an entire hypergradient vector instead of
a single float value, allowing for faster HPO.

Maclaurin et al. [99] described a procedure to compute the exact gradients of
validation performance with respect to all continuous hyperparameters of a neural
network by backpropagating through the entire training procedure of stochastic
gradient descent with momentum (using a novel, memory-efficient algorithm).
Being able to handle many hyperparameters efficiently through gradient-based
methods allows for a new paradigm of hyperparametrizing the model to obtain
flexibility over model classes, regularization, and training methods. Maclaurin et
al. demonstrated the applicability of gradient-based HPO to many high-dimensional
HPO problems, such as optimizing the learning rate of a neural network for each
iteration and layer separately, optimizing the weight initialization scale hyperpa-
rameter for each layer in a neural network, optimizing the l2 penalty for each
individual parameter in logistic regression, and learning completely new training
datasets. As a small downside, backpropagating through the entire training proce-
dure comes at the price of doubling the time complexity of the training procedure.
The described method can also be generalized to work with other parameter
update algorithms [36]. To overcome the necessity of backpropagating through
the complete training procedure, later work allows to perform hyperparameter
updates with respect to a separate validation set interleaved with the training process
[5, 10, 36, 37, 93].

Recent examples of gradient-based optimization of simple model’s hyperparam-
eters [118] and of neural network structures (see Chap. 3) show promising results,
outperforming state-of-the-art Bayesian optimization models. Despite being highly
model-specific, the fact that gradient-based hyperparemeter optimization allows
tuning several hundreds of hyperparameters could allow substantial improvements
in HPO.
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1.6.3 Scalability

Despite recent successes in multi-fidelity optimization, there are still machine
learning problems which have not been directly tackled by HPO due to their scale,
and which might require novel approaches. Here, scale can mean both the size of the
configuration space and the expense of individual model evaluations. For example,
there has not been any work on HPO for deep neural networks on the ImageNet
challenge dataset [127] yet, mostly because of the high cost of training even a
simple neural network on the dataset. It will be interesting to see whether methods
going beyond the blackbox view from Sect. 1.3, such as the multi-fidelity methods
described in Sect. 1.4, gradient-based methods, or meta-learning methods (described
in Chap. 2) allow to tackle such problems. Chap. 3 describes first successes in
learning neural network building blocks on smaller datasets and applying them to
ImageNet, but the hyperparameters of the training procedure are still set manually.

Given the necessity of parallel computing, we are looking forward to new
methods that fully exploit large-scale compute clusters. While there exists much
work on parallel Bayesian optimization [12, 24, 33, 44, 54, 60, 135, 140], except
for the neural networks described in Sect. 1.3.2.2 [141], so far no method has
demonstrated scalability to hundreds of workers. Despite their popularity, and with
a single exception of HPO applied to deep neural networks [91],3 population-
based approaches have not yet been shown to be applicable to hyperparameter
optimization on datasets larger than a few thousand data points.

Overall, we expect that more sophisticated and specialized methods, leaving the
blackbox view behind, will be needed to further scale hyperparameter to interesting
problems.

1.6.4 Overfitting and Generalization

An open problem in HPO is overfitting. As noted in the problem statement (see
Sect. 1.2), we usually only have a finite number of data points available for
calculating the validation loss to be optimized and thereby do not necessarily
optimize for generalization to unseen test datapoints. Similarly to overfitting a
machine learning algorithm to training data, this problem is about overfitting the
hyperparameters to the finite validation set; this was also demonstrated to happen
experimentally [20, 81].

A simple strategy to reduce the amount of overfitting is to employ a different
shuffling of the train and validation split for each function evaluation; this was
shown to improve generalization performance for SVM tuning, both with a holdout
and a cross-validation strategy [95]. The selection of the final configuration can

3See also Chap. 3 where population-based methods are applied to Neural Architecture Search
problems.
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be further robustified by not choosing it according to the lowest observed value,
but according to the lowest predictive mean of the Gaussian process model used in
Bayesian optimization [95].

Another possibility is to use a separate holdout set to assess configurations
found by HPO to avoid bias towards the standard validation set [108, 159].
Different approximations of the generalization performance can lead to different
test performances [108], and there have been reports that several resampling
strategies can result in measurable performance differences for HPO of support
vector machines [150].

A different approach to combat overfitting might be to find stable optima instead
of sharp optima of the objective function [112]. The idea is that for stable optima,
the function value around an optimum does not change for slight perturbations of
the hyperparameters, whereas it does change for sharp optima. Stable optima lead to
better generalization when applying the found hyperparameters to a new, unseen set
of datapoints (i.e., the test set). An acquisition function built around this was shown
to only slightly overfit for support vector machine HPO, while regular Bayesian
optimization exhibited strong overfitting [112].

Further approaches to combat overfitting are the ensemble methods and Bayesian
methods presented in Sect. 1.2.1. Given all these different techniques, there is no
commonly agreed-upon technique for how to best avoid overfitting, though, and it
remains up to the user to find out which strategy performs best on their particular
HPO problem. We note that the best strategy might actually vary across HPO
problems.

1.6.5 Arbitrary-Size Pipeline Construction

All HPO techniques we discussed so far assume a finite set of components
for machine learning pipelines or a finite maximum number of layers in neural
networks. For machine learning pipelines (see the AutoML systems covered in
Part II of this book) it might be helpful to use more than one feature preprocessing
algorithm and dynamically add them if necessary for a problem, enlarging the search
space by a hyperparameter to select an appropriate preprocessing algorithm and
its own hyperparameters. While a search space for standard blackbox optimization
tools could easily include several extra such preprocessors (and their hyperparame-
ters) as conditional hyperparameters, an unbounded number of these would be hard
to support.

One approach for handling arbitrary-sized pipelines more natively is the tree-
structured pipeline optimization toolkit (TPOT [115], see also Chap. 8), which uses
genetic programming and describes possible pipelines by a grammar. TPOT uses
multi-objective optimization to trade off pipeline complexity with performance to
avoid generating unnecessarily complex pipelines.
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A different pipeline creation paradigm is the usage of hierarchical planning; the
recent ML-Plan [101, 108] uses hierarchical task networks and shows competitive
performance compared to Auto-WEKA [149] and Auto-sklearn [34].

So far these approaches are not consistently outperforming AutoML systems
with a fixed pipeline length, but larger pipelines may provide more improvement.
Similarly, neural architecture search yields complex configuration spaces and we
refer to Chap. 3 for a description of methods to tackle them.
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Chapter 2
Meta-Learning

Joaquin Vanschoren

Abstract Meta-learning, or learning to learn, is the science of systematically
observing how different machine learning approaches perform on a wide range of
learning tasks, and then learning from this experience, or meta-data, to learn new
tasks much faster than otherwise possible. Not only does this dramatically speed up
and improve the design of machine learning pipelines or neural architectures, it also
allows us to replace hand-engineered algorithms with novel approaches learned in
a data-driven way. In this chapter, we provide an overview of the state of the art in
this fascinating and continuously evolving field.

2.1 Introduction

When we learn new skills, we rarely – if ever – start from scratch. We start from
skills learned earlier in related tasks, reuse approaches that worked well before,
and focus on what is likely worth trying based on experience [82]. With every skill
learned, learning new skills becomes easier, requiring fewer examples and less trial-
and-error. In short, we learn how to learn across tasks. Likewise, when building
machine learning models for a specific task, we often build on experience with
related tasks, or use our (often implicit) understanding of the behavior of machine
learning techniques to help make the right choices.

The challenge in meta-learning is to learn from prior experience in a systematic,
data-driven way. First, we need to collect meta-data that describe prior learning
tasks and previously learned models. They comprise the exact algorithm con-
figurations used to train the models, including hyperparameter settings, pipeline
compositions and/or network architectures, the resulting model evaluations, such
as accuracy and training time, the learned model parameters, such as the trained
weights of a neural net, as well as measurable properties of the task itself, also
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known as meta-features. Second, we need to learn from this prior meta-data,
to extract and transfer knowledge that guides the search for optimal models for
new tasks. This chapter presents a concise overview of different meta-learning
approaches to do this effectively.

The term meta-learning covers any type of learning based on prior experience
with other tasks. The more similar those previous tasks are, the more types of
meta-data we can leverage, and defining task similarity will be a key overarching
challenge. Perhaps needless to say, there is no free lunch [57, 188]. When a new
task represents completely unrelated phenomena, or random noise, leveraging prior
experience will not be effective. Luckily, in real-world tasks, there are plenty of
opportunities to learn from prior experience.

In the remainder of this chapter, we categorize meta-learning techniques based
on the type of meta-data they leverage, from the most general to the most task-
specific. First, in Sect. 2.2, we discuss how to learn purely from model evaluations.
These techniques can be used to recommend generally useful configurations and
configuration search spaces, as well as transfer knowledge from empirically similar
tasks. In Sect. 2.3, we discuss how we can characterize tasks to more explicitly
express task similarity and build meta-models that learn the relationships between
data characteristics and learning performance. Finally, Sect. 2.4 covers how we can
transfer trained model parameters between tasks that are inherently similar, e.g.
sharing the same input features, which enables transfer learning [111] and few-shot
learning [126] among others.

Note that while multi-task learning [25] (learning multiple related tasks simulta-
neously) and ensemble learning [35] (building multiple models on the same task),
can often be meaningfully combined with meta-learning systems, they do not in
themselves involve learning from prior experience on other tasks.

This chapter is based on a very recent survey article [176].

2.2 Learning from Model Evaluations

Consider that we have access to prior tasks tj ∈ T , the set of all known tasks, as
well as a set of learning algorithms, fully defined by their configurations θi ∈ 
;
here 
 represents a discrete, continuous, or mixed configuration space which can
cover hyperparameter settings, pipeline components and/or network architecture
components. P is the set of all prior scalar evaluations Pi,j = P(θi , tj ) of
configuration θi on task tj , according to a predefined evaluation measure, e.g.
accuracy, and model evaluation technique, e.g. cross-validation. Pnew is the set
of known evaluations Pi,new on a new task tnew . We now want to train a meta-
learner L that predicts recommended configurations 
∗

new for a new task tnew . The
meta-learner is trained on meta-data P ∪ Pnew . P is usually gathered beforehand,
or extracted from meta-data repositories [174, 177]. Pnew is learned by the meta-
learning technique itself in an iterative fashion, sometimes warm-started with an
initial P

′
new generated by another method.
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2.2.1 Task-Independent Recommendations

First, imagine not having access to any evaluations on tnew , hence Pnew = ∅. We
can then still learn a function f : 
 × T → {θ∗

k }, k = 1..K , yielding a set of
recommended configurations independent of tnew . These θ∗

k can then be evaluated
on tnew to select the best one, or to warm-start further optimization approaches, such
as those discussed in Sect. 2.2.3.

Such approaches often produce a ranking, i.e. an ordered set θ∗
k . This is typically

done by discretizing 
 into a set of candidate configurations θi , also called a
portfolio, evaluated on a large number of tasks tj . We can then build a ranking
per task, for instance using success rates, AUC, or significant wins [21, 34, 85].
However, it is often desirable that equally good but faster algorithms are ranked
higher, and multiple methods have been proposed to trade off accuracy and training
time [21, 134]. Next, we can aggregate these single-task rankings into a global
ranking, for instance by computing the average rank [1, 91] across all tasks. When
there is insufficient data to build a global ranking, one can recommend subsets of
configurations based on the best known configurations for each prior task [70, 173],
or return quasi-linear rankings [30].

To find the best θ∗ for a task tnew , never before seen, a simple anytime method
is to select the top-K configurations [21], going down the list and evaluating each
configuration on tnew in turn. This evaluation can be halted after a predefined value
for K , a time budget, or when a sufficiently accurate model is found. In time-
constrained settings, it has been shown that multi-objective rankings (including
training time) converge to near-optimal models much faster [1, 134], and provide
a strong baseline for algorithm comparisons [1, 85].

A very different approach to the one above is to first fit a differentiable function
fj (θi) = Pi,j on all prior evaluations of a specific task tj , and then use gradient
descent to find an optimized configuration θ∗

j per prior task [186]. Assuming that
some of the tasks tj will be similar to tnew , those θ∗

j will be useful for warm-starting
Bayesian optimization approaches.

2.2.2 Configuration Space Design

Prior evaluations can also be used to learn a better configuration space 
∗. While
again independent from tnew , this can radically speed up the search for optimal
models, since only the more relevant regions of the configuration space are explored.
This is critical when computational resources are limited, and has proven to be an
important factor in practical comparisons of AutoML systems [33].

First, in the functional ANOVA [67] approach, hyperparameters are deemed
important if they explain most of the variance in algorithm performance on a
given task. In [136], this was explored using 250,000 OpenML experiments with
3 algorithms across 100 datasets.
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An alternative approach is to first learn an optimal hyperparameter default
setting, and then define hyperparameter importance as the performance gain that
can be achieved by tuning the hyperparameter instead of leaving it at that default
value. Indeed, even though a hyperparameter may cause a lot of variance, it may
also have one specific setting that always results in good performance. In [120],
this was done using about 500,000 OpenML experiments on 6 algorithms and 38
datasets. Default values are learned jointly for all hyperparameters of an algorithm
by first training surrogate models for that algorithm for a large number of tasks.
Next, many configurations are sampled, and the configuration that minimizes the
average risk across all tasks is the recommended default configuration. Finally, the
importance (or tunability) of each hyperparameter is estimated by observing how
much improvement can still be gained by tuning it.

In [183], defaults are learned independently from other hyperparameters, and
defined as the configurations that occur most frequently in the top-K configurations
for every task. In the case that the optimal default value depends on meta-features
(e.g. the number of training instances or features), simple functions are learned that
include these meta-features. Next, a statistical test defines whether a hyperparameter
can be safely left at this default, based on the performance loss observed when not
tuning a hyperparameter (or a set of hyperparameters), while all other parameters are
tuned. This was evaluated using 118,000 OpenML experiments with 2 algorithms
(SVMs and Random Forests) across 59 datasets.

2.2.3 Configuration Transfer

If we want to provide recommendations for a specific task tnew , we need additional
information on how similar tnew is to prior tasks tj . One way to do this is to evaluate
a number of recommended (or potentially random) configurations on tnew , yielding
new evidence Pnew . If we then observe that the evaluations Pi,new are similar to Pi,j ,
then tj and tnew can be considered intrinsically similar, based on empirical evidence.
We can include this knowledge to train a meta-learner that predicts a recommended
set of configurations 
∗

new for tnew . Moreover, every selected θ∗
new can be evaluated

and included in Pnew , repeating the cycle and collecting more empirical evidence to
learn which tasks are similar to each other.

2.2.3.1 Relative Landmarks

A first measure for task similarity considers the relative (pairwise) performance
differences, also called relative landmarks, RLa,b,j = Pa,j − Pb,j between two
configurations θa and θb on a particular task tj [53]. Active testing [85] leverages
these as follows: it warm-starts with the globally best configuration (see Sect. 2.2.1),
calls it θbest , and proceeds in a tournament-style fashion. In each round, it selects
the ‘competitor’ θc that most convincingly outperforms θbest on similar tasks. It
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deems tasks to be similar if the relative landmarks of all evaluated configurations
are similar, i.e., if the configurations perform similarly on both tj and tnew then
the tasks are deemed similar. Next, it evaluates the competitor θc, yielding Pc,new ,
updates the task similarities, and repeats. A limitation of this method is that it can
only consider configurations θi that were evaluated on many prior tasks.

2.2.3.2 Surrogate Models

A more flexible way to transfer information is to build surrogate models sj (θi) =
Pi,j for all prior tasks tj , trained using all available P. One can then define task
similarity in terms of the error between sj (θi) and Pi,new : if the surrogate model
for tj can generate accurate predictions for tnew , then those tasks are intrinsically
similar. This is usually done in combination with Bayesian optimization (see
Chap. 1) to determine the next θi .

Wistuba et al. [187] train surrogate models based on Gaussian Processes (GPs)
for every prior task, plus one for tnew , and combine them into a weighted,
normalized sum, with the (new) predicted mean μ defined as the weighted sum
of the individual μj ’s (obtained from prior tasks tj ). The weights of the μj ’s are
computed using the Nadaraya-Watson kernel-weighted average, where each task
is represented as a vector of relative landmarks, and the Epanechnikov quadratic
kernel [104] is used to measure the similarity between the relative landmark vectors
of tj and tnew . The more similar tj is to tnew , the larger the weight sj , increasing the
influence of the surrogate model for tj .

Feurer et al. [45] propose to combine the predictive distributions of the individual
Gaussian processes, which makes the combined model a Gaussian process again.
The weights are computed following the agnostic Bayesian ensemble of Lacoste et
al. [81], which weights predictors according to an estimate of their generalization
performance.

Meta-data can also be transferred in the acquisition function rather than the
surrogate model [187]. The surrogate model is only trained on Pi,new , but the next
θi to evaluate is provided by an acquisition function which is the weighted average
of the expected improvement [69] on Pi,new and the predicted improvements on all
prior Pi,j . The weights of the prior tasks can again be defined via the accuracy of the
surrogate model or via relative landmarks. The weight of the expected improvement
component is gradually increased with every iteration as more evidence Pi,new is
collected.

2.2.3.3 Warm-Started Multi-task Learning

Another approach to relate prior tasks tj is to learn a joint task representation using
P prior evaluations. In [114], task-specific Bayesian linear regression [20] surrogate
models sj (θ

z
i ) are trained in a novel configuration θz learned by a feedforward

Neural Network NN(θi) which learns a suitable basis expansion θz of the original
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configuration θ in which linear surrogate models can accurately predict Pi,new . The
surrogate models are pre-trained on OpenML meta-data to provide a warm-start
for optimizing NN(θi) in a multi-task learning setting. Earlier work on multi-task
learning [166] assumed that we already have a set of ‘similar’ source tasks tj .
It transfers information between these tj and tnew by building a joint GP model
for Bayesian optimization that learns and exploits the exact relationship between
the tasks. Learning a joint GP tends to be less scalable than building one GP per
task, though. Springenberg et al. [161] also assumes that the tasks are related and
similar, but learns the relationship between tasks during the optimization process
using Bayesian Neural Networks. As such, their method is somewhat of a hybrid
of the previous two approaches. Golovin et al. [58] assume a sequence order (e.g.,
time) across tasks. It builds a stack of GP regressors, one per task, training each GP
on the residuals relative to the regressor below it. Hence, each task uses the tasks
before it to define its priors.

2.2.3.4 Other Techniques

Multi-armed bandits [139] provide yet another approach to find the source tasks tj
most related to tnew [125]. In this analogy, each tj is one arm, and the (stochastic)
reward for selecting (pulling) a particular prior task (arm) is defined in terms of
the error in the predictions of a GP-based Bayesian optimizer that models the
prior evaluations of tj as noisy measurements and combines them with the existing
evaluations on tnew . The cubic scaling of the GP makes this approach less scalable,
though.

Another way to define task similarity is to take the existing evaluations Pi,j , use

Thompson Sampling [167] to obtain the optima distribution ρ
j
max , and then measure

the KL-divergence [80] between ρ
j
max and ρnew

max [124]. These distributions are then
merged into a mixture distribution based on the similarities and used to build an
acquisition function that predicts the next most promising configuration to evaluate.
It is so far only evaluated to tune 2 SVM hyperparameters using 5 tasks.

Finally, a complementary way to leverage P is to recommend which configu-
rations should not be used. After training surrogate models per task, we can look
up which tj are most similar to tnew , and then use sj (θi) to discover regions of 


where performance is predicted to be poor. Excluding these regions can speed up the
search for better-performing ones. Wistuba et al. [185], do this using a task similarity
measure based on the Kendall tau rank correlation coefficient [73] between the ranks
obtained by ranking configurations θi using Pi,j and Pi,new , respectively.
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2.2.4 Learning Curves

We can also extract meta-data about the training process itself, such as how fast
model performance improves as more training data is added. If we divide the
training in steps st , usually adding a fixed number of training examples every step,
we can measure the performance P(θi, tj , st ) = Pi,j,t of configuration θi on task
tj after step st , yielding a learning curve across the time steps st . As discussed in
Chap. 1, learning curves are also used to speed up hyperparameter optimization on a
given task. In meta-learning, learning curve information is transferred across tasks.

While evaluating a configuration on new task tnew , we can halt the training after
a certain number of iterations r < t , and use the partially observed learning curve
to predict how well the configuration will perform on the full dataset based on prior
experience with other tasks, and decide whether to continue the training or not. This
can significantly speed up the search for good configurations.

One approach is to assume that similar tasks yield similar learning curves. First,
define a distance between tasks based on how similar the partial learning curves are:
dist (ta, tb) = f (Pi,a,t , Pi,b,t ) with t = 1, . . . , r . Next, find the k most similar tasks
t1...k and use their complete learning curves to predict how well the configuration
will perform on the new complete dataset. Task similarity can be measured by
comparing the shapes of the partial curves across all configurations tried, and the
prediction is made by adapting the ‘nearest’ complete curve(s) to the new partial
curve [83, 84]. This approach was also successful in combination with active testing
[86], and can be sped up further by using multi-objective evaluation measures that
include training time [134].

Interestingly, while several methods aim to predict learning curves during neural
architecture search (see Chap. 3), as of yet none of this work leverages learning
curves previously observed on other tasks.

2.3 Learning from Task Properties

Another rich source of meta-data are characterizations (meta-features) of the task
at hand. Each task tj ∈ T is described with a vector m(tj ) = (mj,1, . . . ,mj,K) of
K meta-features mj,k ∈ M , the set of all known meta-features. This can be used
to define a task similarity measure based on, for instance, the Euclidean distance
between m(ti) and m(tj ), so that we can transfer information from the most similar
tasks to the new task tnew . Moreover, together with prior evaluations P, we can train
a meta-learner L to predict the performance Pi,new of configurations θi on a new
task tnew .



42 J. Vanschoren

2.3.1 Meta-Features

Table 2.1 provides a concise overview of the most commonly used meta-features,
together with a short rationale for why they are indicative of model performance.
Where possible, we also show the formulas to compute them. More complete
surveys can be found in the literature [26, 98, 130, 138, 175].

To build a meta-feature vector m(tj ), one needs to select and further process
these meta-features. Studies on OpenML meta-data have shown that the optimal set
of meta-features depends on the application [17]. Many meta-features are computed
on single features, or combinations of features, and need to be aggregated by
summary statistics (min,max,μ,σ ,quartiles,q1...4) or histograms [72]. One needs to
systematically extract and aggregate them [117]. When computing task similarity,
it is also important to normalize all meta-features [9], perform feature selection
[172], or employ dimensionality reduction techniques (e.g. PCA) [17]. When
learning meta-models, one can also use relational meta-learners [173] or case-based
reasoning methods [63, 71, 92].

Beyond these general-purpose meta-features, many more specific ones were
formulated. For streaming data one can use streaming landmarks [135, 137],
for time series data one can compute autocorrelation coefficients or the slope
of regression models [7, 121, 147], and for unsupervised problems one can
cluster the data in different ways and extract properties of these clusters [159].
In many applications, domain-specific information can be leveraged as well
[109, 156].

2.3.2 Learning Meta-Features

Instead of manually defining meta-features, we can also learn a joint represen-
tation for groups of tasks. One approach is to build meta-models that generate
a landmark-like meta-feature representation M ′ given other task meta-features
M and trained on performance meta-data P, or f : M 	→ M ′. Sun and
Pfahringer [165] do this by evaluating a predefined set of configurations θi

on all prior tasks tj , and generating a binary metafeature mj,a,b ∈ M ′ for
every pairwise combination of configurations θa and θb, indicating whether θa

outperformed θb or not, thus m′(tj ) = (mj,a,b,mj,a,c,mj,b,c, . . .). To compute
mnew,a,b, meta-rules are learned for every pairwise combination (a,b), each pre-
dicting whether θa will outperform θb on task tj , given its other meta-features
m(tj ).

We can also learn a joint representation based entirely on the available P meta-
data, i.e. f : P × 
 	→ M ′. We previously discussed how to do this with feed-
forward neural nets [114] in Sect. 2.2.3. If the tasks share the same input space,
e.g., they are images of the same resolution, one can also use deep metric learning
to learn a meta-feature representation, for instance, using Siamese networks [75].
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Table 2.1 Overview of commonly used meta-features. Groups from top to bottom: simple,
statistical, information-theoretic, complexity, model-based, and landmarkers. Continuous features
X and target Y have mean μX , stdev σX, variance σ 2

X . Categorical features X and class C have
categorical values πi , conditional probabilities πi|j , joint probabilities πi,j , marginal probabilities
πi+ = ∑

j πij , entropy H(X) = − ∑
i πi+log2(πi+)

Name Formula Rationale Variants

Nr instances n Speed, Scalability [99] p/n, log(n), log(n/p)

Nr features p Curse of dimensionality [99] log(p), % categorical

Nr classes c Complexity, imbalance [99] ratio min/maj class

Nr missing values m Imputation effects [70] % missing

Nr outliers o Data noisiness [141] o/n

Skewness E(X−μX)3

σ 3
X

Feature normality [99] min,max,μ,σ ,q1, q3

Kurtosis E(X−μX)4

σ 4
X

Feature normality [99] min,max,μ,σ ,q1, q3

Correlation ρX1X2 Feature interdependence [99] min,max,μ,σ ,ρXY [158]

Covariance covX1X2 Feature interdependence [99] min,max,μ,σ ,covXY

Concentration τX1X2 Feature interdependence [72] min,max,μ,σ ,τXY

Sparsity sparsity(X) Degree of discreteness [143] min,max,μ,σ

Gravity gravity(X) Inter-class dispersion [5]

ANOVA p-value pvalX1X2
Feature redundancy [70] pvalXY

[158]

Coeff. of variation σY
μY

Variation in target [158]

PCA ρλ1

√
λ1

1+λ1
Variance in first PC [99] λ1∑

i λi
[99]

PCA skewness Skewness of first PC [48] PCA kurtosis [48]

PCA 95% dim95%var

p
Intrinsic dimensionality [9]

Class probability P (C) Class distribution [99] min,max,μ,σ

Class entropy H(C) Class imbalance [99]

Norm. entropy H(X)
log2n

Feature informativeness [26] min,max,μ,σ

Mutual inform. MI(C,X) Feature importance [99] min,max,μ,σ

Uncertainty coeff. MI(C,X)
H(C)

Feature importance [3] min,max,μ,σ

Equiv. nr. feats H(C)

MI (C,X)
Intrinsic dimensionality [99]

Noise-signal ratio H(X)−MI(C,X)

MI (C,X)
Noisiness of data [99]

Fisher’s discrimin. (μc1−μc2)2

σ 2
c1−σ 2

c2

Separability classes c1, c2 [64] See [64]

Volume of overlap Class distribution overlap [64] See [64]

Concept variation Task complexity [180] See [179, 180]

Data consistency Data quality [76] See [76]

Nr nodes, leaves |η|, |ψ | Concept complexity [113] Tree depth

Branch length Concept complexity [113] min,max,μ,σ

Nodes per feature |ηX | Feature importance [113] min,max,μ,σ

Leaves per class |ψc |
|ψ | Class complexity [49] min,max,μ,σ

Leaves agreement nψi

n
Class separability [16] min,max,μ,σ

Information gain Feature importance [16] min,max,μ,σ , gini

(continued)
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Table 2.1 (continued)

Name Formula Rationale Variants

Landmarker(1NN) P (θ1NN , tj ) Data sparsity [115] Elite 1NN [115]

Landmarker(Tree) P (θT ree, tj ) Data separability [115] Stump,RandomTree

Landmarker(Lin) P (θLin, tj ) Linear separability [115] Lin.Disciminant

Landmarker(NB) P (θNB, tj ) Feature independence [115] More models [14, 88]

Relative LM Pa,j − Pb,j Probing performance [53]

Subsample LM P (θi , tj , st ) Probing performance [160]

These are trained by feeding the data of two different tasks to two twin networks,
and using the differences between the predicted and observed performance Pi,new

as the error signal. Since the model parameters between both networks are tied in a
Siamese network, two very similar tasks are mapped to the same regions in the latent
meta-feature space. They can be used for warm starting Bayesian hyperparameter
optimization [75] and neural architecture search [2].

2.3.3 Warm-Starting Optimization from Similar Tasks

Meta-features are a very natural way to estimate task similarity and initialize
optimization procedures based on promising configurations on similar tasks. This is
akin to how human experts start a manual search for good models, given experience
on related tasks.

First, starting a genetic search algorithm in regions of the search space with
promising solutions can significantly speed up convergence to a good solution.
Gomes et al. [59] recommend initial configurations by finding the k most similar
prior tasks tj based on the L1 distance between vectors m(tj ) and m(tnew), where
each m(tj ) includes 17 simple and statistical meta-features. For each of the k most
similar tasks, the best configuration is evaluated on tnew , and used to initialize a
genetic search algorithm (Particle Swarm Optimization), as well as Tabu Search.
Reif et al. [129] follow a very similar approach, using 15 simple, statistical, and
landmarking meta-features. They use a forward selection technique to find the most
useful meta-features, and warm-start a standard genetic algorithm (GAlib) with a
modified Gaussian mutation operation. Variants of active testing (see Sect. 2.2.3)
that use meta-features were also tried [85, 100], but did not perform better than the
approaches based on relative landmarks.

Also model-based optimization approaches can benefit greatly from an initial
set of promising configurations. SCoT [9] trains a single surrogate ranking model
f : M × 
 → R, predicting the rank of θi on task tj . M contains 4 meta-features
(3 simple ones and one based on PCA). The surrogate model is trained on all the
rankings, including those on tnew . Ranking is used because the scale of evaluation
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values can differ greatly between tasks. A GP regression converts the ranks to
probabilities to do Bayesian optimization, and each new Pi,new is used to retrain
the surrogate model after every step.

Schilling et al. [148] use a modified multilayer perceptron as a surrogate model,
of the form sj (θi,m(tj ), b(tj )) = Pi,j where m(tj ) are the meta-features and b(tj )

is a vector of j binary indications which are 1 if the meta-instance is from tj
and 0 otherwise. The multi-layer perceptron uses a modified activation function
based on factorization machines [132] in the first layer, aimed at learning a latent
representation for each task to model task similarities. Since this model cannot
represent uncertainties, an ensemble of 100 multilayer perceptrons is trained to get
predictive means and simulate variances.

Training a single surrogate model on all prior meta-data is often less scalable.
Yogatama and Mann [190] also build a single Bayesian surrogate model, but only
include tasks similar to tnew , where task similarity is defined as the Euclidean
distance between meta-feature vectors consisting of 3 simple meta-features. The
Pi,j values are standardized to overcome the problem of different scales for each tj .
The surrogate model learns a Gaussian process with a specific kernel combination
on all instances.

Feurer et al. [48] offer a simpler, more scalable method that warm-starts
Bayesian optimization by sorting all prior tasks tj similar to [59], but including
46 simple, statistical, and landmarking meta-features, as well as H(C). The t best
configurations on the d most similar tasks are used to warm-start the surrogate
model. They search over many more hyperparameters than earlier work, including
preprocessing steps. This warm-starting approach was also used in later work [46],
which is discussed in detail in Chap. 6.

Finally, one can also use collaborative filtering to recommend promising con-
figurations [162]. By analogy, the tasks tj (users) provide ratings (Pi,j ) for the
configurations θi (items), and matrix factorization techniques are used to predict
unknown Pi,j values and recommend the best configurations for any task. An
important issue here is the cold start problem, since the matrix factorization requires
at least some evaluations on tnew . Yang et al. [189] use a D-optimal experiment
design to sample an initial set of evaluations Pi,new . They predict both the predictive
performance and runtime, to recommend a set of warm-start configurations that
are both accurate and fast. Misir and Sebag [102, 103] leverage meta-features to
solve the cold start problem. Fusi et al. [54] also use meta-features, following the
same procedure as [46], and use a probabilistic matrix factorization approach that
allows them to perform Bayesian optimization to further optimize their pipeline
configurations θi . This approach yields useful latent embeddings of both the tasks
and configurations, in which the bayesian optimization can be performed more
efficiently.
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2.3.4 Meta-Models

We can also learn the complex relationship between a task’s meta-features and the
utility of specific configurations by building a meta-model L that recommends the
most useful configurations 
∗

new given the meta-features M of the new task tnew .
There exists a rich body of earlier work [22, 56, 87, 94] on building meta-models
for algorithm selection [15, 19, 70, 115] and hyperparameter recommendation [4,
79, 108, 158]. Experiments showed that boosted and bagged trees often yielded the
best predictions, although much depends on the exact meta-features used [72, 76].

2.3.4.1 Ranking

Meta-models can also generate a ranking of the top-K most promising configura-
tions. One approach is to build a k-nearest neighbor (kNN) meta-model to predict
which tasks are similar, and then rank the best configurations on these similar tasks
[23, 147]. This is similar to the work discussed in Sect. 2.3.3, but without ties to
a follow-up optimization approach. Meta-models specifically meant for ranking,
such as predictive clustering trees [171] and label ranking trees [29] were also
shown to work well. Approximate Ranking Tree Forests (ART Forests) [165],
ensembles of fast ranking trees, prove to be especially effective, since they have
‘built-in’ meta-feature selection, work well even if few prior tasks are available, and
the ensembling makes the method more robust. autoBagging [116] ranks Bagging
workflows including four different Bagging hyperparameters, using an XGBoost-
based ranker, trained on 140 OpenML datasets and 146 meta-features. Lorena et al.
[93] recommends SVM configurations for regression problems using a kNN meta-
model and a new set of meta-features based on data complexity.

2.3.4.2 Performance Prediction

Meta-models can also directly predict the performance, e.g. accuracy or training
time, of a configuration on a given task, given its meta-features. This allows us
to estimate whether a configuration will be interesting enough to evaluate in any
optimization procedure. Early work used linear regression or rule-base regressors
to predict the performance of a discrete set of configurations and then rank
them accordingly [14, 77]. Guerra et al. [61] train an SVM meta-regressor per
classification algorithm to predict its accuracy, under default settings, on a new
task tnew given its meta-features. Reif et al. [130] train a similar meta-regressor
on more meta-data to predict its optimized performance. Davis et al. [32] use a
MultiLayer Perceptron based meta-learner instead, predicting the performance of a
specific algorithm configuration.

Instead of predicting predictive performance, a meta-regressor can also be trained
to predict algorithm training/prediction time, for instance, using an SVM regressor
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trained on meta-features [128], itself tuned via genetic algorithms [119]. Yang et al.
[189] predict configuration runtime using polynomial regression, based only on the
number of instances and features. Hutter et al. [68] provide a general treatise on
predicting algorithm runtime in various domains.

Most of these meta-models generate promising configurations, but don’t actually
tune these configurations to tnew themselves. Instead, the predictions can be used
to warm-start or guide any other optimization technique, which allows for all kinds
of combinations of meta-models and optimization techniques. Indeed, some of the
work discussed in Sect. 2.3.3 can be seen as using a distance-based meta-model to
warm-start Bayesian optimization [48, 54] or evolutionary algorithms [59, 129]. In
principle, other meta-models could be used here as well.

Instead of learning the relationship between a task’s meta-features and configu-
ration performance, one can also build surrogate models predicting the performance
of configurations on specific tasks [40]. One can then learn how to combine these
per-task predictions to warm-start or guide optimization techniques on a new task
tnew [45, 114, 161, 187], as discussed in Sect. 2.2.3. While meta-features could also
be used to combine per-task predictions based on task similarity, it is ultimately
more effective to gather new observations Pi,new , since these allow us to refine the
task similarity estimates with every new observation [47, 85, 187].

2.3.5 Pipeline Synthesis

When creating entire machine learning pipelines [153], the number of configuration
options grows dramatically, making it even more important to leverage prior
experience. One can control the search space by imposing a fixed structure on the
pipeline, fully described by a set of hyperparameters. One can then use the most
promising pipelines on similar tasks to warm-start a Bayesian optimization [46, 54].

Other approaches give recommendations for certain pipeline steps [118, 163],
and can be leveraged in larger pipeline construction approaches, such as planning
[55, 74, 105, 184] or evolutionary techniques [110, 164]. Nguyen et al. [105] con-
struct new pipelines using a beam search focussed on components recommended by
a meta-learner, and is itself trained on examples of successful prior pipelines. Bilalli
et al. [18] predict which pre-processing techniques are recommended for a given
classification algorithm. They build a meta-model per target classification algorithm
that, given the tnew meta-features, predicts which preprocessing technique should
be included in the pipeline. Similarly, Schoenfeld et al. [152] build meta-models
predicting when a preprocessing algorithm will improve a particular classifier’s
accuracy or runtime.

AlphaD3M [38] uses a self-play reinforcement learning approach in which
the current state is represented by the current pipeline, and actions include the
addition, deletion, or replacement of pipeline components. A Monte Carlo Tree
Search (MCTS) generates pipelines, which are evaluated to train a recurrent neural
network (LSTM) that can predict pipeline performance, in turn producing the action
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probabilities for the MCTS in the next round. The state description also includes
meta-features of the current task, allowing the neural network to learn across tasks.
Mosaic [123] also generates pipelines using MCTS, but instead uses a bandits-based
approach to select promising pipelines.

2.3.6 To Tune or Not to Tune?

To reduce the number of configuration parameters to be optimized, and to save
valuable optimization time in time-constrained settings, meta-models have also been
proposed to predict whether or not it is worth tuning a given algorithm given the
meta-features of the task at hand [133] and how much improvement we can expect
from tuning a specific algorithm versus the additional time investment [144]. More
focused studies on specific learning algorithms yielded meta-models predicting
when it is necessary to tune SVMs [96], what are good default hyperparameters
for SVMs given the task (including interpretable meta-models) [97], and how to
tune decision trees [95].

2.4 Learning from Prior Models

The final type of meta-data we can learn from are prior machine learning models
themselves, i.e., their structure and learned model parameters. In short, we want to
train a meta-learner L that learns how to train a (base-) learner lnew for a new task
tnew , given similar tasks tj ∈ T and the corresponding optimized models lj ∈ L,
where L is the space of all possible models. The learner lj is typically defined by its
model parameters W = {wk}, k = 1 . . .K and/or its configuration θi ∈ 
.

2.4.1 Transfer Learning

In transfer learning [170], we take models trained on one or more source tasks tj ,
and use them as starting points for creating a model on a similar target task tnew .
This can be done by forcing the target model to be structurally or otherwise similar
to the source model(s). This is a generally applicable idea, and transfer learning
approaches have been proposed for kernel methods [41, 42], parametric Bayesian
models [8, 122, 140], Bayesian networks [107], clustering [168] and reinforcement
learning [36, 62]. Neural networks, however, are exceptionally suitable for transfer
learning because both the structure and the model parameters of the source models
can be used as a good initialization for the target model, yielding a pre-trained
model which can then be further fine-tuned using the available training data on tnew

[11, 13, 24, 169]. In some cases, the source network may need to be modified before
transferring it [155]. We will focus on neural networks in the remainder of this
section.
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Especially large image datasets, such as ImageNet [78], have been shown to yield
pre-trained models that transfer exceptionally well to other tasks [37, 154]. However,
it has also been shown that this approach doesn’t work well when the target task
is not so similar [191]. Rather than hoping that a pre-trained model ‘accidentally’
transfers well to a new problem, we can purposefully imbue meta-learners with an
inductive bias (learned from many similar tasks) that allows them to learn new tasks
much faster, as we will discuss below.

2.4.2 Meta-Learning in Neural Networks

An early meta-learning approach is to create recurrent neural networks (RNNs) able
to modify their own weights [149, 150]. During training, they use their own weights
as additional input data and observe their own errors to learn how to modify these
weights in response to the new task at hand. The updating of the weights is defined
in a parametric form that is differentiable end-to-end and can jointly optimize both
the network and training algorithm using gradient descent, yet is also very difficult
to train. Later work used reinforcement learning across tasks to adapt the search
strategy [151] or the learning rate for gradient descent [31] to the task at hand.

Inspired by the feeling that backpropagation is an unlikely learning mechanism
for our own brains, Bengio et al. [12] replace backpropagation with simple
biologically-inspired parametric rules (or evolved rules [27]) to update the synaptic
weights. The parameters are optimized, e.g. using gradient descent or evolution,
across a set of input tasks. Runarsson and Jonsson [142] replaced these parametric
rules with a single layer neural network. Santoro et al. [146] instead use a memory-
augmented neural network to learn how to store and retrieve ‘memories’ of prior
classification tasks. Hochreiter et al. [65] use LSTMs [66] as a meta-learner to train
multi-layer perceptrons.

Andrychowicz et al. [6] also replace the optimizer, e.g. stochastic gradient
descent, with an LSTM trained on multiple prior tasks. The loss of the meta-learner
(optimizer) is defined as the sum of the losses of the base-learners (optimizees), and
optimized using gradient descent. At every step, the meta-learner chooses the weight
update estimated to reduce the optimizee’s loss the most, based on the learned model
weights {wk} of the previous step as well as the current performance gradient. Later
work generalizes this approach by training an optimizer on synthetic functions,
using gradient descent [28]. This allows meta-learners to optimize optimizees even
if these do not have access to gradients.

In parallel, Li and Malik [89] proposed a framework for learning optimization
algorithms from a reinforcement learning perspective. It represents any particular
optimization algorithm as a policy, and then learns this policy via guided policy
search. Follow-up work [90] shows how to leverage this approach to learn opti-
mization algorithms for (shallow) neural networks.

The field of neural architecture search includes many other methods that build a
model of neural network performance for a specific task, for instance using Bayesian
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optimization or reinforcement learning. See Chap. 3 for an in-depth discussion.
However, most of these methods do not (yet) generalize across tasks and are
therefore not discussed here.

2.4.3 Few-Shot Learning

A particularly challenging meta-learning problem is to train an accurate deep
learning model using only a few training examples, given prior experience with
very similar tasks for which we have large training sets available. This is called
few-shot learning. Humans have an innate ability to do this, and we wish to build
machine learning agents that can do the same [82]. A particular example of this is
‘K-shot N-way’ classification, in which we are given many examples (e.g., images)
of certain classes (e.g., objects), and want to learn a classifier lnew able to classify
N new classes using only K examples of each.

Using prior experience, we can, for instance, learn a common feature represen-
tation of all the tasks, start training lnew with a better model parameter initialization
Winit and acquire an inductive bias that helps guide the optimization of the model
parameters, so that lnew can be trained much faster than otherwise possible.

Earlier work on one-shot learning is largely based on hand-engineered features
[10, 43, 44, 50]. With meta-learning, however, we hope to learn a common feature
representation for all tasks in an end-to-end fashion.

Vinyals et al. [181] state that, to learn from very little data, one should look
to non-parameteric models (such as k-nearest neighbors), which use a memory
component rather than learning many model parameters. Their meta-learner is a
Matching Network that applies the idea of a memory component in a neural net. It
learns a common representation for the labelled examples, and matches each new
test instance to the memorized examples using cosine similarity. The network is
trained on minibatches with only a few examples of a specific task each.

Snell et al. [157] propose Prototypical Networks, which map examples to a p-
dimensional vector space such that examples of a given output class are close
together. It then calculates a prototype (mean vector) for every class. New test
instances are mapped to the same vector space and a distance metric is used to
create a softmax over all possible classes. Ren et al. [131] extend this approach to
semi-supervised learning.

Ravi and Larochelle [126] use an LSTM-based meta-learner to learn an update
rule for training a neural network learner. With every new example, the learner
returns the current gradient and loss to the LSTM meta-learner, which then updates
the model parameters {wk} of the learner. The meta-learner is trained across all prior
tasks.

Model-Agnostic Meta-Learning (MAML) [51], on the other hand, does not try
to learn an update rule, but instead learns a model parameter initialization Winit that
generalizes better to similar tasks. Starting from a random {wk}, it iteratively selects
a batch of prior tasks, and for each it trains the learner on K examples to compute the
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gradient and loss (on a test set). It then backpropagates the meta-gradient to update
the weights {wk} in the direction in which they would have been easier to update.
In other words, after each iteration, the weights {wk} become a better Winit to start
finetuning any of the tasks. Finn and Levine [52] also argue that MAML is able to
approximate any learning algorithm when using a sufficiently deep fully connected
ReLU network and certain losses. They also conclude that the MAML initializations
are more resilient to overfitting on small samples, and generalize more widely than
meta-learning approaches based on LSTMs.

REPTILE [106] is an approximation of MAML that executes stochastic gradient
descent for K iterations on a given task, and then gradually moves the initialization
weights in the direction of the weights obtained after the K iterations. The intuition
is that every task likely has more than one set of optimal weights {w∗

i }, and the goal
is to find a Winit that is close to at least one of those {w∗

i } for every task.
Finally, we can also derive a meta-learner from a black-box neural network.

Santoro et al. [145] propose Memory-Augmented Neural Networks (MANNs),
which train a Neural Turing Machine (NTM) [60], a neural network with augmented
memory capabilities, as a meta-learner. This meta-learner can then memorize
information about previous tasks and leverage that to learn a learner lnew . SNAIL
[101] is a generic meta-learner architecture consisting of interleaved temporal con-
volution and causal attention layers. The convolutional networks learn a common
feature vector for the training instances (images) to aggregate information from past
experiences. The causal attention layers learn which pieces of information to pick
out from the gathered experience to generalize to new tasks.

Overall, the intersection of deep learning and meta-learning proves to be
particular fertile ground for groundbreaking new ideas, and we expect this field to
become more important over time.

2.4.4 Beyond Supervised Learning

Meta-learning is certainly not limited to (semi-)supervised tasks, and has been
successfully applied to solve tasks as varied as reinforcement learning, active
learning, density estimation and item recommendation. The base-learner may be
unsupervised while the meta-learner is supervised, but other combinations are
certainly possible as well.

Duan et al. [39] propose an end-to-end reinforcement learning (RL) approach
consisting of a task-specific fast RL algorithm which is guided by a general-purpose
slow meta-RL algorithm. The tasks are interrelated Markov Decision Processes
(MDPs). The meta-RL algorithm is modeled as an RNN, which receives the
observations, actions, rewards and termination flags. The activations of the RNN
store the state of the fast RL learner, and the RNN’s weights are learned by observing
the performance of fast learners across tasks.

In parallel, Wang et al. [182] also proposed to use a deep RL algorithm to
train an RNN, receiving the actions and rewards of the previous interval in order
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to learn a base-level RL algorithm for specific tasks. Rather than using relatively
unstructured tasks such as random MDPs, they focus on structured task distributions
(e.g., dependent bandits) in which the meta-RL algorithm can exploit the inherent
task structure.

Pang et al. [112] offer a meta-learning approach to active learning (AL). The
base-learner can be any binary classifier, and the meta-learner is a deep RL
network consisting of a deep neural network that learns a representation of the
AL problem across tasks, and a policy network that learns the optimal policy,
parameterized as weights in the network. The meta-learner receives the current state
(the unlabeled point set and base classifier state) and reward (the performance of the
base classifier), and emits a query probability, i.e. which points in the unlabeled set
to query next.

Reed et al. [127] propose a few-shot approach for density estimation (DE). The
goal is to learn a probability distribution over a small number of images of a certain
concept (e.g., a handwritten letter) that can be used to generate images of that
concept, or compute the probability that an image shows that concept. The approach
uses autoregressive image models which factorize the joint distribution into per-
pixel factors. Usually these are conditioned on (many) examples of the target
concept. Instead, a MAML-based few-shot learner is used, trained on examples of
many other (similar) concepts.

Finally, Vartak et al. [178] address the cold-start problem in matrix factorization.
They propose a deep neural network architecture that learns a (base) neural network
whose biases are adjusted based on task information. While the structure and
weights of the neural net recommenders remain fixed, the meta-learner learns how
to adjust the biases based on each user’s item history.

All these recent new developments illustrate that it is often fruitful to look at
problems through a meta-learning lens and find new, data-driven approaches to
replace hand-engineered base-learners.

2.5 Conclusion

Meta-learning opportunities present themselves in many different ways, and can
be embraced using a wide spectrum of learning techniques. Every time we try
to learn a certain task, whether successful or not, we gain useful experience that
we can leverage to learn new tasks. We should never have to start entirely from
scratch. Instead, we should systematically collect our ‘learning experiences’ and
learn from them to build AutoML systems that continuously improve over time,
helping us tackle new learning problems ever more efficiently. The more new tasks
we encounter, and the more similar those new tasks are, the more we can tap into
prior experience, to the point that most of the required learning has already been
done beforehand. The ability of computer systems to store virtually infinite amounts
of prior learning experiences (in the form of meta-data) opens up a wide range
of opportunities to use that experience in completely new ways, and we are only
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starting to learn how to learn from prior experience effectively. Yet, this is a worthy
goal: learning how to learn any task empowers us far beyond knowing how to learn
any specific task.
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Chapter 3
Neural Architecture Search

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter

Abstract Deep Learning has enabled remarkable progress over the last years on
a variety of tasks, such as image recognition, speech recognition, and machine
translation. One crucial aspect for this progress are novel neural architectures.
Currently employed architectures have mostly been developed manually by human
experts, which is a time-consuming and error-prone process. Because of this, there
is growing interest in automated neural architecture search methods. We provide an
overview of existing work in this field of research and categorize them according
to three dimensions: search space, search strategy, and performance estimation
strategy.

3.1 Introduction

The success of deep learning in perceptual tasks is largely due to its automation
of the feature engineering process: hierarchical feature extractors are learned in an
end-to-end fashion from data rather than manually designed. This success has been
accompanied, however, by a rising demand for architecture engineering, where
increasingly more complex neural architectures are designed manually. Neural
Architecture Search (NAS), the process of automating architecture engineering,
is thus a logical next step in automating machine learning. NAS can be seen as
subfield of AutoML and has significant overlap with hyperparameter optimization
and meta-learning (which are described in Chaps. 1 and 2 of this book, respectively).
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We categorize methods for NAS according to three dimensions: search space, search
strategy, and performance estimation strategy:

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about properties well-suited for a
task can reduce the size of the search space and simplify the search. However,
this also introduces a human bias, which may prevent finding novel architectural
building blocks that go beyond the current human knowledge.

Performance
Estimation
Strategy

Search Space

A Search Strategy

architecture
A ∈ A

performance
estimate of A

Fig. 3.1 Abstract illustration of Neural Architecture Search methods. A search strategy selects
an architecture A from a predefined search space A. The architecture is passed to a performance
estimation strategy, which returns the estimated performance of A to the search strategy

• Search Strategy. The search strategy details how to explore the search space.
It encompasses the classical exploration-exploitation trade-off since, on the one
hand, it is desirable to find well-performing architectures quickly, while on the
other hand, premature convergence to a region of suboptimal architectures should
be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Per-
formance Estimation refers to the process of estimating this performance: the
simplest option is to perform a standard training and validation of the architecture
on data, but this is unfortunately computationally expensive and limits the
number of architectures that can be explored. Much recent research therefore
focuses on developing methods that reduce the cost of these performance
estimations.

We refer to Fig. 3.1 for an illustration. The chapter is also structured according
to these three dimensions: we start with discussing search spaces in Sect. 3.2, cover
search strategies in Sect. 3.3, and outline approaches to performance estimation in
Sect. 3.4. We conclude with an outlook on future directions in Sect. 3.5.

This chapter is based on a very recent survey article [23].

3.2 Search Space

The search space defines which neural architectures a NAS approach might discover
in principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks,
as illustrated in Fig. 3.2 (left). A chain-structured neural network architecture A
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Fig. 3.2 An illustration of
different architecture spaces.
Each node in the graphs
corresponds to a layer in a
neural network, e.g., a
convolutional or pooling
layer. Different layer types
are visualized by different
colors. An edge from layer Li

to layer Lj denotes that Lj

receives the output of Li as
input. Left: an element of a
chain-structured space. Right:
an element of a more
complex search space with
additional layer types and
multiple branches and skip
connections
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can be written as a sequence of n layers, where the i’th layer Li receives its
input from layer i − 1 and its output serves as the input for layer i + 1, i.e.,
A = Ln ◦ . . . L1 ◦ L0. The search space is then parametrized by: (i) the (maximum)
number of layers n (possibly unbounded); (ii) the type of operation every layer can
execute, e.g., pooling, convolution, or more advanced layer types like depthwise
separable convolutions [13] or dilated convolutions [68]; and (iii) hyperparameters
associated with the operation, e.g., number of filters, kernel size and strides for
a convolutional layer [4, 10, 59], or simply number of units for fully-connected
networks [41]. Note that the parameters from (iii) are conditioned on (ii), hence
the parametrization of the search space is not fixed-length but rather a conditional
space.

Recent work on NAS [9, 11, 21, 22, 49, 75] incorporate modern design elements
known from hand-crafted architectures such as skip connections, which allow to
build complex, multi-branch networks, as illustrated in Fig. 3.2 (right). In this case
the input of layer i can be formally described as a function gi(L

out
i−1, . . . , L

out
0 )

combining previous layer outputs. Employing such a function results in significantly
more degrees of freedom. Special cases of these multi-branch architectures are (i)
the chain-structured networks (by setting gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1), (ii) Residual
Networks [28], where previous layer outputs are summed (gi(L

out
i−1, . . . , L

out
0 ) =

Lout
i−1 + Lout

j , j < i) and (iii) DenseNets [29], where previous layer outputs are
concatenated (gi(L

out
i−1, . . . , L

out
0 ) = concat (Lout

i−1, . . . , L
out
0 )).

Motivated by hand-crafted architectures consisting of repeated motifs [28, 29,
62], Zoph et al. [75] and Zhong et al. [71] propose to search for such motifs, dubbed
cells or blocks, respectively, rather than for whole architectures. Zoph et al. [75]
optimize two different kind of cells: a normal cell that preservers the dimensionality
of the input and a reduction cell which reduces the spatial dimension. The final
architecture is then built by stacking these cells in a predefined manner, as illustrated
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input

input

output

output

input

output

Fig. 3.3 Illustration of the cell search space. Left: Two different cells, e.g., a normal cell (top) and
a reduction cell (bottom) [75]. Right: an architecture built by stacking the cells sequentially. Note
that cells can also be combined in a more complex manner, such as in multi-branch spaces, by
simply replacing layers with cells

in Fig. 3.3. This search space has two major advantages compared to the ones
discussed above:

1. The size of the search space is drastically reduced since cells can be comparably
small. For example, Zoph et al. [75] estimate a seven-times speed-up compared
to their previous work [74] while achieving better performance.

2. Cells can more easily be transferred to other datasets by adapting the number of
cells used within a model. Indeed, Zoph et al. [75] transfer cells optimized on
CIFAR-10 to ImageNet and achieve state-of-the-art performance.

Consequently, this cell-based search space was also successfully employed by
many later works [11, 22, 37, 39, 46, 49, 72]. However, a new design-choice arises
when using a cell-based search space, namely how to choose the meta-architecture:
how many cells shall be used and how should they be connected to build the
actual model? For example, Zoph et al. [75] build a sequential model from cells,
in which each cell receives the outputs of the two preceding cells as input, while
Cai et al. [11] employ the high-level structure of well-known manually designed
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architectures, such as DenseNet [29], and use their cells within these models. In
principle, cells can be combined arbitrarily, e.g., within the multi-branch space
described above by simply replacing layers with cells. Ideally, the meta-architecture
should be optimized automatically as part of NAS; otherwise one easily ends up
doing meta-architecture engineering and the search for the cell becomes overly
simple if most of the complexity is already accounted for by the meta-architecture.

One step in the direction of optimizing meta-architectures is the hierarchical
search space introduced by Liu et al. [38], which consists of several levels of motifs.
The first level consists of the set of primitive operations, the second level of different
motifs that connect primitive operations via a direct acyclic graphs, the third level
of motifs that encode how to connect second-level motifs, and so on. The cell-based
search space can be seen as a special case of this hierarchical search space where
the number of levels is three, the second level motifs corresponds to the cells, and
the third level is the hard-coded meta-architecture.

The choice of the search space largely determines the difficulty of the optimiza-
tion problem: even for the case of the search space based on a single cell with
fixed meta-architecture, the optimization problem remains (i) non-continuous and
(ii) relatively high-dimensional (since more complex models tend to perform better,
resulting in more design choices). We note that the architectures in many search
spaces can be written as fixed-length vectors; e.g., the search space for each of the
two cells by Zoph et al. [75] can be written as a 40-dimensional search space with
categorical dimensions, each of which chooses between a small number of different
building blocks and inputs. Similarly, unbounded search spaces can be constrained
to have a maximal depth, giving rise to fixed-size search spaces with (potentially
many) conditional dimensions.

In the next section, we discuss Search Strategies that are well-suited for these
kinds of search spaces.

3.3 Search Strategy

Many different search strategies can be used to explore the space of neural archi-
tectures, including random search, Bayesian optimization, evolutionary methods,
reinforcement learning (RL), and gradient-based methods. Historically, evolution-
ary algorithms were already used by many researchers to evolve neural architectures
(and often also their weights) decades ago [see, e.g., 2, 25, 55, 56]. Yao [67] provides
a literature review of work earlier than 2000.

Bayesian optimization celebrated several early successes in NAS since 2013,
leading to state-of-the-art vision architectures [7], state-of-the-art performance for
CIFAR-10 without data augmentation [19], and the first automatically-tuned neural
networks to win competition datasets against human experts [41]. NAS became
a mainstream research topic in the machine learning community after Zoph and
Le [74] obtained competitive performance on the CIFAR-10 and Penn Treebank
benchmarks with a search strategy based on reinforcement learning. While Zoph
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and Le [74] use vast computational resources to achieve this result (800 GPUs
for three to four weeks), after their work, a wide variety of methods have been
published in quick succession to reduce the computational costs and achieve further
improvements in performance.

To frame NAS as a reinforcement learning (RL) problem [4, 71, 74, 75], the
generation of a neural architecture can be considered to be the agent’s action,
with the action space identical to the search space. The agent’s reward is based
on an estimate of the performance of the trained architecture on unseen data (see
Sect. 3.4). Different RL approaches differ in how they represent the agent’s policy
and how they optimize it: Zoph and Le [74] use a recurrent neural network (RNN)
policy to sequentially sample a string that in turn encodes the neural architecture.
They initially trained this network with the REINFORCE policy gradient algorithm,
but in follow-up work use Proximal Policy Optimization (PPO) instead [75]. Baker
et al. [4] use Q-learning to train a policy which sequentially chooses a layer’s type
and corresponding hyperparameters. An alternative view of these approaches is
as sequential decision processes in which the policy samples actions to generate
the architecture sequentially, the environment’s “state” contains a summary of the
actions sampled so far, and the (undiscounted) reward is obtained only after the
final action. However, since no interaction with an environment occurs during this
sequential process (no external state is observed, and there are no intermediate
rewards), we find it more intuitive to interpret the architecture sampling process
as the sequential generation of a single action; this simplifies the RL problem to a
stateless multi-armed bandit problem.

A related approach was proposed by Cai et al. [10], who frame NAS as a
sequential decision process: in their approach the state is the current (partially
trained) architecture, the reward is an estimate of the architecture’s performance, and
the action corresponds to an application of function-preserving mutations, dubbed
network morphisms [12, 63], see also Sect. 3.4, followed by a phase of training the
network. In order to deal with variable-length network architectures, they use a bi-
directional LSTM to encode architectures into a fixed-length representation. Based
on this encoded representation, actor networks decide on the sampled action. The
combination of these two components constitute the policy, which is trained end-
to-end with the REINFORCE policy gradient algorithm. We note that this approach
will not visit the same state (architecture) twice so that strong generalization over
the architecture space is required from the policy.

An alternative to using RL are neuro-evolutionary approaches that use evolu-
tionary algorithms for optimizing the neural architecture. The first such approach
for designing neural networks we are aware of dates back almost three decades:
Miller et al. [44] use genetic algorithms to propose architectures and use back-
propagation to optimize their weights. Many neuro-evolutionary approaches since
then [2, 55, 56] use genetic algorithms to optimize both the neural architecture
and its weights; however, when scaling to contemporary neural architectures with
millions of weights for supervised learning tasks, SGD-based weight optimization
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methods currently outperform evolutionary ones.1 More recent neuro-evolutionary
approaches [22, 38, 43, 49, 50, 59, 66] therefore again use gradient-based methods
for optimizing weights and solely use evolutionary algorithms for optimizing the
neural architecture itself. Evolutionary algorithms evolve a population of models,
i.e., a set of (possibly trained) networks; in every evolution step, at least one model
from the population is sampled and serves as a parent to generate offsprings by
applying mutations to it. In the context of NAS, mutations are local operations,
such as adding or removing a layer, altering the hyperparameters of a layer, adding
skip connections, as well as altering training hyperparameters. After training the
offsprings, their fitness (e.g., performance on a validation set) is evaluated and they
are added to the population.

Neuro-evolutionary methods differ in how they sample parents, update popula-
tions, and generate offsprings. For example, Real et al. [50], Real et al. [49], and Liu
et al. [38] use tournament selection [27] to sample parents, whereas Elsken et al.
[22] sample parents from a multi-objective Pareto front using an inverse density.
Real et al. [50] remove the worst individual from a population, while Real et al. [49]
found it beneficial to remove the oldest individual (which decreases greediness),
and Liu et al. [38] do not remove individuals at all. To generate offspring, most
approaches initialize child networks randomly, while Elsken et al. [22] employ
Lamarckian inheritance, i.e, knowledge (in the form of learned weights) is passed
on from a parent network to its children by using network morphisms. Real et al.
[50] also let an offspring inherit all parameters of its parent that are not affected
by the applied mutation; while this inheritance is not strictly function-preserving it
might also speed up learning compared to a random initialization. Moreover, they
also allow mutating the learning rate which can be seen as a way for optimizing the
learning rate schedule during NAS.

Real et al. [49] conduct a case study comparing RL, evolution, and random search
(RS), concluding that RL and evolution perform equally well in terms of final test
accuracy, with evolution having better anytime performance and finding smaller
models. Both approaches consistently perform better than RS in their experiments,
but with a rather small margin: RS achieved test errors of approximately 4% on
CIFAR-10, while RL and evolution reached approximately 3.5% (after “model
augmentation” where depth and number of filters was increased; the difference on
the actual, non-augmented search space was approx. 2%). The difference was even
smaller for Liu et al. [38], who reported a test error of 3.9% on CIFAR-10 and a top-
1 validation error of 21.0% on ImageNet for RS, compared to 3.75% and 20.3% for
their evolution-based method, respectively.

Bayesian Optimization (BO, see, e.g., [53]) is one of the most popular methods
for hyperparameter optimization (see also Chap. 1 of this book), but it has not

1Some recent work shows that evolving even millions of weights is competitive to gradient-
based optimization when only high-variance estimates of the gradient are available, e.g., for
reinforcement learning tasks [15, 51, 57]. Nonetheless, for supervised learning tasks gradient-based
optimization is by far the most common approach.
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been applied to NAS by many groups since typical BO toolboxes are based
on Gaussian processes and focus on low-dimensional continuous optimization
problems. Swersky et al. [60] and Kandasamy et al. [31] derive kernel functions
for architecture search spaces in order to use classic GP-based BO methods, but
so far without achieving new state-of-the-art performance. In contrast, several
works use tree-based models (in particular, treed Parzen estimators [8], or random
forests [30]) to effectively search very high-dimensional conditional spaces and
achieve state-of-the-art performance on a wide range of problems, optimizing both
neural architectures and their hyperparameters jointly [7, 19, 41, 69]. While a full
comparison is lacking, there is preliminary evidence that these approaches can also
outperform evolutionary algorithms [33].

Architectural search spaces have also been explored in a hierarchical manner,
e.g., in combination with evolution [38] or by sequential model-based optimization
[37]. Negrinho and Gordon [45] and Wistuba [65] exploit the tree-structure of
their search space and use Monte Carlo Tree Search. Elsken et al. [21] propose
a simple yet well performing hill climbing algorithm that discovers high-quality
architectures by greedily moving in the direction of better performing architectures
without requiring more sophisticated exploration mechanisms.

In contrast to the gradient-free optimization methods above, Liu et al. [39]
propose a continuous relaxation of the search space to enable gradient-based
optimization: instead of fixing a single operation oi (e.g., convolution or pooling)
to be executed at a specific layer, the authors compute a convex combination from
a set of operations {o1, . . . , om}. More specifically, given a layer input x, the
layer output y is computed as y = ∑m

i=1 λioi(x), λi ≥ 0,
∑m

i=1 λi = 1, where
the convex coefficients λi effectively parameterize the network architecture. Liu
et al. [39] then optimize both the network weights and the network architecture by
alternating gradient descent steps on training data for weights and on validation
data for architectural parameters such as λ. Eventually, a discrete architecture is
obtained by choosing the operation i with i = arg maxi λi for every layer. Shin
et al. [54] and Ahmed and Torresani [1] also employ gradient-based optimization of
neural architectures, however they only consider optimizing layer hyperparameters
or connectivity patterns, respectively.

3.4 Performance Estimation Strategy

The search strategies discussed in Sect. 3.3 aim at finding a neural architecture A
that maximizes some performance measure, such as accuracy on unseen data. To
guide their search process, these strategies need to estimate the performance of a
given architecture A they consider. The simplest way of doing this is to train A on
training data and evaluate its performance on validation data. However, training each
architecture to be evaluated from scratch frequently yields computational demands
in the order of thousands of GPU days for NAS [49, 50, 74, 75].
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To reduce this computational burden, performance can be estimated based on
lower fidelities of the actual performance after full training (also denoted as proxy
metrics). Such lower fidelities include shorter training times [69, 75], training on
a subset of the data [34], on lower-resolution images [14], or with less filters per
layer [49, 75]. While these low-fidelity approximations reduce the computational
cost, they also introduce bias in the estimate as performance will typically be
underestimated. This may not be problematic as long as the search strategy only
relies on ranking different architectures and the relative ranking remains stable.
However, recent results indicate that this relative ranking can change dramatically
when the difference between the cheap approximations and the “full” evaluation is
too big [69], arguing for a gradual increase in fidelities [24, 35].

Another possible way of estimating an architecture’s performance builds upon
learning curve extrapolation [5, 19, 32, 48, 61]. Domhan et al. [19] propose to
extrapolate initial learning curves and terminate those predicted to perform poorly to
speed up the architecture search process. Baker et al. [5], Klein et al. [32], Rawal and
Miikkulainen [48], Swersky et al. [61] also consider architectural hyperparameters
for predicting which partial learning curves are most promising. Training a surrogate
model for predicting the performance of novel architectures is also proposed
by Liu et al. [37], who do not employ learning curve extrapolation but support
predicting performance based on architectural/cell properties and extrapolate to
architectures/cells with larger size than seen during training. The main challenge
for predicting the performances of neural architectures is that, in order to speed up
the search process, good predictions in a relatively large search space need to be
made based on relatively few evaluations.

Another approach to speed up performance estimation is to initialize the weights
of novel architectures based on weights of other architectures that have been
trained before. One way of achieving this, dubbed network morphisms [64], allows
modifying an architecture while leaving the function represented by the network
unchanged [10, 11, 21, 22]. This allows increasing capacity of networks successively
and retaining high performance without requiring training from scratch. Continuing
training for a few epochs can also make use of the additional capacity introduced by
network morphisms. An advantage of these approaches is that they allow search
spaces without an inherent upper bound on the architecture’s size [21]; on the
other hand, strict network morphisms can only make architectures larger and may
thus lead to overly complex architectures. This can be attenuated by employing
approximate network morphisms that allow shrinking architectures [22].

One-Shot Architecture Search is another promising approach for speeding up
performance estimation, which treats all architectures as different subgraphs of
a supergraph (the one-shot model) and shares weights between architectures that
have edges of this supergraph in common [6, 9, 39, 46, 52]. Only the weights of a
single one-shot model need to be trained (in one of various ways), and architectures
(which are just subgraphs of the one-shot model) can then be evaluated without
any separate training by inheriting trained weights from the one-shot model. This
greatly speeds up performance estimation of architectures, since no training is
required (only evaluating performance on validation data). This approach typically
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incurs a large bias as it underestimates the actual performance of architectures
severely; nevertheless, it allows ranking architectures reliably, since the estimated
performance correlates strongly with the actual performance [6]. Different one-shot
NAS methods differ in how the one-shot model is trained: ENAS [46] learns an RNN
controller that samples architectures from the search space and trains the one-shot
model based on approximate gradients obtained through REINFORCE. DARTS
[39] optimizes all weights of the one-shot model jointly with a continuous relaxation
of the search space obtained by placing a mixture of candidate operations on each
edge of the one-shot model. Bender et al. [6] only train the one-shot model once
and show that this is sufficient when deactivating parts of this model stochastically
during training using path dropout. While ENAS and DARTS optimize a distribution
over architectures during training, the approach of Bender et al. [6] can be seen
as using a fixed distribution. The high performance obtainable by the approach
of Bender et al. [6] indicates that the combination of weight sharing and a fixed
(carefully chosen) distribution might (perhaps surprisingly) be the only required
ingredients for one-shot NAS. Related to these approaches is meta-learning of
hypernetworks that generate weights for novel architectures and thus requires
only training the hypernetwork but not the architectures themselves [9]. The main
difference here is that weights are not strictly shared but generated by the shared
hypernetwork (conditional on the sampled architecture).

A general limitation of one-shot NAS is that the supergraph defined a-priori
restricts the search space to its subgraphs. Moreover, approaches which require
that the entire supergraph resides in GPU memory during architecture search will
be restricted to relatively small supergraphs and search spaces accordingly and are
thus typically used in combination with cell-based search spaces. While approaches
based on weight-sharing have substantially reduced the computational resources
required for NAS (from thousands to a few GPU days), it is currently not well
understood which biases they introduce into the search if the sampling distribution
of architectures is optimized along with the one-shot model. For instance, an initial
bias in exploring certain parts of the search space more than others might lead to the
weights of the one-shot model being better adapted for these architectures, which
in turn would reinforce the bias of the search to these parts of the search space.
This might result in premature convergence of NAS and might be one advantage
of a fixed sampling distribution as used by Bender et al. [6]. In general, a more
systematic analysis of biases introduced by different performance estimators would
be a desirable direction for future work.

3.5 Future Directions

In this section, we discuss several current and future directions for research on NAS.
Most existing work has focused on NAS for image classification. On the one hand,
this provides a challenging benchmark since a lot of manual engineering has been
devoted to finding architectures that perform well in this domain and are not easily
outperformed by NAS. On the other hand, it is relatively easy to define a well-suited
search space by utilizing knowledge from manual engineering. This in turn makes
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it unlikely that NAS will find architectures that substantially outperform existing
ones considerably since the found architectures cannot differ fundamentally. We
thus consider it important to go beyond image classification problems by applying
NAS to less explored domains. Notable first steps in this direction are applying
NAS to language modeling [74], music modeling [48], image restoration [58]
and network compression [3]; applications to reinforcement learning, generative
adversarial networks, semantic segmentation, or sensor fusion could be further
promising future directions.

An alternative direction is developing NAS methods for multi-task problems
[36, 42] and for multi-objective problems [20, 22, 73], in which measures of
resource efficiency are used as objectives along with the predictive performance
on unseen data. Likewise, it would be interesting to extend RL/bandit approaches,
such as those discussed in Sect. 3.3, to learn policies that are conditioned on a state
that encodes task properties/resource requirements (i.e., turning the setting into a
contextual bandit). A similar direction was followed by Ramachandran and Le [47]
in extending one-shot NAS to generate different architectures depending on the task
or instance on-the-fly. Moreover, applying NAS to searching for architectures that
are more robust to adversarial examples [17] is an intriguing recent direction.

Related to this is research on defining more general and flexible search spaces.
For instance, while the cell-based search space provides high transferability between
different image classification tasks, it is largely based on human experience on
image classification and does not generalize easily to other domains where the hard-
coded hierarchical structure (repeating the same cells several times in a chain-like
structure) does not apply (e.g., semantic segmentation or object detection). A search
space which allows representing and identifying more general hierarchical structure
would thus make NAS more broadly applicable, see Liu et al. [38] for first work
in this direction. Moreover, common search spaces are also based on predefined
building blocks, such as different kinds of convolutions and pooling, but do not
allow identifying novel building blocks on this level; going beyond this limitation
might substantially increase the power of NAS.

The comparison of different methods for NAS is complicated by the fact that
measurements of an architecture’s performance depend on many factors other than
the architecture itself. While most authors report results on the CIFAR-10 dataset,
experiments often differ with regard to search space, computational budget, data
augmentation, training procedures, regularization, and other factors. For example,
for CIFAR-10, performance substantially improves when using a cosine annealing
learning rate schedule [40], data augmentation by CutOut [18], by MixUp [70] or
by a combination of factors [16], and regularization by Shake-Shake regularization
[26] or scheduled drop-path [75]. It is therefore conceivable that improvements in
these ingredients have a larger impact on reported performance numbers than the
better architectures found by NAS. We thus consider the definition of common
benchmarks to be crucial for a fair comparison of different NAS methods. A
first step in this direction is the definition of a benchmark for joint architecture
and hyperparameter search for a fully connected neural network with two hidden
layers [33]. In this benchmark, nine discrete hyperparameters need to be optimized
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that control both architecture and optimization/regularization. All 62.208 possible
hyperparameter combinations have been pre-evaluated such that different methods
can be compared with low computational resources. However, the search space is
still very simple compared to the spaces employed by most NAS methods. It would
also be interesting to evaluate NAS methods not in isolation but as part of a full
open-source AutoML system, where also hyperparameters [41, 50, 69], and data
augmentation pipeline [16] are optimized along with NAS.

While NAS has achieved impressive performance, so far it provides little insights
into why specific architectures work well and how similar the architectures derived
in independent runs would be. Identifying common motifs, providing an understand-
ing why those motifs are important for high performance, and investigating if these
motifs generalize over different problems would be desirable.
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Chapter 4
Auto-WEKA: Automatic Model Selection
and Hyperparameter Optimization in
WEKA

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter,
and Kevin Leyton-Brown

Abstract Many different machine learning algorithms exist; taking into account
each algorithm’s hyperparameters, there is a staggeringly large number of possible
alternatives overall. We consider the problem of simultaneously selecting a learning
algorithm and setting its hyperparameters. We show that this problem can be
addressed by a fully automated approach, leveraging recent innovations in Bayesian
optimization. Specifically, we consider feature selection techniques and all machine
learning approaches implemented in WEKA’s standard distribution, spanning 2
ensemble methods, 10 meta-methods, 28 base learners, and hyperparameter settings
for each learner. On each of 21 popular datasets from the UCI repository, the
KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show performance
often much better than using standard selection and hyperparameter optimization
methods. We hope that our approach will help non-expert users to more effectively
identify machine learning algorithms and hyperparameter settings appropriate to
their applications, and hence to achieve improved performance.

4.1 Introduction

Increasingly, users of machine learning tools are non-experts who require off-the-
shelf solutions. The machine learning community has much aided such users by
making available a wide variety of sophisticated learning algorithms and feature
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selection methods through open source packages, such as WEKA [15] and mlr [7].
Such packages ask a user to make two kinds of choices: selecting a learning
algorithm and customizing it by setting hyperparameters (which also control feature
selection, if applicable). It can be challenging to make the right choice when faced
with these degrees of freedom, leaving many users to select algorithms based on
reputation or intuitive appeal, and/or to leave hyperparameters set to default values.
Of course, adopting this approach can yield performance far worse than that of the
best method and hyperparameter settings.

This suggests a natural challenge for machine learning: given a dataset, auto-
matically and simultaneously choosing a learning algorithm and setting its hyperpa-
rameters to optimize empirical performance. We dub this the combined algorithm
selection and hyperparameter optimization (CASH) problem; we formally define
it in Sect. 4.3. There has been considerable past work separately addressing model
selection, e.g., [1, 6, 8, 9, 11, 24, 25, 33], and hyperparameter optimization, e.g., [3–
5, 14, 23, 28, 30]. In contrast, despite its practical importance, we are surprised to
find only limited variants of the CASH problem in the literature; furthermore, these
consider a fixed and relatively small number of parameter configurations for each
algorithm, see e.g., [22].

A likely explanation is that it is very challenging to search the combined space of
learning algorithms and their hyperparameters: the response function is noisy and
the space is high dimensional, involves both categorical and continuous choices,
and contains hierarchical dependencies (e.g., , the hyperparameters of a learning
algorithm are only meaningful if that algorithm is chosen; the algorithm choices
in an ensemble method are only meaningful if that ensemble method is chosen;
etc). Another related line of work is on meta-learning procedures that exploit
characteristics of the dataset, such as the performance of so-called landmarking
algorithms, to predict which algorithm or hyperparameter configuration will per-
form well [2, 22, 26, 32]. While the CASH algorithms we study in this chapter
start from scratch for each new dataset, these meta-learning procedures exploit
information from previous datasets, which may not always be available.

In what follows, we demonstrate that CASH can be viewed as a single hierarchi-
cal hyperparameter optimization problem, in which even the choice of algorithm
itself is considered a hyperparameter. We also show that—based on this prob-
lem formulation—recent Bayesian optimization methods can obtain high quality
results in reasonable time and with minimal human effort. After discussing some
preliminaries (Sect. 4.2), we define the CASH problem and discuss methods for
tackling it (Sect. 4.3). We then define a concrete CASH problem encompassing a
wide range of learners and feature selectors in the open source package WEKA
(Sect. 4.4), and show that a search in the combined space of algorithms and
hyperparameters yields better-performing models than standard algorithm selection
and hyperparameter optimization methods (Sect. 4.5). More specifically, we show
that the recent Bayesian optimization procedures TPE [4] and SMAC [16] often find
combinations of algorithms and hyperparameters that outperform existing baseline
methods, especially on large datasets.
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This chapter is based on two previous papers, published in the proceedings
of KDD 2013 [31] and in the journal of machine learning research (JMLR) in
2017 [20].

4.2 Preliminaries

We consider learning a function f : X 	→ Y , where Y is either finite (for
classification), or continuous (for regression). A learning algorithm A maps a set
{d1, . . . , dn} of training data points di = (xi , yi) ∈ X × Y to such a function,
which is often expressed via a vector of model parameters. Most learning algorithms
A further expose hyperparameters λ ∈ �, which change the way the learning
algorithm Aλ itself works. For example, hyperparameters are used to describe a
description-length penalty, the number of neurons in a hidden layer, the number of
data points that a leaf in a decision tree must contain to be eligible for splitting, etc.
These hyperparameters are typically optimized in an “outer loop” that evaluates the
performance of each hyperparameter configuration using cross-validation.

4.2.1 Model Selection

Given a set of learning algorithms A and a limited amount of training data D =
{(x1, y1), . . . , (xn, yn)}, the goal of model selection is to determine the algorithm
A∗ ∈ A with optimal generalization performance. Generalization performance
is estimated by splitting D into disjoint training and validation sets D(i)

train and

D(i)
valid, learning functions fi by applying A∗ to D(i)

train, and evaluating the predictive

performance of these functions on D(i)
valid. This allows for the model selection

problem to be written as:

A∗ ∈ argmin
A∈A

1

k

k∑
i=1

L(A,D(i)
train,D(i)

valid),

where L(A,D(i)
train,D(i)

valid) is the loss achieved by A when trained on D(i)
train and

evaluated on D(i)
valid.

We use k-fold cross-validation [19], which splits the training data into k equal-
sized partitions D(1)

valid, . . . ,D(k)
valid, and sets D(i)

train = D \ D(i)
valid for i = 1, . . . , k.1

1There are other ways of estimating generalization performance; e.g., we also experimented with
repeated random subsampling validation [19], and obtained similar results.
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4.2.2 Hyperparameter Optimization

The problem of optimizing the hyperparameters λ ∈ � of a given learning algorithm
A is conceptually similar to that of model selection. Some key differences are
that hyperparameters are often continuous, that hyperparameter spaces are often
high dimensional, and that we can exploit correlation structure between different
hyperparameter settings λ1,λ2 ∈ �. Given n hyperparameters λ1, . . . , λn with
domains �1, . . . ,�n, the hyperparameter space � is a subset of the crossproduct of
these domains: � ⊂ �1 ×· · ·×�n. This subset is often strict, such as when certain
settings of one hyperparameter render other hyperparameters inactive. For example,
the parameters determining the specifics of the third layer of a deep belief network
are not relevant if the network depth is set to one or two. Likewise, the parameters of
a support vector machine’s polynomial kernel are not relevant if we use a different
kernel instead.

More formally, following [17], we say that a hyperparameter λi is conditional
on another hyperparameter λj , if λi is only active if hyperparameter λj takes values
from a given set Vi(j) � �j ; in this case we call λj a parent of λi . Conditional
hyperparameters can in turn be parents of other conditional hyperparameters, giving
rise to a tree-structured space [4] or, in some cases, a directed acyclic graph
(DAG) [17]. Given such a structured space �, the (hierarchical) hyperparameter
optimization problem can be written as:

λ∗ ∈ argmin
λ∈�

1

k

k∑
i=1

L(Aλ,D(i)
train,D(i)

valid).

4.3 Combined Algorithm Selection and Hyperparameter
Optimization (CASH)

Given a set of algorithms A = {A(1), . . . , A(k)} with associated hyperparameter
spaces �(1), . . . ,�(k), we define the combined algorithm selection and hyperpa-
rameter optimization problem (CASH) as computing

A∗
λ∗ ∈ argmin

A(j)∈A,λ∈�(j)

1

k

k∑
i=1

L(A
(j)

λ ,D(i)
train,D(i)

valid). (4.1)

We note that this problem can be reformulated as a single combined hierarchical
hyperparameter optimization problem with parameter space � = �(1) ∪ · · · ∪
�(k) ∪ {λr }, where λr is a new root-level hyperparameter that selects between
algorithms A(1), . . . , A(k). The root-level parameters of each subspace �(i) are
made conditional on λr being instantiated to Ai .
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In principle, problem (4.1) can be tackled in various ways. A promising
approach is Bayesian Optimization [10], and in particular Sequential Model-Based
Optimization (SMBO) [16], a versatile stochastic optimization framework that can
work with both categorical and continuous hyperparameters, and that can exploit
hierarchical structure stemming from conditional parameters. SMBO (outlined in
Algorithm 1) first builds a model ML that captures the dependence of loss function
L on hyperparameter settings λ (line 1 in Algorithm 1). It then iterates the following
steps: useML to determine a promising candidate configuration of hyperparameters
λ to evaluate next (line 3); evaluate the loss c of λ (line 4); and update the model
ML with the new data point (λ, c) thus obtained (lines 5–6).

Algorithm 1 SMBO
1: initialise model ML; H ← ∅
2: while time budget for optimization has not been exhausted do
3: λ ← candidate configuration from ML

4: Compute c = L(Aλ,D(i)
train,D

(i)
valid)

5: H ← H ∪ {(λ, c)}
6: Update ML given H
7: end while
8: return λ from H with minimal c

In order to select its next hyperparameter configuration λ using model ML,
SMBO uses a so-called acquisition function aML : � 	→ R, which uses the
predictive distribution of model ML at arbitrary hyperparameter configurations λ ∈
� to quantify (in closed form) how useful knowledge about λ would be. SMBO then
simply maximizes this function over � to select the most useful configuration λ to
evaluate next. Several well-studied acquisition functions exist [18, 27, 29]; all aim to
automatically trade off exploitation (locally optimizing hyperparameters in regions
known to perform well) versus exploration (trying hyperparameters in a relatively
unexplored region of the space) in order to avoid premature convergence. In this
work, we maximized positive expected improvement (EI) attainable over an existing
given loss cmin [27]. Let c(λ) denote the loss of hyperparameter configuration λ.
Then, the positive improvement function over cmin is defined as

Icmin (λ) := max{cmin − c(λ), 0}.

Of course, we do not know c(λ). We can, however, compute its expectation with
respect to the current model ML:

EML [Icmin (λ)] =
∫ cmin

−∞
max{cmin − c, 0} · pML

(c | λ) dc. (4.2)

We briefly review the SMBO approach used in this chapter.
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4.3.1 Sequential Model-Based Algorithm Configuration
(SMAC)

Sequential model-based algorithm configuration (SMAC) [16] supports a variety
of models p(c | λ) to capture the dependence of the loss function c on hyper-
parameters λ, including approximate Gaussian processes and random forests. In
this chapter we use random forest models, since they tend to perform well with
discrete and high-dimensional input data. SMAC handles conditional parameters by
instantiating inactive conditional parameters in λ to default values for model training
and prediction. This allows the individual decision trees to include splits of the kind
“is hyperparameter λi active?”, allowing them to focus on active hyperparameters.
While random forests are not usually treated as probabilistic models, SMAC obtains
a predictive mean μλ and variance σλ

2 of p(c | λ) as frequentist estimates over the
predictions of its individual trees for λ; it then models pML(c | λ) as a Gaussian
N (μλ, σλ

2).
SMAC uses the expected improvement criterion defined in Eq. 4.2, instantiating

cmin to the loss of the best hyperparameter configuration measured so far. Under
SMAC’s predictive distribution pML(c | λ) = N (μλ, σλ

2), this expectation is the
closed-form expression

EML [Icmin (λ)] = σλ · [u · �(u) + ϕ(u)],

where u = cmin−μλ

σλ
, and ϕ and � denote the probability density function and

cumulative distribution function of a standard normal distribution, respectively [18].
SMAC is designed for robust optimization under noisy function evaluations,

and as such implements special mechanisms to keep track of its best known
configuration and assure high confidence in its estimate of that configuration’s
performance. This robustness against noisy function evaluations can be exploited in
combined algorithm selection and hyperparameter optimization, since the function
to be optimized in Eq. (4.1) is a mean over a set of loss terms (each corresponding
to one pair of D(i)

train and D(i)
valid constructed from the training set). A key idea in

SMAC is to make progressively better estimates of this mean by evaluating these
terms one at a time, thus trading off accuracy and computational cost. In order for
a new configuration to become a new incumbent, it must outperform the previous
incumbent in every comparison made: considering only one fold, two folds, and
so on up to the total number of folds previously used to evaluate the incumbent.
Furthermore, every time the incumbent survives such a comparison, it is evaluated
on a new fold, up to the total number available, meaning that the number of folds
used to evaluate the incumbent grows over time. A poorly performing configuration
can thus be discarded after considering just a single fold.

Finally, SMAC also implements a diversification mechanism to achieve robust
performance even when its model is misled, and to explore new parts of the
space: every second configuration is selected at random. Because of the evaluation
procedure just described, this requires less overhead than one might imagine.
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4.4 Auto-WEKA

To demonstrate the feasibility of an automatic approach to solving the CASH
problem, we built Auto-WEKA, which solves this problem for the learners and
feature selectors implemented in the WEKA machine learning package [15]. Note
that while we have focused on classification algorithms in WEKA, there is no
obstacle to extending our approach to other settings. Indeed, another successful
system that uses the same underlying technology is auto-sklearn [12].

Fig. 4.1 shows all supported learning algorithms and feature selectors with the
number of hyperparameters. algorithms. Meta-methods take a single base classifier
and its parameters as an input, and the ensemble methods can take any number of
base learners as input. We allowed the meta-methods to use any base learner with
any hyperparameter settings, and allowed the ensemble methods to use up to five

Base Learners
2teNseyaB

DecisionStump* 0

DecisionTable* 4

GaussianProcesses* 10

5*kBI

984J

4piRJ

3*ratSK

LinearRegression* 3

9TML

1citsigoL

4P5M

4seluR5M

MultilayerPerceptron* 8

2seyaBeviaN

NaiveBayesMultinomial 0

1RenO

4TRAP

RandomForest 7

RandomTree* 11

6*eerTPER

5*DGS

SimpleLinearRegression* 0

SimpleLogistic 5

11OMS

31*gerOMS

VotedPerceptron 3

0*RoreZ
Ensemble Methods

2gnikcatS 2etoV
Meta-Methods

5LWL
AdaBoostM1 6
AdditiveRegression 4
AttributeSelectedClassifier 2

4gniggaB

RandomCommittee 2

RandomSubSpace 3
Feature Selection Methods

2tsriFtseB GreedyStepwise 4

Fig. 4.1 Learners and methods supported by Auto-WEKA, along with number of hyperparameters
|�|. Every learner supports classification; starred learners also support regression
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learners, again with any hyperparameter settings. Not all learners are applicable on
all datasets (e.g., due to a classifier’s inability to handle missing data). For a given
dataset, our Auto-WEKA implementation automatically only considers the subset of
applicable learners. Feature selection is run as a preprocessing phase before building
any model.

The algorithms in Fig. 4.1 have a wide variety of hyperparameters, which take
values from continuous intervals, from ranges of integers, and from other discrete
sets. We associated either a uniform or log uniform prior with each numerical
parameter, depending on its semantics. For example, we set a log uniform prior
for the ridge regression penalty, and a uniform prior for the maximum depth for
a tree in a random forest. Auto-WEKA works with continuous hyperparameter
values directly up to the precision of the machine. We emphasize that this combined
hyperparameter space is much larger than a simple union of the base learners’
hyperparameter spaces, since the ensemble methods allow up to 5 independent base
learners. The meta- and ensemble methods as well as the feature selection contribute
further to the total size of AutoWEKA’s hyperparameter space.

Auto-WEKA uses the SMAC optimizer described above to solve the CASH
problem and is available to the public through the WEKA package manager; the
source code can be found at https://github.com/automl/autoweka and the official
project website is at http://www.cs.ubc.ca/labs/beta/Projects/autoweka. For the
experiments described in this chapter, we used Auto-WEKA version 0.5. The results
the more recent versions achieve are similar; we did not replicate the full set of
experiments because of the large computational cost.

4.5 Experimental Evaluation

We evaluated Auto-WEKA on 21 prominent benchmark datasets (see Table 4.1):
15 sets from the UCI repository [13]; the ‘convex’, ‘MNIST basic’ and ‘rotated
MNIST with background images’ tasks used in [5]; the appentency task from the
KDD Cup ’09; and two versions of the CIFAR-10 image classification task [21]
(CIFAR-10-Small is a subset of CIFAR-10, where only the first 10,000 training data
points are used rather than the full 50,000.) Note that in the experimental evaluation,
we focus on classification. For datasets with a predefined training/test split, we used
that split. Otherwise, we randomly split the dataset into 70% training and 30% test
data. We withheld the test data from all optimization method; it was only used once
in an offline analysis stage to evaluate the models found by the various optimization
methods.

For each dataset, we ran Auto-WEKA with each hyperparameter optimization
algorithm with a total time budget of 30 h. For each method, we performed 25
runs of this process with different random seeds and then—in order to simulate
parallelization on a typical workstation—used bootstrap sampling to repeatedly
select four random runs and report the performance of the one with best cross-
validation performance.

https://github.com/automl/autoweka
http://www.cs.ubc.ca/labs/beta/Projects/autoweka
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Table 4.1 Datasets used; Num. Discr.. and Num. Cont. refer to the number of discrete and
continuous attributes of elements in the dataset, respectively

Num Num Num Num Num
Name Discr. Cont. classes training test

Dexter 20,000 0 2 420 180

GermanCredit 13 7 2 700 300

Dorothea 100,000 0 2 805 345

Yeast 0 8 10 1,038 446

Amazon 10,000 0 49 1,050 450

Secom 0 591 2 1,096 471

Semeion 256 0 10 1,115 478

Car 6 0 4 1,209 519

Madelon 500 0 2 1,820 780

KR-vs-KP 37 0 2 2,237 959

Abalone 1 7 28 2,923 1,254

Wine Quality 0 11 11 3,425 1,469

Waveform 0 40 3 3,500 1,500

Gisette 5,000 0 2 4,900 2,100

Convex 0 784 2 8,000 50,000

CIFAR-10-Small 3,072 0 10 10,000 10,000

MNIST Basic 0 784 10 12,000 50,000

Rot. MNIST + BI 0 784 10 12,000 50,000

Shuttle 9 0 7 43,500 14,500

KDD09-Appentency 190 40 2 35,000 15,000

CIFAR-10 3,072 0 10 50,000 10,000

In early experiments, we observed a few cases in which Auto-WEKA’s SMBO
method picked hyperparameters that had excellent training performance, but turned
out to generalize poorly. To enable Auto-WEKA to detect such overfitting, we
partitioned its training set into two subsets: 70% for use inside the SMBO method,
and 30% of validation data that we only used after the SMBO method finished.

4.5.1 Baseline Methods

Auto-WEKA aims to aid non-expert users of machine learning techniques. A natural
approach that such a user might take is to perform 10-fold cross validation on the
training set for each technique with unmodified hyperparameters, and select the
classifier with the smallest average misclassification error across folds. We will refer
to this method applied to our set of WEKA learners as Ex-Def ; it is the best choice
that can be made for WEKA with default hyperparameters.
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For each dataset, the second and third columns in Table 4.2 present the best
and worst “oracle performance” of the default learners when prepared given all the
training data and evaluated on the test set. We observe that the gap between the best
and worst learner was huge, e.g., misclassification rates of 4.93% vs. 99.24% on the
Dorothea dataset. This suggests that some form of algorithm selection is essential
for achieving good performance.

A stronger baseline we will use is an approach that in addition to selecting
the learner, also sets its hyperparameters optimally from a predefined set. More
precisely, this baseline performs an exhaustive search over a grid of hyperparameter
settings for each of the base learners, discretizing numeric parameters into three
points. We refer to this baseline as grid search and note that—as an optimization
approach in the joint space of algorithms and hyperparameter settings—it is a simple
CASH algorithm. However, it is quite expensive, requiring more than 10,000 CPU
hours on each of Gisette, Convex, MNIST, Rot MNIST + BI, and both CIFAR
variants, rendering it infeasible to use in most practical applications. (In contrast,
we gave Auto-WEKA only 120 CPU hours.)

Table 4.2 (columns four and five) shows the best and worst “oracle performance”
on the test set across the classifiers evaluated by grid search. Comparing these
performances to the default performance obtained using Ex-Def, we note that in
most cases, even WEKA’s best default algorithm could be improved by selecting
better hyperparameter settings, sometimes rather substantially: e.g., , in the CIFAR-
10 small task, grid search offered a 13% reduction in error over Ex-Def.

It has been demonstrated in previous work that, holding the overall time budget
constant, grid search is outperformed by random search over the hyperparameter
space [5]. Our final baseline, random search, implements such a method, picking
algorithms and hyperparameters sampled at random, and computes their perfor-
mance on the 10 cross-validation folds until it exhausts its time budget. For each
dataset, we first used 750 CPU hours to compute the cross-validation performance
of randomly sampled combinations of algorithms and hyperparameters. We then
simulated runs of random search by sampling combinations without replacement
from these results that consumed 120 CPU hours and returning the sampled
combination with the best performance.

4.5.2 Results for Cross-Validation Performance

The middle portion of Table 4.2 reports our main results. First, we note that grid
search over the hyperparameters of all base-classifiers yielded better results than
Ex-Def in 17/21 cases, which underlines the importance of not only choosing the
right algorithm but of also setting its hyperparameters well.

However, we note that we gave grid search a very large time budget (often
in excess 10,000 CPU hours for each dataset, in total more than 10 CPU years),
meaning that it would often be infeasible to use in practice.
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In contrast, we gave each of the other methods only 4×30 CPU hours per dataset;
nevertheless, they still yielded substantially better performance than grid search,
outperforming it in 14/21 cases. Random search outperforms grid search in 9/21
cases, highlighting that even exhaustive grid search with a large time budget is not
always the right thing to do. We note that sometimes Auto-WEKA’s performance
improvements over the baselines were substantial, with relative reductions of the
cross-validation loss (in this case the misclassification rate) exceeding 10% in 6/21
cases.

4.5.3 Results for Test Performance

The results just shown demonstrate that Auto-WEKA is effective at optimizing its
given objective function; however, this is not sufficient to allow us to conclude that
it fits models that generalize well. As the number of hyperparameters of a machine
learning algorithm grows, so does its potential for overfitting. The use of cross-
validation substantially increases Auto-WEKA’s robustness against overfitting, but
since its hyperparameter space is much larger than that of standard classification
algorithms, it is important to carefully study whether (and to what extent) overfitting
poses a problem.

To evaluate generalization, we determined a combination of algorithm and
hyperparameter settings Aλ by running Auto-WEKA as before (cross-validating
on the training set), trained Aλ on the entire training set, and then evaluated the
resulting model on the test set. The right portion of Table 4.2 reports the test
performance obtained with all methods.

Broadly speaking, similar trends held as for cross-validation performance: Auto-
WEKA outperforms the baselines, with grid search and random search performing
better than Ex-Def. However, the performance differences were less pronounced:
grid search only yields better results than Ex-Def in 15/21 cases, and random
search in turn outperforms grid search in 7/21 cases. Auto-WEKA outperforms
the baselines in 15/21 cases. Notably, on 12 of the 13 largest datasets, Auto-
WEKA outperforms our baselines; we attribute this to the fact that the risk of
overfitting decreases with dataset size. Sometimes, Auto-WEKA’s performance
improvements over the other methods were substantial, with relative reductions of
the test misclassification rate exceeding 16% in 3/21 cases.

As mentioned earlier, Auto-WEKA only used 70% of its training set during
the optimization of cross-validation performance, reserving the remaining 30%
for assessing the risk of overfitting. At any point in time, Auto-WEKA’s SMBO
method keeps track of its incumbent (the hyperparameter configuration with the
lowest cross-validation misclassification rate seen so far). After its SMBO procedure
has finished, Auto-WEKA extracts a trajectory of these incumbents from it and
computes their generalization performance on the withheld 30% validation data.
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It then computes the Spearman rank coefficient between the sequence of training
performances (evaluated by the SMBO method through cross-validation) and this
generalization performance.

4.6 Conclusion

In this work, we have shown that the daunting problem of combined algorithm
selection and hyperparameter optimization (CASH) can be solved by a practical,
fully automated tool. This is made possible by recent Bayesian optimization tech-
niques that iteratively build models of the algorithm/hyperparameter landscape and
leverage these models to identify new points in the space that deserve investigation.

We built a tool, Auto-WEKA, that draws on the full range of learning algorithms
in WEKA and makes it easy for non-experts to build high-quality classifiers for
given application scenarios. An extensive empirical comparison on 21 prominent
datasets showed that Auto-WEKA often outperformed standard algorithm selection
and hyperparameter optimization methods, especially on large datasets.

4.6.1 Community Adoption

Auto-WEKA was the first method to use Bayesian optimization to automatically
instantiate a highly parametric machine learning framework at the push of a
button. Since its initial release, it has been adopted by many users in industry and
academia; the 2.0 line, which integrates with the WEKA package manager, has been
downloaded more than 30,000 times, averaging more than 550 downloads a week.
It is under active development, with new features added recently and in the pipeline.
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Chapter 5
Hyperopt-Sklearn

Brent Komer, James Bergstra, and Chris Eliasmith

Abstract Hyperopt-sklearn is a software project that provides automated algorithm
configuration of the Scikit-learn machine learning library. Following Auto-Weka,
we take the view that the choice of classifier and even the choice of preprocessing
module can be taken together to represent a single large hyperparameter optimiza-
tion problem. We use Hyperopt to define a search space that encompasses many
standard components (e.g. SVM, RF, KNN, PCA, TFIDF) and common patterns
of composing them together. We demonstrate, using search algorithms in Hyperopt
and standard benchmarking data sets (MNIST, 20-Newsgroups, Convex Shapes),
that searching this space is practical and effective. In particular, we improve on
best-known scores for the model space for both MNIST and Convex Shapes at the
time of release.

5.1 Introduction

Relative to deep networks, algorithms such as Support Vector Machines (SVMs) and
Random Forests (RFs) have a small-enough number of hyperparameters that manual
tuning and grid or random search provides satisfactory results. Taking a step back
though, there is often no particular reason to use either an SVM or an RF when they
are both computationally viable. A model-agnostic practitioner may simply prefer
to go with the one that provides greater accuracy. In this light, the choice of classifier
can be seen as hyperparameter alongside the C-value in the SVM and the max-tree-
depth of the RF. Indeed the choice and configuration of preprocessing components
may likewise be seen as part of the model selection/hyperparameter optimization
problem.
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The Auto-Weka project [19] was the first to show that an entire library of machine
learning approaches (Weka [8]) can be searched within the scope of a single run of
hyperparameter tuning. However, Weka is a GPL-licensed Java library, and was
not written with scalability in mind, so we feel there is a need for alternatives to
Auto-Weka. Scikit-learn [16] is another library of machine learning algorithms. It is
written in Python (with many modules in C for greater speed), and is BSD-licensed.
Scikit-learn is widely used in the scientific Python community and supports many
machine learning application areas.

This chapter introduces Hyperopt-Sklearn: a project that brings the bene-
fits of automated algorithm configuration to users of Python and scikit-learn.
Hyperopt-Sklearn uses Hyperopt [3] to describe a search space over possible
configurations of scikit-learn components, including preprocessing, classification,
and regression modules. One of the main design features of this project is to
provide an interface that is familiar to users of scikit-learn. With very little
changes, hyperparameter search can be applied to an existing code base. This
chapter begins with a background of Hyperopt and the configuration space it uses
within scikit-learn, followed by example usage and experimental results with this
software.

This chapter is an extended version of our 2014 paper introducing hyperopt-
sklearn, presented at the 2014 ICML Workshop on AutoML [10].

5.2 Background: Hyperopt for Optimization

The Hyperopt library [3] offers optimization algorithms for search spaces that
arise in algorithm configuration. These spaces are characterized by a variety of
types of variables (continuous, ordinal, categorical), different sensitivity profiles
(e.g. uniform vs. log scaling), and conditional structure (when there is a choice
between two classifiers, the parameters of one classifier are irrelevant when the other
classifier is chosen). To use Hyperopt, a user must define/choose three things:

• A search domain,
• An objective function,
• An optimization algorithm.

The search domain is specified via random variables, whose distributions should
be chosen so that the most promising combinations have high prior probability.
The search domain can include Python operators and functions that combine
random variables into more convenient data structures for the objective function.
Any conditional structure is defined within this domain. The objective function
maps a joint sampling of these random variables to a scalar-valued score that the
optimization algorithm will try to minimize.
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An example search domain using Hyperopt is depicted below.

from hyperopt import hp

space = hp.choice(’my_conditional’,
[

(’case 1’, 1 + hp.lognormal(’c1’, 0, 1)),
(’case 2’, hp.uniform(’c2’, -10, 10))
(’case 3’, hp.choice(’c3’, [’a’, ’b’, ’c’]))

])

Fig. 5.1 An example hyperopt-sklearn search space consisting of a preprocessing step followed
by a classifier. There are six possible preprocessing modules and six possible classifiers. Choosing
a model within this configuration space means choosing paths in an ancestral sampling process.
The highlighted light blue nodes represent a (PCA, K-Nearest Neighbor) model. The white leaf
nodes at the bottom depict example values for their parent hyperparameters. The number of active
hyperparameters in a model is the sum of parenthetical numbers in the selected boxes. For the
PCA + KNN combination, eight hyperparameters are activated

Here there are four parameters, one for selecting which case is active, and one
for each of the three cases. The first case contains a positive valued parameter that is
sensitive to log scaling. The second case contains a bounded real valued parameter.
The third case contains a categorical parameter with three options.

Having chosen a search domain, an objective function, and an optimization
algorithm, Hyperopt’s fmin function carries out the optimization, and stores results
of the search to a database (e.g. either a simple Python list or a MongoDB instance).
The fmin call carries out the simple analysis of finding the best-performing
configuration, and returns that to the caller. The fmin call can use multiple workers
when using the MongoDB backend, to implement parallel model selection on a
compute cluster.
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5.3 Scikit-Learn Model Selection as a Search Problem

Model selection is the process of estimating which machine learning model
performs best from among a possibly infinite set of options. As an optimization
problem, the search domain is the set of valid assignments to the configuration
parameters (hyperparameters) of the machine learning model.The objective function
is typically the measure of success (e.g. accuracy, F1-Score, etc) on held-out
examples. Often the negative degree of success (loss) is used to set up the task
as a minimization problem, and cross-validation is applied to produce a more robust
final score. Practitioners usually address this optimization by hand, by grid search,
or by random search. In this chapter we discuss solving it with the Hyperopt
optimization library. The basic approach is to set up a search space with random
variable hyperparameters, use scikit-learn to implement the objective function that
performs model training and model validation, and use Hyperopt to optimize the
hyperparameters.

Scikit-learn includes many algorithms for learning from data (classification or
regression), as well as many algorithms for preprocessing data into the vectors
expected by these learning algorithms. Classifiers include for example, K-Nearest-
Neighbors, Support Vector Machines, and Random Forest algorithms. Prepro-
cessing algorithms include transformations such as component-wise Z-scaling
(Normalizer) and Principle Components Analysis (PCA). A full classification
algorithm typically includes a series of preprocessing steps followed by a classifier.
For this reason, scikit-learn provides a pipeline data structure to represent and use a
sequence of preprocessing steps and a classifier as if they were just one component
(typically with an API similar to the classifier). Although hyperopt-sklearn does
not formally use scikit-learn’s pipeline object, it provides related functionality.
Hyperopt-sklearn provides a parameterization of a search space over pipelines, that
is, of sequences of preprocessing steps and classifiers or regressors.

The configuration space provided at the time of this writing currently includes
24 classifiers, 12 regressors, and 7 preprocessing methods. Being an open-source
project, this space is likely to expand in the future as more users contribute.
Upon initial release, only a subset of the search space was available, consisting
of six classifiers and five preprocessing algorithms. This space was used for initial
performance analysis and is illustrated in Fig. 5.1. In total, this parameterization
contains 65 hyperparameters: 15 boolean variables, 14 categorical, 17 discrete, and
19 real-valued variables.

Although the total number of hyperparameters in the full configuration space
is large, the number of active hyperparameters describing any one model is
much smaller: a model consisting of PCA and a RandomForest for example,
would have only 12 active hyperparameters (1 for the choice of preprocessing, 2
internal to PCA, 1 for the choice of classifier and 8 internal to the RF). Hyperopt
description language allows us to differentiate between conditional hyperparameters
(which must always be assigned) and non-conditional hyperparameters (which
may remain unassigned when they would be unused). We make use of this
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mechanism extensively so that Hyperopt’s search algorithms do not waste time
learning by trial and error that e.g. RF hyperparameters have no effect on SVM
performance. Even internally within classifiers, there are instances of conditional
parameters: KNN has conditional parameters depending on the distance metric, and
LinearSVC has 3 binary parameters (loss, penalty, and dual) that admit only 4 valid
joint assignments. Hyperopt-sklearn also includes a blacklist of (preprocessing,
classifier) pairs that do not work together, e.g. PCA and MinMaxScaler were
incompatible with MultinomialNB, TF-IDF could only be used for text data, and
the tree-based classifiers were not compatible with the sparse features produced
by the TF-IDF preprocessor. Allowing for a 10-way discretization of real-valued
hyperparameters, and taking these conditional hyperparameters into account, a grid
search of our search space would still require an infeasible number of evalutions (on
the order of 1012).

Finally, the search space becomes an optimization problem when we also define
a scalar-valued search objective. By default, Hyperopt-sklearn uses scikit-learn’s
score method on validation data to define the search criterion. For classifiers, this is
the so-called “Zero-One Loss”: the number of correct label predictions among data
that has been withheld from the data set used for training (and also from the data
used for testing after the model selection search process).

5.4 Example Usage

Following Scikit-learn’s convention, hyperopt-sklearn provides an Estimator class
with a fit method and a predict method. The fit method of this class performs
hyperparameter optimization, and after it has completed, the predict method applies
the best model to given test data. Each evaluation during optimization performs
training on a large fraction of the training set, estimates test set accuracy on a
validation set, and returns that validation set score to the optimizer. At the end
of search, the best configuration is retrained on the whole data set to produce the
classifier that handles subsequent predict calls.

One of the important goals of hyperopt-sklearn is that it is easy to learn and to
use. To facilitate this, the syntax for fitting a classifier to data and making predictions
is very similar to scikit-learn. Here is the simplest example of using this software.

from hpsklearn import HyperoptEstimator

# Load data
train_data, train_label, test_data, test_label =

load_my_data()

# Create the estimator object
estim = HyperoptEstimator()
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# Search the space of classifiers and preprocessing steps and
their

# respective hyperparameters in scikit-learn to fit a model
to the data

estim.fit(train_data, train_label)

# Make a prediction using the optimized model
prediction = estim.predict(test_data)

# Report the accuracy of the classifier on a given set of data
score = estim.score(test_data, test_label)

# Return instances of the classifier and preprocessing steps
model = estim.best_model()

The HyperoptEstimator object contains the information of what space to search
as well as how to search it. It can be configured to use a variety of hyperparameter
search algorithms and also supports using a combination of algorithms. Any
algorithm that supports the same interface as the algorithms in hyperopt can be used
here. This is also where you, the user, can specify the maximum number of function
evaluations you would like to be run as well as a timeout (in seconds) for each run.

from hpsklearn import HyperoptEstimator
from hyperopt import tpe
estim = HyperoptEstimator(algo=tpe.suggest,

max_evals=150,
trial_timeout=60)

Each search algorithm can bring its own bias to the search space, and it may not
be clear that one particular strategy is the best in all cases. Sometimes it can be
helpful to use a mixture of search algorithms.

from hpsklearn import HyperoptEstimator
from hyperopt import anneal, rand, tpe, mix
# define an algorithm that searches randomly 5% of the time,
# uses TPE 75% of the time, and uses annealing 20% of the time
mix_algo = partial(mix.suggest, p_suggest=[

(0.05, rand.suggest),
(0.75, tpe.suggest),
(0.20, anneal.suggest)])

estim = HyperoptEstimator(algo=mix_algo,
max_evals=150,
trial_timeout=60)

Searching effectively over the entire space of classifiers available in scikit-learn
can use a lot of time and computational resources. Sometimes you might have
a particular subspace of models that they are more interested in. With hyperopt-
sklearn it is possible to specify a more narrow search space to allow it to be explored
in greater depth.
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from hpsklearn import HyperoptEstimator, svc

# limit the search to only SVC models
estim = HyperoptEstimator(classifier=svc(’my_svc’))

Combinations of different spaces can also be used.

from hpsklearn import HyperoptEstimator, svc, knn
from hyperopt import hp

# restrict the space to contain only random forest,
# k-nearest neighbors, and SVC models.
clf = hp.choice(’my_name’,

[random_forest(’my_name.random_forest’),
svc(’my_name.svc’),
knn(’my_name.knn’)])

estim = HyperoptEstimator(classifier=clf)

The support vector machine provided by scikit-learn has a number of different
kernels that can be used (linear, rbf, poly, sigmoid). Changing the kernel can have
a large effect on the performance of the model, and each kernel has its own unique
hyperparameters. To account for this, hyperopt-sklearn treats each kernel choice as
a unique model in the search space. If you already know which kernel works best
for your data, or you are just interested in exploring models with a particular kernel,
you may specify it directly rather than going through the svc.

from hpsklearn import HyperoptEstimator, svc_rbf
estim = HyperoptEstimator(classifier=svc_rbf(’my_svc’))

It is also possible to specify which kernels you are interested in by passing a list
to the svc.

from hpsklearn import HyperoptEstimator, svc
estim = HyperoptEstimator(

classifier=svc(’my_svc’,
kernels=[’linear’,

’sigmoid’]))

In a similar manner to classifiers, the space of preprocessing modules can be
fine tuned. Multiple successive stages of preprocessing can be specified through an
ordered list. An empty list means that no preprocessing will be done on the data.

from hpsklearn import HyperoptEstimator, pca
estim = HyperoptEstimator(preprocessing=[pca(’my_pca’)])
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Combinations of different spaces can be used here as well.

from hpsklearn import HyperoptEstimator, tfidf, pca
from hyperopt import hp
preproc = hp.choice(’my_name’,

[[pca(’my_name.pca’)],
[pca(’my_name.pca’), normalizer(’my_name.norm’)]
[standard_scaler(’my_name.std_scaler’)],
[]])

estim = HyperoptEstimator(preprocessing=preproc)

Some types of preprocessing will only work on specific types of data. For
example, the TfidfVectorizer that scikit-learn provides is designed to work with text
data and would not be appropriate for other types of data. To address this, hyperopt-
sklearn comes with a few pre-defined spaces of classifiers and preprocessing tailored
to specific data types.

from hpsklearn import HyperoptEstimator, \
any_sparse_classifier, \
any_text_preprocessing

from hyperopt import tpe
estim = HyperoptEstimator(

algo=tpe.suggest,
classifier=any_sparse_classifier(’my_clf’)
preprocessing=any_text_preprocessing(’my_pp’)
max_evals=200,
trial_timeout=60)

So far in all of these examples, every hyperparameter available to the model is
being searched over. It is also possible for you to specify the values of specific
hyperparameters, and those parameters will remain constant during the search. This
could be useful, for example, if you knew you wanted to use whitened PCA data
and a degree-3 polynomial kernel SVM.

from hpsklearn import HyperoptEstimator, pca, svc_poly
estim = HyperoptEstimator(

preprocessing=[pca(’my_pca’, whiten=True)],
classifier=svc_poly(’my_poly’, degree=3))

It is also possible to specify ranges of individual parameters. This is done
using the standard hyperopt syntax. These will override the defaults defined within
hyperopt-sklearn.

from hpsklearn import HyperoptEstimator, pca, sgd
from hyperopt import hp
import numpy as np
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sgd_loss = hp.pchoice(’loss’,
[(0.50, ’hinge’),
(0.25, ’log’),
(0.25, ’huber’)])

sgd_penalty = hp.choice(’penalty’,
[’l2’, ’elasticnet’])

sgd_alpha = hp.loguniform(’alpha’,
low=np.log(1e-5),
high=np.log(1) )

estim = HyperoptEstimator(
classifier=sgd(’my_sgd’,

loss=sgd_loss,
penalty=sgd_penalty,
alpha=sgd_alpha) )

All of the components available to the user can be found in the components.py
file. A complete working example of using hyperopt-sklearn to find a model for the
20 newsgroups data set is shown below.

from hpsklearn import HyperoptEstimator, tfidf,
any_sparse_classifier

from sklearn.datasets import fetch_20newsgroups
from hyperopt import tpe
import numpy as np
# Download data and split training and test sets
train = fetch_20newsgroups(subset=’train’)
test = fetch_20newsgroups(subset=’test’)
X_train = train.data
y_train = train.target
X_test = test.data
y_test = test.target
estim = HyperoptEstimator(

classifier=any_sparse_classifier(’clf’),
preprocessing=[tfidf(’tfidf’)],
algo=tpe.suggest,
trial_timeout=180)

estim.fit(X_train, y_train)
print(estim.score(X_test, y_test))
print(estim.best_model())

5.5 Experiments

We conducted experiments on three data sets to establish that hyperopt-sklearn can
find accurate models on a range of data sets in a reasonable amount of time. Results
were collected on three data sets: MNIST, 20-Newsgroups, and Convex Shapes.
MNIST is a well-known data set of 70 K 28 × 28 greyscale images of hand-drawn
digits [12]. 20-Newsgroups is a 20-way classification data set of 20 K newsgroup
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messages ([13], we did not remove the headers for our experiments). Convex Shapes
is a binary classification task of distinguishing pictures of convex white-colored
regions in small (32 × 32) black-and-white images [11].

Fig. 5.2 (left) shows that there was no penalty for searching broadly. We
performed optimization runs of up to 300 function evaluations searching the
subset of the space depicted in Fig. 5.1, and compared the quality of solu-
tion with specialized searches of specific classifier types (including best known
classifiers).

Fig. 5.2 (right) shows that search could find different, good models. This
figure was constructed by running hyperopt-sklearn with different initial con-
ditions (number of evaluations, choice of optimization algorithm, and random
number seed) and keeping track of what final model was chosen after each run.
Although support vector machines were always among the best, the parameters
of best SVMs looked very different across data sets. For example, on the image
data sets (MNIST and Convex) the SVMs chosen never had a sigmoid or lin-
ear kernel, while on 20 newsgroups the linear and sigmoid kernel were often
best.

Sometimes researchers not familiar with machine learning techniques may
simply use the default parameters of the classifiers available to them. To look at
the effectiveness of hyperopt-sklearn as a drop-in replacement for this approach,
a comparison between the performance of the default scikit-learn parameters
and a small search (25 evaluations) of the default hyperopt-sklearn space was
conducted. The results on the 20 Newsgroups dataset are shown in Fig. 5.3.
Improved performance over the baseline is observed in all cases, which sug-
gests that this search technique is valuable even with a small computational
budget.

5.6 Discussion and Future Work

Table 5.1 lists the test set scores of the best models found by cross-validation,
as well as some points of reference from previous work. Hyperopt-sklearn’s
scores are relatively good on each data set, indicating that with hyperopt-sklearn’s
parameterization, Hyperopt’s optimization algorithms are competitive with human
experts.

The model with the best performance on the MNIST Digits data set uses
deep artificial neural networks. Small receptive fields of convolutional winner-
take-all neurons build up the large network. Each neural column becomes an
expert on inputs preprocessed in different ways, and the average prediction
of 35 deep neural columns to come up with a single final prediction [4].
This model is much more advanced than those available in scikit-learn. The
previously best known model in the scikit-learn search space is a radial-basis
SVM on centered data that scores 98.6%, and hyperopt-sklearn matches that
performance [15].
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Table 5.1 Hyperopt-sklearn scores relative to selections from literature on the three data sets used
in our experiments. On MNIST, hyperopt-sklearn is one of the best-scoring methods that does not
use image-specific domain knowledge (these scores and others may be found at http://yann.lecun.
com/exdb/mnist/). On 20 Newsgroups, hyperopt-sklearn is competitive with similar approaches
from the literature (scores taken from [7]). In the 20 Newsgroups data set, the score reported
for hyperopt-sklearn is the weighted-average F1 score provided by sklearn. The other approaches
shown here use the macro-average F1 score. On Convex Shapes, hyperopt-sklearn outperforms
previous automated algorithm configuration approaches [6] and manual tuning [11]

MNIST 20 Newsgroups Convex shapes

Approach Accuracy Approach F-Score Approach Accuracy

Committee of convnets 99.8% CFC 0.928 hyperopt-sklearn 88.7%
hyperopt-sklearn 98.7% hyperopt-sklearn 0.856 hp-dbnet 84.6%

libSVM grid search 98.6% SVMTorch 0.848 dbn-3 81.4%

Boosted trees 98.5% LibSVM 0.843

Fig. 5.2 Left: Best model performance. For each data set, searching the full configuration space
(“Any Classifier”) delivered performance approximately on par with a search that was restricted
to the best classifier type. Each bar represents the score obtained from a search restricted to that
particular classifier. For the “Any Classifier” case there is no restriction on the search space. In
all cases 300 hyperparameter evaluations were performed. Score is F1 for 20 Newsgroups, and
accuracy for MNIST and Convex Shapes.
Right: Model selection distribution. Looking at the best models from all optimization runs
performed on the full search space (Any Classifier, using different initial conditions, and different
optimization algorithms) we see that different data sets are handled best by different classifiers.
SVC was the only classifier ever chosen as the best model for Convex Shapes, and was often found
to be best on MNIST and 20 Newsgroups, however the best SVC parameters were very different
across data sets

The CFC model that performed quite well on the 20 newsgroups document
classification data set is a Class-Feature-Centroid classifier. Centroid approaches
are typically inferior to an SVM, due to the centroids found during training being
far from the optimal location. The CFC method reported here uses a centroid
built from the inter-class term index and the inner-class term index. It uses a
novel combination of these indices along with a denormalized cosine measure to
calculate the similarity score between the centroid and a text vector [7]. This style
of model is not currently implemented in hyperopt-sklearn, and our experiments

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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suggest that existing hyperopt-sklearn components cannot be assembled to match
its level of performance. Perhaps when it is implemented, Hyperopt may find a set
of parameters that provides even greater classification accuracy.

Fig. 5.3 Comparison of F1-Score on the 20 Newsgroups dataset using either the default
parameters of scikit-learn or the default search space of hyperopt-sklearn. The results from
hyperopt-sklearn were obtained from a single run with 25 evaluations, restricted to either Support
Vector Classifier, Stochastic Gradient Descent, K-Nearest Neighbors, or Multinomial Naive Bayes

On the Convex Shapes data set, our Hyperopt-sklearn experiments revealed a
more accurate model than was previously believed to exist in any search space,
let alone a search space of such standard components. This result underscores the
difficulty and importance of hyperparameter search.

Hyperopt-sklearn provides many opportunities for future work: more classifiers
and preprocessing modules could be included in the search space, and there are
more ways to combine even the existing components. Other types of data require
different preprocessing, and other prediction problems exist beyond classification.
In expanding the search space, care must be taken to ensure that the benefits of
new models outweigh the greater difficulty of searching a larger space. There are
some parameters that scikit-learn exposes that are more implementation details than
actual hyperparameters that affect the fit (such as algorithm and leaf_size in
the KNN model). Care should be taken to identify these parameters in each model
and they may need to be treated differently during exploration.

It is possible for a user to add their own classifier to the search space as long as
it fits the scikit-learn interface. This currently requires some understanding of how
hyperopt-sklearn’s code is structured and it would be nice to improve the support
for this so minimal effort is required by the user. It is also possible for the user
to specify alternate scoring methods besides the default accuracy or F-measure, as
there can be cases where these are not best suited to the particular problem.
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Fig. 5.4 Validation loss of models found for each successive parameter evaluation using the 20
Newsgroups dataset and the Any Classifier search domain. Upper Left: Mean validation loss at
each step across different random number seeds for the TPE algorithm. Downward trend indicates
more promising regions are explored more often over time. Upper Right: Mean validation loss
for the random algorithm. Flat trend illustrates no learning from previous trials. Large variation in
performance across evaluations indicates the problem is very sensitive to hyperparameter tunings.
Lower Left: Minimum validation loss of models found so far for the TPE algorithm. Gradual
progress is made on 20 Newsgroups over 300 iterations and gives no indication of convergence.
Lower Right: Minimum validation loss for the random algorithm. Progress is initially rapid for
the first 40 or so evaluations and then settles for long periods. Improvement still continues, but
becomes less likely as time goes on

We have shown here that Hyperopt’s random search, annealing search, and TPE
algorithms make Hyperopt-sklearn viable, but the slow convergence in Fig. 5.4
suggests that other optimization algorithms might be more call-efficient. The devel-
opment of Bayesian optimization algorithms is an active research area, and we look
forward to looking at how other search algorithms interact with hyperopt-sklearn’s
search spaces. Hyperparameter optimization opens up a new art of matching the
parameterization of search spaces to the strengths of search algorithms.

Computational wall time spent on search is of great practical importance, and
hyperopt-sklearn currently spends a significant amount of time evaluating points
that are un-promising. Techniques for recognizing bad performers early could speed
up search enormously [5, 18].
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5.7 Conclusions

This chapter has introduced Hyperopt-sklearn, a Python package for automated
algorithm configuration of standard machine learning algorithms provided by
Scikit-Learn. Hyperopt-sklearn provides a unified interface to a large subset of
the machine learning algorithms available in scikit-learn and with the help of
Hyperopt’s optimization functions it is able to both rival and surpass human experts
in algorithm configuration. We hope that it provides practitioners with a useful tool
for the development of machine learning systems, and automated machine learning
researchers with benchmarks for future work in algorithm configuration.
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Chapter 6
Auto-sklearn: Efficient and Robust
Automated Machine Learning

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Tobias Springenberg, Manuel Blum, and Frank Hutter

Abstract The success of machine learning in a broad range of applications has led
to an ever-growing demand for machine learning systems that can be used off the
shelf by non-experts. To be effective in practice, such systems need to automatically
choose a good algorithm and feature preprocessing steps for a new dataset at hand,
and also set their respective hyperparameters. Recent work has started to tackle this
automated machine learning (AutoML) problem with the help of efficient Bayesian
optimization methods. Building on this, we introduce a robust new AutoML system
based on the Python machine learning package scikit-learn (using 15 classifiers, 14
feature preprocessing methods, and 4 data preprocessing methods, giving rise to a
structured hypothesis space with 110 hyperparameters). This system, which we dub
Auto-sklearn, improves on existing AutoML methods by automatically taking into
account past performance on similar datasets, and by constructing ensembles from
the models evaluated during the optimization. Our system won six out of ten phases
of the first ChaLearn AutoML challenge, and our comprehensive analysis on over
100 diverse datasets shows that it substantially outperforms the previous state of
the art in AutoML. We also demonstrate the performance gains due to each of our
contributions and derive insights into the effectiveness of the individual components
of Auto-sklearn.

6.1 Introduction

Machine learning has recently made great strides in many application areas, fueling
a growing demand for machine learning systems that can be used effectively by
novices in machine learning. Correspondingly, a growing number of commercial
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enterprises aim to satisfy this demand (e.g., BigML.com, Wise.io, H2O.ai,
feedzai.com, RapidMiner.com, Prediction.io, DataRobot.com, Microsoft’s
Azure Machine Learning, Google’s Cloud Machine Learning Engine, and
Amazon Machine Learning). At its core, every effective machine learning service
needs to solve the fundamental problems of deciding which machine learning
algorithm to use on a given dataset, whether and how to preprocess its features, and
how to set all hyperparameters. This is the problem we address in this work.

More specifically, we investigate automated machine learning (AutoML), the
problem of automatically (without human input) producing test set predictions for
a new dataset within a fixed computational budget. Formally, this AutoML problem
can be stated as follows:

Definition 1 (AutoML problem) For i = 1, . . . , n + m, let xi denote a feature
vector and yi the corresponding target value. Given a training dataset Dtrain =
{(x1, y1), . . . , (xn, yn)} and the feature vectors xn+1, . . . , xn+m of a test dataset
Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)} drawn from the same underlying data
distribution, as well as a resource budget b and a loss metric L(·, ·), the AutoML
problem is to (automatically) produce accurate test set predictions ŷn+1, . . . , ŷn+m.
The loss of a solution ŷn+1, . . . , ŷn+m to the AutoML problem is given by
1
m

∑m
j=1 L(ŷn+j , yn+j ).

In practice, the budget b would comprise computational resources, such as
CPU and/or wallclock time and memory usage. This problem definition reflects
the setting of the first ChaLearn AutoML challenge [23] (also, see Chap. 10 for a
description and analysis of the first AutoML challenge). The AutoML system we
describe here won six out of ten phases of that challenge.

Here, we follow and extend the AutoML approach first introduced by Auto-
WEKA [42]. At its core, this approach combines a highly parametric machine
learning framework F with a Bayesian optimization [7, 40] method for instantiating
F well for a given dataset.

The contribution of this paper is to extend this AutoML approach in various
ways that considerably improve its efficiency and robustness, based on principles
that apply to a wide range of machine learning frameworks (such as those used
by the machine learning service providers mentioned above). First, following
successful previous work for low dimensional optimization problems [21, 22, 38],
we reason across datasets to identify instantiations of machine learning frameworks
that perform well on a new dataset and warmstart Bayesian optimization with
them (Sect. 6.3.1). Second, we automatically construct ensembles of the models
considered by Bayesian optimization (Sect. 6.3.2). Third, we carefully design a
highly parameterized machine learning framework from high-performing classifiers
and preprocessors implemented in the popular machine learning framework scikit-
learn [36] (Sect. 6.4). Finally, we perform an extensive empirical analysis using
a diverse collection of datasets to demonstrate that the resulting Auto-sklearn
system outperforms previous state-of-the-art AutoML methods (Sect. 6.5), to show
that each of our contributions leads to substantial performance improvements
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(Sect. 6.6), and to gain insights into the performance of the individual classifiers
and preprocessors used in Auto-sklearn (Sect. 6.7).

This chapter is an extended version of our 2015 paper introducing Auto-sklearn,
published in the proceedings of NeurIPS 2015 [20].

6.2 AutoML as a CASH Problem

We first review the formalization of AutoML as a Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH) problem used by Auto-WEKA’s
AutoML approach. Two important problems in AutoML are that (1) no single
machine learning method performs best on all datasets and (2) some machine learn-
ing methods (e.g., non-linear SVMs) crucially rely on hyperparameter optimization.
The latter problem has been successfully attacked using Bayesian optimization [7,
40], which nowadays forms a core component of many AutoML systems. The
former problem is intertwined with the latter since the rankings of algorithms
depend on whether their hyperparameters are tuned properly. Fortunately, the
two problems can efficiently be tackled as a single, structured, joint optimization
problem:

Definition 2 (CASH) Let A = {A(1), . . . , A(R)} be a set of algorithms, and let the
hyperparameters of each algorithm A(j) have domain �(j). Further, let Dtrain =
{(x1, y1), . . . , (xn, yn)} be a training set which is split into K cross-validation folds
{D(1)

valid, . . . ,D
(K)
valid} and {D(1)

train, . . . ,D
(K)
train} such that D

(i)
train = Dtrain\D(i)

valid

for i = 1, . . . ,K . Finally, let L(A
(j)
λ ,D

(i)
train,D

(i)
valid) denote the loss that algorithm

A(j) achieves on D
(i)
valid when trained on D

(i)
train with hyperparameters λ. Then, the

Combined Algorithm Selection and Hyperparameter optimization (CASH) problem
is to find the joint algorithm and hyperparameter setting that minimizes this loss:

A�,λ� ∈ argmin
A(j)∈A,λ∈�(j)

1

K

K∑
i=1

L(A
(j)

λ ,D
(i)
train,D

(i)
valid). (6.1)

This CASH problem was first tackled by Thornton et al. [42] in the Auto-
WEKA system using the machine learning framework WEKA [25] and tree-based
Bayesian optimization methods [5, 27]. In a nutshell, Bayesian optimization [7] fits a
probabilistic model to capture the relationship between hyperparameter settings and
their measured performance; it then uses this model to select the most promising
hyperparameter setting (trading off exploration of new parts of the space vs.
exploitation in known good regions), evaluates that hyperparameter setting, updates
the model with the result, and iterates. While Bayesian optimization based on
Gaussian process models (e.g., Snoek et al. [41]) performs best in low-dimensional
problems with numerical hyperparameters, tree-based models have been shown
to be more successful in high-dimensional, structured, and partly discrete prob-
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lems [15]—such as the CASH problem—and are also used in the AutoML system
HYPEROPT-SKLEARN [30]. Among the tree-based Bayesian optimization methods,
Thornton et al. [42] found the random-forest-based SMAC [27] to outperform
the tree Parzen estimator TPE [5], and we therefore use SMAC to solve the
CASH problem in this paper. Next to its use of random forests [6], SMAC’s main
distinguishing feature is that it allows fast cross-validation by evaluating one fold at
a time and discarding poorly-performing hyperparameter settings early.

6.3 New Methods for Increasing Efficiency and Robustness
of AutoML

We now discuss our two improvements of the AutoML approach. First, we include a
meta-learning step to warmstart the Bayesian optimization procedure, which results
in a considerable boost in efficiency. Second, we include an automated ensemble
construction step, allowing us to use all classifiers that were found by Bayesian
optimization.

Fig. 6.1 summarizes the overall AutoML workflow, including both of our
improvements. We note that we expect their effectiveness to be greater for flexible
ML frameworks that offer many degrees of freedom (e.g., many algorithms,
hyperparameters, and preprocessing methods).

6.3.1 Meta-learning for Finding Good Instantiations
of Machine Learning Frameworks

Domain experts derive knowledge from previous tasks: They learn about the per-
formance of machine learning algorithms. The area of meta-learning (see Chap. 2)
mimics this strategy by reasoning about the performance of learning algorithms
across datasets. In this work, we apply meta-learning to select instantiations of our
given machine learning framework that are likely to perform well on a new dataset.
More specifically, for a large number of datasets, we collect both performance data

AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b,L}

meta-
learning

data pre-
processor

feature
preprocessor classifier build

ensemble Ŷtest

Bayesian optimizer

Fig. 6.1 Our improved AutoML approach. We add two components to Bayesian hyperparameter
optimization of an ML framework: meta-learning for initializing the Bayesian optimizer and
automated ensemble construction from configurations evaluated during optimization
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and a set of meta-features, i.e., characteristics of the dataset that can be computed
efficiently and that help to determine which algorithm to use on a new dataset.

This meta-learning approach is complementary to Bayesian optimization for
optimizing an ML framework. Meta-learning can quickly suggest some instan-
tiations of the ML framework that are likely to perform quite well, but it is
unable to provide fine-grained information on performance. In contrast, Bayesian
optimization is slow to start for hyperparameter spaces as large as those of
entire ML frameworks, but can fine-tune performance over time. We exploit this
complementarity by selecting k configurations based on meta-learning and use their
result to seed Bayesian optimization. This approach of warmstarting optimization
by meta-learning has already been successfully applied before [21, 22, 38], but
never to an optimization problem as complex as that of searching the space of
instantiations of a full-fledged ML framework. Likewise, learning across datasets
has also been applied in collaborative Bayesian optimization methods [4, 45]; while
these approaches are promising, they are so far limited to very few meta-features and
cannot yet cope with the high-dimensional partially discrete configuration spaces
faced in AutoML.

More precisely, our meta-learning approach works as follows. In an offline phase,
for each machine learning dataset in a dataset repository (in our case 140 datasets
from the OpenML [43] repository), we evaluated a set of meta-features (described
below) and used Bayesian optimization to determine and store an instantiation of
the given ML framework with strong empirical performance for that dataset. (In
detail, we ran SMAC [27] for 24 h with 10-fold cross-validation on two thirds of
the data and stored the resulting ML framework instantiation which exhibited best
performance on the remaining third). Then, given a new dataset D, we compute its
meta-features, rank all datasets by their L1 distance to D in meta-feature space and
select the stored ML framework instantiations for the k = 25 nearest datasets for
evaluation before starting Bayesian optimization with their results.

To characterize datasets, we implemented a total of 38 meta-features from the
literature, including simple, information-theoretic and statistical meta-features [29,
33], such as statistics about the number of data points, features, and classes, as
well as data skewness, and the entropy of the targets. All meta-features are listed in
Table 1 of the original publication’s supplementary material [20]. Notably, we had
to exclude the prominent and effective category of landmarking meta-features [37]
(which measure the performance of simple base learners), because they were
computationally too expensive to be helpful in the online evaluation phase. We note
that this meta-learning approach draws its power from the availability of a repository
of datasets; due to recent initiatives, such as OpenML [43], we expect the number
of available datasets to grow ever larger over time, increasing the importance of
meta-learning.
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6.3.2 Automated Ensemble Construction of Models Evaluated
During Optimization

While Bayesian hyperparameter optimization is data-efficient in finding the best-
performing hyperparameter setting, we note that it is a very wasteful procedure
when the goal is simply to make good predictions: all the models it trains during
the course of the search are lost, usually including some that perform almost as
well as the best. Rather than discarding these models, we propose to store them
and to use an efficient post-processing method (which can be run in a second
process on-the-fly) to construct an ensemble out of them. This automatic ensemble
construction avoids to commit itself to a single hyperparameter setting and is
thus more robust (and less prone to overfitting) than using the point estimate that
standard hyperparameter optimization yields. To our best knowledge, we are the
first to make this simple observation, which can be applied to improve any Bayesian
hyperparameter optimization method.1

It is well known that ensembles often outperform individual models [24, 31], and
that effective ensembles can be created from a library of models [9, 10]. Ensembles
perform particularly well if the models they are based on (1) are individually strong
and (2) make uncorrelated errors [6]. Since this is much more likely when the
individual models are different in nature, ensemble building is particularly well
suited for combining strong instantiations of a flexible ML framework.

However, simply building a uniformly weighted ensemble of the models found
by Bayesian optimization does not work well. Rather, we found it crucial to adjust
these weights using the predictions of all individual models on a hold-out set. We
experimented with different approaches to optimize these weights: stacking [44],
gradient-free numerical optimization, and the method ensemble selection [10].
While we found both numerical optimization and stacking to overfit to the validation
set and to be computationally costly, ensemble selection was fast and robust. In
a nutshell, ensemble selection (introduced by Caruana et al. [10]) is a greedy
procedure that starts from an empty ensemble and then iteratively adds the model
that minimizes ensemble validation loss (with uniform weight, but allowing for
repetitions). We used this technique in all our experiments—building an ensemble
of size 50 using selection with replacement [10]. We calculated the ensemble loss
using the same validation set that we use for Bayesian optimization.

1Since the original publication [20] we have learned that Escalante et al. [16] and Bürger
and Pauli [8] applied ensembles as a post-processing step of an AutoML system to improve
generalization as well. However, both works combined the learned models with a pre-defined
strategy and did not adapt the ensemble construction based on the performance of the individual
models.
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6.4 A Practical Automated Machine Learning System

To design a robust AutoML system, as our underlying ML framework we chose
scikit-learn [36], one of the best known and most widely used machine learning
libraries. It offers a wide range of well established and efficiently-implemented ML
algorithms and is easy to use for both experts and beginners. Since our AutoML
system closely resembles Auto-WEKA, but—like HYPEROPT-SKLEARN—is based
on scikit-learn, we dub it Auto-sklearn.

Fig. 6.2 is an illustration Auto-sklearn’s machine learning pipeline and its com-
ponents. It comprises 15 classification algorithms, 14 preprocessing methods, and
4 data preprocessing methods. We parameterized each of them, which resulted in a
space of 110 hyperparameters. Most of these are conditional hyperparameters that
are only active if their respective component is selected. We note that SMAC [27]
can handle this conditionality natively.

All 15 classification algorithms in Auto-sklearn are listed in Table 6.1. They
fall into different categories, such as general linear models (2 algorithms), support
vector machines (2), discriminant analysis (2), nearest neighbors (1), naïve Bayes
(3), decision trees (1) and ensembles (4). In contrast to Auto-WEKA [42] (also,
see Chap. 4 for a description of Auto-WEKA), we focused our configuration space
on base classifiers and excluded meta-models and ensembles that are themselves
parameterized by one or more base classifiers. While such ensembles increased
Auto-WEKA’s number of hyperparameters by almost a factor of five (to 786),
Auto-sklearn “only” features 110 hyperparameters. We instead construct complex
ensembles using our post-hoc method from Sect. 6.3.2. Compared to Auto-WEKA,
this is much more data-efficient: in Auto-WEKA, evaluating the performance of
an ensemble with five components requires the construction and evaluation of five

Fig. 6.2 Structured configuration space. Squared boxes denote parent hyperparameters whereas
boxes with rounded edges are leaf hyperparameters. Grey colored boxes mark active hyperparame-
ters which form an example configuration and machine learning pipeline. Each pipeline comprises
one feature preprocessor, classifier and up to three data preprocessor methods plus respective
hyperparameters
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Table 6.1 Number of hyperparameters for each classifier (top) and feature preprocessing method
(bottom) for a binary classification dataset in dense representation. Tables for sparse binary
classification and sparse/dense multiclass classification datasets can be found in Section E of the
original publication’s supplementary material [20], Tables 2a, 3a, 4a, 2b, 3b and 4b. We distinguish
between categorical (cat) hyperparameters with discrete values and continuous (cont) numerical
hyperparameters. Numbers in brackets are conditional hyperparameters, which are only relevant
when another hyperparameter has a certain value

Type of Classifier #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (–) 3 (–)

Bernoulli naïve Bayes 2 1 (–) 1 (–)

Decision tree (DT) 4 1 (–) 3 (–)

Extremely randomized trees 5 2 (–) 3 (–)

Gaussian naïve Bayes – – –

Gradient boosting (GB) 6 – 6 (–)

k-nearest neighbors (kNN) 3 2 (–) 1 (–)

Linear discriminant analysis (LDA) 4 1 (–) 3 (1)

Linear SVM 4 2 (–) 2 (–)

Kernel SVM 7 2 (-) 5 (2)

Multinomial naïve Bayes 2 1 (–) 1 (–)

Passive aggressive 3 1 (–) 2 (–)

Quadratic discriminant analysis (QDA) 2 – 2 (–)

Random forest (RF) 5 2 (–) 3 (–)

Linear Classifier (SGD) 10 4 (–) 6 (3)

Preprocessing method #λ cat (cond) cont (cond)

Extremely randomized trees preprocessing 5 2 (–) 3 (–)

Fast ICA 4 3 (–) 1 (1)

Feature agglomeration 4 3 () 1 (–)

Kernel PCA 5 1 (–) 4 (3)

Rand. kitchen sinks 2 – 2 (–)

Linear SVM preprocessing 3 1 (–) 2 (–)

No preprocessing – – –

Nystroem sampler 5 1 (–) 4 (3)

Principal component analysis (PCA) 2 1 (–) 1 (–)

Polynomial 3 2 (–) 1 (–)

Random trees embed. 4 – 4 (–)

Select percentile 2 1 (–) 1 (–)

Select rates 3 2 (–) 1 (–)

One-hot encoding 2 1 (–) 1 (1)

Imputation 1 1 (–) –

Balancing 1 1 (–) –

Rescaling 1 1 (–) –
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models; in contrast, in Auto-sklearn, ensembles come largely for free, and it is pos-
sible to mix and match models evaluated at arbitrary times during the optimization.

The preprocessing methods for datasets in dense representation in Auto-sklearn
are listed in Table 6.1. They comprise data preprocessors (which change the
feature values and are always used when they apply) and feature preprocessors
(which change the actual set of features, and only one of which [or none] is
used). Data preprocessing includes rescaling of the inputs, imputation of missing
values, one-hot encoding and balancing of the target classes. The 14 possible
feature preprocessing methods can be categorized into feature selection (2), kernel
approximation (2), matrix decomposition (3), embeddings (1), feature clustering
(1), polynomial feature expansion (1) and methods that use a classifier for feature
selection (2). For example, L1-regularized linear SVMs fitted to the data can be used
for feature selection by eliminating features corresponding to zero-valued model
coefficients.

For detailed descriptions of the machine learning algorithms used in Auto-
sklearn we refer to Sect. A.1 and A.2 of the original paper’s supplementary
material [20], the scikit-learn documentation [36] and the references therein.

To make the most of our computational power and not get stuck in a very slow
run of a certain combination of preprocessing and machine learning algorithm,
we implemented several measures to prevent such long runs. First, we limited the
time for each evaluation of an instantiation of the ML framework. We also limited
the memory of such evaluations to prevent the operating system from swapping
or freezing. When an evaluation went over one of those limits, we automatically
terminated it and returned the worst possible score for the given evaluation
metric. For some of the models we employed an iterative training procedure; we
instrumented these to still return their current performance value when a limit was
reached before they were terminated. To further reduce the amount of overly long
runs, we forbade several combinations of preprocessors and classification methods:
in particular, kernel approximation was forbidden to be active in conjunction with
non-linear and tree-based methods as well as the KNN algorithm. (SMAC handles
such forbidden combinations natively.) For the same reason we also left out feature
learning algorithms, such as dictionary learning.

Another issue in hyperparameter optimization is overfitting and data resampling
since the training data of the AutoML system must be divided into a dataset
for training the ML pipeline (training set) and a dataset used to calculate the
loss function for Bayesian optimization (validation set). Here we had to trade off
between running a more robust cross-validation (which comes at little additional
overhead in SMAC) and evaluating models on all cross-validation folds to allow for
ensemble construction with these models. Thus, for the tasks with a rigid time limit
of 1 h in Sect. 6.6, we employed a simple train/test split. In contrast, we were able
to employ ten-fold crossvalidation in our 24 and 30 h runs in Sects. 6.5 and 6.7.

Finally, not every supervised learning task (for example classification with
multiple targets), can be solved by all of the algorithms available in Auto-sklearn.
Thus, given a new dataset, Auto-sklearn preselects the methods that are suitable for
the dataset’s properties. Since scikit-learn methods are restricted to numerical input
values, we always transformed data by applying a one-hot encoding to categorical
features. In order to keep the number of dummy features low, we configured a
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percentage threshold and a value occurring more rarely than this percentage was
transformed to a special other value [35].

6.5 Comparing Auto-sklearn to Auto-WEKA
and HYPEROPT-SKLEARN

As a baseline experiment, we compared the performance of vanilla Auto-sklearn
(without our improvements meta-learning and ensemble building) to Auto-WEKA
(see Chap. 4) and Hyperopt-Sklearn (see Chap. 5), reproducing the experimental
setup with the 21 datasets of the paper introducing Auto-WEKA [42] (see Table 4.1
in Chap. 4 for a description of the datasets). Following the original setup of the Auto-
WEKA paper, we used the same train/test splits of the datasets [1], a walltime limit
of 30 h, 10-fold cross validation (where the evaluation of each fold was allowed to
take 150 min), and 10 independent optimization runs with SMAC on each dataset.
As in Auto-WEKA, the evaluation is sped up by SMAC’s intensify procedure, which
only schedules runs on new cross validation folds if the configuration currently
being evaluated is likely to outperform the so far best performing configuration [27].
We did not modify HYPEROPT-SKLEARN which always uses a 80/20 train/test
split. All our experiments ran on Intel Xeon E5-2650 v2 eight-core processors with
2.60 GHz and 4 GiB of RAM. We allowed the machine learning framework to use
3 GiB and reserved the rest for SMAC. All experiments used Auto-WEKA 0.5 and
scikit-learn 0.16.1.

We present the results of this experiment in Table 6.2. Since our setup followed
exactly that of the original Auto-WEKA paper, as a sanity check we compared the
numbers we achieved for Auto-WEKA ourselves (first line in Fig. 6.2) to the ones
presented by the authors of Auto-WEKA (see Chap. 4) and found that overall the
results were reasonable. Furthermore, the table shows that Auto-sklearn performed
significantly better than Auto-WEKA in 6/21 cases, tied it in 12 cases, and lost
against it in 3. For the three datasets where Auto-WEKA performed best, we found
that in more than 50% of its runs the best classifier it chose is not implemented in
scikit-learn (trees with a pruning component). So far, HYPEROPT-SKLEARN is more
of a proof-of-concept—inviting the user to adapt the configuration space to her own
needs—than a full AutoML system. The current version crashes when presented
with sparse data and missing values. It also crashes on Cifar-10 due to a memory
limit which we set for all optimizers to enable a fair comparison. On the 16 datasets
on which it ran, it statistically tied the best competing AutoML system in 9 cases
and lost against it in 7.

6.6 Evaluation of the Proposed AutoML Improvements

In order to evaluate the robustness and general applicability of our proposed
AutoML system on a broad range of datasets, we gathered 140 binary and
multiclass classification datasets from the OpenML repository [43], only selecting
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Table 6.2 Test set classification error of Auto-WEKA (AW), vanilla Auto-sklearn (AS) and
HYPEROPT-SKLEARN (HS), as in the original evaluation of Auto-WEKA [42] (see also Sect. 4.5).
We show median percent test error rate across 100,000 bootstrap samples (based on 10 runs), each
sample simulating 4 parallel runs and always picking the best one according to cross-validation
performance. Bold numbers indicate the best result. Underlined results are not statistically
significantly different from the best according to a bootstrap test with p = 0.05
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datasets with at least 1000 data points to allow robust performance evaluations.
These datasets cover a diverse range of applications, such as text classification,
digit and letter recognition, gene sequence and RNA classification, advertisement,
particle classification for telescope data, and cancer detection in tissue samples.
We list all datasets in Table 7 and 8 in the supplementary material of the original
publication [20] and provide their unique OpenML identifiers for reproducibility.
We randomly split each dataset into a two-thirds training and a one-thirds test set.
Auto-sklearn could only access the training set, and split this further into two thirds
for training and a one third holdout set for computing the validation loss for SMAC.
All in all, we used four-ninths of the data to train the machine learning models,
two-ninths to calculate their validation loss and the final three-ninths to report the
test performance of the different AutoML systems we compared. Since the class
distribution in many of these datasets is quite imbalanced we evaluated all AutoML
methods using a measure called balanced classification error rate (BER). We define
balanced error rate as the average of the proportion of wrong classifications in each
class. In comparison to standard classification error (the average overall error), this
measure (the average of the class-wise error) assigns equal weight to all classes. We
note that balanced error or accuracy measures are often used in machine learning
competitions, such as the AutoML challenge [23], which is described in Chap. 10.

We performed 10 runs of Auto-sklearn both with and without meta-learning
and with and without ensemble building on each of the datasets. To study their
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Fig. 6.3 Average rank of all four Auto-sklearn variants (ranked by balanced test error rate (BER))
across 140 datasets. Note that ranks are a relative measure of performance (here, the rank of all
methods has to add up to 10), and hence an improvement in BER of one method can worsen the
rank of another. (Top) Data plotted on a linear x scale. (Bottom) This is the same data as for
the upper plot, but on a log x scale. Due to the small additional overhead that meta-learning and
ensemble selection cause, vanilla Auto-sklearn is able to achieve the best rank within the first 10 s
as it produces predictions before the other Auto-sklearn variants finish training their first model.
After this, meta-learning quickly takes off

performance under rigid time constraints, and also due to computational resource
constraints, we limited the CPU time for each run to 1 h; we also limited the runtime
for evaluating a single model to a tenth of this (6 min).

To not evaluate performance on data sets already used for meta-learning, we
performed a leave-one-dataset-out validation: when evaluating on dataset D, we
only used meta-information from the 139 other datasets.

Fig. 6.3 shows the average ranks over time of the four Auto-sklearn versions we
tested. We observe that both of our new methods yielded substantial improvements
over vanilla Auto-sklearn. The most striking result is that meta-learning yielded
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drastic improvements starting with the first configuration it selected and lasting until
the end of the experiment. We note that the improvement was most pronounced in
the beginning and that over time, vanilla Auto-sklearn also found good solutions
without meta-learning, letting it catch up on some datasets (thus improving its
overall rank).

Moreover, both of our methods complement each other: our automated ensemble
construction improved both vanilla Auto-sklearn and Auto-sklearn with meta-
learning. Interestingly, the ensemble’s influence on the performance started earlier
for the meta-learning version. We believe that this is because meta-learning
produces better machine learning models earlier, which can be directly combined
into a strong ensemble; but when run longer, vanilla Auto-sklearn without meta-
learning also benefits from automated ensemble construction.

6.7 Detailed Analysis of Auto-sklearn Components

We now study Auto-sklearn’s individual classifiers and preprocessors, compared
to jointly optimizing all methods, in order to obtain insights into their peak
performance and robustness. Ideally, we would have liked to study all combinations
of a single classifier and a single preprocessor in isolation, but with 15 classifiers
and 14 preprocessors this was infeasible; rather, when studying the performance
of a single classifier, we still optimized over all preprocessors, and vice versa. To
obtain a more detailed analysis, we focused on a subset of datasets but extended the
configuration budget for optimizing all methods from one hour to one day and to two
days for Auto-sklearn. Specifically, we clustered our 140 datasets with g-means [26]
based on the dataset meta-features and used one dataset from each of the resulting
13 clusters. We give a basic description of the datasets in Table 6.3. In total, these
extensive experiments required 10.7 CPU years.

Table 6.4 compares the results of the various classification methods against
Auto-sklearn. Overall, as expected, random forests, extremely randomized trees,
AdaBoost, and gradient boosting, showed the most robust performance, and SVMs
showed strong peak performance for some datasets. Besides a variety of strong
classifiers, there are also several models which could not compete: The decision
tree, passive aggressive, kNN, Gaussian NB, LDA and QDA were statistically
significantly inferior to the best classifier on most datasets. Finally, the table
indicates that no single method was the best choice for all datasets. As shown in
the table and also visualized for two example datasets in Fig. 6.4, optimizing the
joint configuration space of Auto-sklearn led to the most robust performance. A
plot of ranks over time (Fig. 2 and 3 in the supplementary material of the original
publication [20]) quantifies this across all 13 datasets, showing that Auto-sklearn
starts with reasonable but not optimal performance and effectively searches its more
general configuration space to converge to the best overall performance over time.

Table 6.5 compares the results of the various preprocessors against Auto-sklearn.
As for the comparison of classifiers above, Auto-sklearn showed the most robust
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Table 6.3 Representative datasets for the 13 clusters obtained via g-means clustering of the 140
datasets’ meta-feature vectors

ID Name #Cont #Nom #Class Sparse
Missing
Values |Training| |Test|

38 Sick 7 22 2 – X 2527 1245

46 Splice 0 60 3 – – 2137 1053

179 Adult 2 12 2 – X 32,724 16,118

184 KROPT 0 6 18 – – 18,797 9259

554 MNIST 784 0 10 – – 46,900 23,100

772 Quake 3 0 2 – – 1459 719

917 fri_c1_1000_25
(binarized)

25 0 2 – – 670 330

1049 pc4 37 0 2 – – 976 482

1111 KDDCup09
Appetency

192 38 2 – X 33,500 16,500

1120 Magic Telescope 10 0 2 – – 12,743 6277

1128 OVA Breast 10935 0 2 – – 1035 510

293 Covertype
(binarized)

54 0 2 X – 389,278 191,734

389 fbis_wc 2000 0 17 X – 1651 812

performance: It performed best on three of the datasets and was not statistically
significantly worse than the best preprocessor on another 8 of 13.

6.8 Discussion and Conclusion

Having presented our experimental validation, we now conclude this chapter with a
brief discussion, a simple usage example of Auto-sklearn, a short review of recent
extensions, and concluding remarks.

6.8.1 Discussion

We demonstrated that our new AutoML system Auto-sklearn performs favorably
against the previous state of the art in AutoML, and that our meta-learning and
ensemble improvements for AutoML yield further efficiency and robustness. This
finding is backed by the fact that Auto-sklearn won three out of five auto-tracks,
including the final two, in ChaLearn’s first AutoML challenge. In this paper, we did
not evaluate the use of Auto-sklearn for interactive machine learning with an expert
in the loop and weeks of CPU power, but we note that mode has led to three first
places in the human (aka Final) track of the first ChaLearn AutoML challenge (in

http://www.openml.org/d/38
http://www.openml.org/d/46
http://www.openml.org/d/179
http://www.openml.org/d/184
http://www.openml.org/d/554
http://www.openml.org/d/772
http://www.openml.org/d/917
http://www.openml.org/d/1049
http://www.openml.org/d/1111
http://www.openml.org/d/1120
http://www.openml.org/d/1128
http://www.openml.org/d/293
http://www.openml.org/d/389
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Fig. 6.4 Performance of a subset of classifiers compared to Auto-sklearn over time. (Top) MNIST
(OpenML dataset ID 554). (Bottom) Promise pc4 (OpenML dataset ID 1049). We show median test
error rate and the fifth and 95th percentile over time for optimizing three classifiers separately with
optimizing the joint space. A plot with all classifiers can be found in Fig. 4 in the supplementary
material of the original publication [20]. While Auto-sklearn is inferior in the beginning, in the end
its performance is close to the best method

http://www.openml.org/d/554
http://www.openml.org/d/1049
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addition to the auto-tracks, in particular Table 10.5, phases Final 0–4). As such, we
believe that Auto-sklearn is a promising system for use by both machine learning
novices and experts.

Since the publication of the original NeurIPS paper [20], Auto-sklearn has
become a standard baseline for new approaches to automated machine learning,
such as FLASH [46], RECIPE [39], Hyperband [32], AutoPrognosis [3], ML-
PLAN [34], Auto-Stacker [11] and AlphaD3M [13].

6.8.2 Usage

One important outcome of the research on Auto-sklearn is the auto-sklearn Python
package. It is a drop-in replacement for any scikit-learn classifier or regressor,
similar to the classifier provided by HYPEROPT-SKLEARN [30] and can be used
as follows:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

Auto-sklearn can be used with any loss function and resampling strategy to
estimate the validation loss. Furthermore, it is possible to extend the classifiers
and preprocessors Auto-sklearn can choose from. Since the initial publication
we also added regression support to Auto-sklearn. We develop the package on
https://github.com/automl/auto-sklearn and it is available via the Python packaging
index pypi.org. We provide documentation on automl.github.io/auto-sklearn.

6.8.3 Extensions in PoSH Auto-sklearn

While Auto-sklearn as described in this chapter is limited to handling datasets of
relatively modest size, in the context of the most recent AutoML challenge (AutoML
2, run in 2018; see Chap. 10), we have extended it towards also handling large
datasets effectively. Auto-sklearn was able to handle datasets of several hundred
thousand datapoints by using a cluster of 25 CPUs for two days, but not within the
20 min time budget required by the AutoML 2 challenge. As described in detail in a
recent workshop paper [18], this implied opening up the methods considered to also
include extreme gradient boosting (in particular, XGBoost [12]), using the multi-
fidelity approach of successive halving [28] (also described in Chap. 1) to solve the
CASH problem, and changing our meta-learning approach. We now briefly describe
the resulting system, PoSH Auto-sklearn (short for Portfolio Successive Halving,
combined with Auto-sklearn), which obtained the best performance in the 2018
challenge.

https://github.com/automl/auto-sklearn
https://pypi.org
https://automl.github.io/auto-sklearn/stable/
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PoSH Auto-sklearn starts by running successive halving with a fixed portfolio
of 16 machine learning pipeline configurations, and if there is time left, it uses the
outcome of these runs to warmstart a combination of Bayesian optimization and
successive halving. The fixed portfolio of 16 pipelines was obtained by running
greedy submodular function maximization to select a strong set of complementary
configurations to optimize the performance obtained on a set of 421 datasets; the
candidate configurations configured for this optimization were the 421 configura-
tions found by running SMAC [27] on each of these 421 datasets.

The combination of Bayesian optimization and successive halving we used to
yield robust results within a short time window is an adaptation of the multi-
fidelity hyperparameter optimization method BOHB (Bayesian Optimization and
HyperBand) [17] discussed in Chap. 1. As budgets for this multifidelity approach,
we used the number of iterations for all iterative algorithms, except for the SVM,
where we used dataset size as a budget.

Another extension for large datasets that is currently ongoing is our work on
automated deep learning; this is discussed in the following chapter on Auto-Net.

6.8.4 Conclusion and Future Work

Following the AutoML approach taken by Auto-WEKA, we introduced Auto-
sklearn, which performs favorably against the previous state of the art in AutoML.
We also showed that our meta-learning and ensemble mechanisms improve its
efficiency and robustness further.

While Auto-sklearn handles the hyperparameter tuning for a user, Auto-sklearn
has hyperparameters on its own which influence its performance for a given time
budget, such as the time limits discussed in Sects. 6.5, 6.6, and 6.7, or the resampling
strategy used to calculate the loss function. We demonstrated in preliminary work
that the choice of the resampling strategy and the selection of timeouts can be cast
as a meta-learning problem itself [19], but we would like to extend this to other
possible design choices Auto-sklearn users face.

Since the time of writing the original paper, the field of meta-learning has
progressed a lot, giving access to multiple new methods to include meta information
into Bayesian optimization. We expect that using one of the newer methods
discussed in Chap. 2 could substantially improve the optimization procedure.

Finally, having a fully automated procedure that can test hundreds of hyperpa-
rameter configurations puts us at increased risk of overfitting to the validation set.
To avoid this overfitting, we would like to combine Auto-sklearn with one of the
techniques discussed in Chap. 1, techniques from differential privacy [14], or other
techniques yet to be developed.
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Chapter 7
Towards Automatically-Tuned Deep
Neural Networks

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg,
Matthias Urban, Michael Burkart, Maximilian Dippel, Marius Lindauer,
and Frank Hutter

Abstract Recent advances in AutoML have led to automated tools that can
compete with machine learning experts on supervised learning tasks. In this work,
we present two versions of Auto-Net, which provide automatically-tuned deep
neural networks without any human intervention. The first version, Auto-Net 1.0,
builds upon ideas from the competition-winning system Auto-sklearn by using
the Bayesian Optimization method SMAC and uses Lasagne as the underlying
deep learning (DL) library. The more recent Auto-Net 2.0 builds upon a recent
combination of Bayesian Optimization and HyperBand, called BOHB, and uses
PyTorch as DL library. To the best of our knowledge, Auto-Net 1.0 was the first
automatically-tuned neural network to win competition datasets against human
experts (as part of the first AutoML challenge). Further empirical results show that
ensembling Auto-Net 1.0 with Auto-sklearn can perform better than either approach
alone, and that Auto-Net 2.0 can perform better yet.

7.1 Introduction

Neural networks have significantly improved the state of the art on a variety of
benchmarks in recent years and opened many new promising research avenues
[22, 27, 36, 39, 41]. However, neural networks are not easy to use for non-experts
since their performance crucially depends on proper settings of a large set of
hyperparameters (e.g., learning rate and weight decay) and architecture choices
(e.g., number of layers and type of activation functions). Here, we present work
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towards effective off-the-shelf neural networks based on approaches from automated
machine learning (AutoML).

AutoML aims to provide effective off-the-shelf learning systems to free experts
and non-experts alike from the tedious and time-consuming tasks of selecting the
right algorithm for a dataset at hand, along with the right preprocessing method
and the various hyperparameters of all involved components. Thornton et al. [43]
phrased this AutoML problem as a combined algorithm selection and hyperpa-
rameter optimization (CASH) problem, which aims to identify the combination of
algorithm components with the best (cross-)validation performance.

One powerful approach for solving this CASH problem treats this cross-
validation performance as an expensive blackbox function and uses Bayesian
optimization [4, 35] to search for its optimizer. While Bayesian optimization
typically uses Gaussian processes [32], these tend to have problems with the special
characteristics of the CASH problem (high dimensionality; both categorical and
continuous hyperparameters; many conditional hyperparameters, which are only
relevant for some instantiations of other hyperparameters). Adapting GPs to handle
these characteristics is an active field of research [40, 44], but so far Bayesian
optimization methods using tree-based models [2, 17] work best in the CASH
setting [9, 43].

Auto-Net is modelled after the two prominent AutoML systems Auto-
WEKA [43] and Auto-sklearn [11], discussed in Chaps. 4 and 6 of this book,
respectively. Both of these use the random forest-based Bayesian optimization
method SMAC [17] to tackle the CASH problem – to find the best instantiation of
classifiers in WEKA [16] and scikit-learn [30], respectively. Auto-sklearn employs
two additional methods to boost performance. Firstly, it uses meta-learning [3] based
on experience on previous datasets to start SMAC from good configurations [12].
Secondly, since the eventual goal is to make the best predictions, it is wasteful
to try out dozens of machine learning models and then only use the single best
model; instead, Auto-sklearn saves all models evaluated by SMAC and constructs
an ensemble of these with the ensemble selection technique [5]. Even though
both Auto-WEKA and Auto-sklearn include a wide range of supervised learning
methods, neither includes modern neural networks.

Here, we introduce two versions of a system we dub Auto-Net to fill this gap.
Auto-Net 1.0 is based on Theano and has a relatively simple search space, while
the more recent Auto-Net 2.0 is implemented in PyTorch and uses a more complex
space and more recent advances in DL. A further difference lies in their respective
search procedure: Auto-Net 1.0 automatically configures neural networks with
SMAC [17], following the same AutoML approach as Auto-WEKA and Auto-
sklearn, while Auto-Net 2.0 builds upon BOHB [10], a combination of Bayesian
Optimization (BO) and efficient racing strategies via HyperBand (HB) [23].

Auto-Net 1.0 achieved the best performance on two datasets in the human
expert track of the recent ChaLearn AutoML Challenge [14]. To the best of our
knowledge, this is the first time that a fully-automatically-tuned neural network won
a competition dataset against human experts. Auto-Net 2.0 further improves upon
Auto-Net 1.0 on large data sets, showing recent progress in the field.
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We describe the configuration space and implementation of Auto-Net 1.0 in
Sect. 7.2 and of Auto-Net 2.0 in Sect. 7.3. We then study their performance
empirically in Sect. 7.4 and conclude in Sect. 7.5. We omit a thorough discussion
of related work and refer to Chap. 3 of this book for an overview on the extremely
active field of neural architecture search. Nevertheless, we note that several other
recent tools follow Auto-Net’s goal of automating deep learning, such as Auto-
Keras [20], Photon-AI, H2O.ai, DEvol or Google’s Cloud AutoML service.

This chapter is an extended version of our 2016 paper introducing Auto-Net,
presented at the 2016 ICML Workshop on AutoML [26].

7.2 Auto-Net 1.0

We now introduce Auto-Net 1.0 and describe its implementation. We chose to
implement this first version of Auto-Net as an extension of Auto-sklearn [11] by
adding a new classification (and regression) component; the reason for this choice
was that it allows us to leverage existing parts of the machine learning pipeline:
feature preprocessing, data preprocessing and ensemble construction. Here, we limit
Auto-Net to fully-connected feed-forward neural networks, since they apply to a
wide range of different datasets; we defer the extension to other types of neural
networks, such as convolutional or recurrent neural networks, to future work. To
have access to neural network techniques we use the Python deep learning library
Lasagne [6], which is built around Theano [42]. However, we note that in general
our approach is independent of the neural network implementation.

Following [2] and [7], we distinguish between layer-independent network hyper-
parameters that control the architecture and training procedure and per-layer
hyperparameters that are set for each layer. In total, we optimize 63 hyperparame-
ters (see Table 7.1), using the same configuration space for all types of supervised
learning (binary, multiclass and multilabel classification, as well as regression).
Sparse datasets also share the same configuration space. (Since neural networks
cannot handle datasets in sparse representation out of the box, we transform the
data into a dense representation on a per-batch basis prior to feeding it to the neural
network.)

The per-layer hyperparameters of layer k are conditionally dependent on the
number of layers being at least k. For practical reasons, we constrain the number of
layers to be between one and six: firstly, we aim to keep the training time of a single
configuration low,1 and secondly each layer adds eight per-layer hyperparameters
to the configuration space, such that allowing additional layers would further
complicate the configuration process.

The most common way to optimize the internal weights of neural networks is via
stochastic gradient descent (SGD) using partial derivatives calculated with back-
propagation. Standard SGD crucially depends on the correct setting of the learning

1We aimed to be able to afford the evaluation of several dozens of configurations within a time
budget of two days on a single CPU.
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rate hyperparameter. To lessen this dependency, various algorithms (solvers) for
stochastic gradient descent have been proposed. We include the following well-
known methods from the literature in the configuration space of Auto-Net: vanilla
stochastic gradient descent (SGD), stochastic gradient descent with momentum
(Momentum), Adam [21], Adadelta [48], Nesterov momentum [28] and Adagrad
[8]. Additionally, we used a variant of the vSGD optimizer [33], dubbed “smorm”,
in which the estimate of the Hessian is replaced by an estimate of the squared
gradient (calculated as in the RMSprop procedure). Each of these methods comes
with a learning rate α and an own set of hyperparameters, for example Adam’s
momentum vectors β1 and β2. Each solver’s hyperparameter(s) are only active if
the corresponding solver is chosen.

We also decay the learning rate α over time, using the following policies (which
multiply the initial learning rate by a factor αdecay after each epoch t = 0 . . . T ):

• Fixed: αdecay = 1
• Inv: αdecay = (1 + γ t)(−k)

• Exp: αdecay = γ t

• Step: αdecay = γ �t/s�

Here, the hyperparameters k, s and γ are conditionally dependent on the choice of
the policy.

To search for a strong instantiation in this conditional search space of Auto-Net
1.0, as in Auto-WEKA and Auto-sklearn, we used the random-forest based Bayesian
optimization method SMAC [17]. SMAC is an anytime approach that keeps track
of the best configuration seen so far and outputs this when terminated.

7.3 Auto-Net 2.0

AutoNet 2.0 differs from AutoNet 1.0 mainly in the following three aspects:

• it uses PyTorch [29] instead of Lasagne as a deep learning library
• it uses a larger configuration space including up-to-date deep learning techniques,

modern architectures (such as ResNets) and includes more compact representa-
tions of the search space, and

• it applies BOHB [10] instead of SMAC to obtain a well-performing neural
network more efficiently.

In the following, we will discuss these points in more detail.
Since the development and maintenance of Lasagne ended last year, we chose a

different Python library for Auto-Net 2.0. The most popular deep learning libraries
right now are PyTorch [29] and Tensorflow [1]. These come with quite similar
features and mostly differ in the level of detail they give insight into. For example,
PyTorch offers the user the possibility to trace all computations during training.
While there are advantages and disadvantages for each of these libraries, we decided
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to use PyTorch because of its ability to dynamically construct computational graphs.
For this reason, we also started referring to Auto-Net 2.0 as Auto-PyTorch.

The search space of AutoNet 2.0 includes both hyperparameters for module
selection (e.g. scheduler type, network architecture) and hyperparameters for each
of the specific modules. It supports different deep learning modules, such as network
type, learning rate scheduler, optimizer and regularization technique, as described
below. Auto-Net 2.0 is also designed to be easily extended; users can add their own
modules to the ones listed below.

Auto-Net 2.0 currently offers four different network types:

Multi-Layer Perceptrons This is a standard implementation of conventional
MLPs extended by dropout layers [38]. Similar as in AutoNet 1.0, each layer
of the MLP is parameterized (e.g., number of units and dropout rate).

Residual Neural Networks These are deep neural networks that learn residual
functions [47], with the difference that we use fully connected layers instead
of convolutional ones. As is standard with ResNets, the architecture consists
of M groups, each of which stacks N residual blocks in sequence. While the
architecture of each block is fixed, the number M of groups, the number of
blocks N per group, as well as the width of each group is determined by
hyperparameters, as shown in Table 7.2.

Shaped Multi-Layer Perceptrons To avoid that every layer has its own hyper-
parameters (which is an inefficient representation to search), in shaped MLPs
the overall shape of the layers is predetermined, e.g. as a funnel, long funnel,
diamond, hexagon, brick, or triangle. We followed the shapes from https://
mikkokotila.github.io/slate/#shapes; Ilya Loshchilov also proposed parameteri-
zation by such shapes to us before [25].

Shaped Residual Networks A ResNet where the overall shape of the layers is
predetermined (e.g. funnel, long funnel, diamond, hexagon, brick, triangle).

The network types of ResNets and ShapedResNets can also use any of the
regularization methods of Shake-Shake [13] and ShakeDrop [46]. MixUp [49] can
be used for all networks.

The optimizers currently supported in Auto-Net 2.0 are Adam [21] and SGD
with momentum. Moreover, Auto-Net 2.0 currently offers five different schedulers
that change the optimizer’s learning rate over time (as a function of the number of
epochs):

Exponential This multiplies the learning rate with a constant factor in each
epoch.

Step This decays the learning rate by a multiplicative factor after a constant
number of steps.

Cyclic This modifies the learning rate in a certain range, alternating between
increasing and decreasing [37].

Cosine Annealing with Warm Restarts [24] This learning rate schedule imple-
ments multiple phases of convergence. It cools down the learning rate to zero
following a cosine decay [24], and after each convergence phase heats it up to
start a next phase of convergence, often to a better optimum. The network weights

https://mikkokotila.github.io/slate/#shapes
https://mikkokotila.github.io/slate/#shapes
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Table 7.2 Configuration space of Auto-Net 2.0. There are 112 hyperparameters in total
lanoitidnoCepyTLog scaletluafeDegnaRemaN

General
hyperparameters

23[Batch size , 23]005 � int −
Use mixup {True, False} True − bool −

0[Mixup alpha .0, 1. 1]0 .0 − float �
Network {MLP, ResNet, ShapedMLP, ShapedResNet} MLP − cat −
Optimizer {Adam, SGD} Adam − cat −
Preprocessor {nystroem, kernel pca, fast ica, kitchen sinks, truncated svd} Nystroem − cat −
Imputation {most frequent, median, mean} Most frequent − cat −
Use loss weight strategy {True, False} True − cat −
Learning rate scheduler {Step, Exponential, OnPlateau, Cyclic, CosineAnnealing} Step − cat −

Preprocessor

Nystroem

[Coef −1.0, 1. 0]0 .0 − float �
2[Degree , tni−3]5 �

0[Gamma .00003, 8. 0]0 .1 � float �
Kernel {poly, rbf, sigmoid, cosine} rbf − cat �

05[Num components , 001]00001 � int �

Kitchen sinks 0[Gamma .00003, 8. 1]0 .0 � float �
05[Num components , 001]00001 � int �

Truncated SVD 01[Target dimension , tni−821]652 �

Kernel PCA

[Coef −1.0, 1. 0]0 .0 − float �
2[Degree , tni−3]5 �

0[Gamma .00003, 8. 0]0 .1 � float �
Kernel {poly, rbf, sigmoid, cosine} rbf − cat �

05[Num components , 001]00001 � int �

Fast ICA

Algorithm {parallel, deflation} Parallel − cat �
Fun {logcosh, exp, cube} Logcosh − cat �
Whiten {True, False} True − cat �

01[Num components , tni−5001]0002 �
Networks

MLP

Activation function {Sigmoid, Tanh, ReLu} Sigmoid − cat �
1[Num layers , tni−9]51 �

Num units (for layer i 01[) , 001]4201 � int �
Dropout (for layer i 0[) .0, 0. 0]5 .25 − int �

ResNet

Activation function {Sigmoid, Tanh, ReLu} Sigmoid − cat �
1[Residual block groups , tni−4]9 �
1[Blocks per group , tni−2]4 �

Num units (for group i 821[) , 002]4201 � int �
Use dropout {True, False} True − bool �
Dropout (for group i 0[) .0, 0. 0]9 .5 − int �
Use shake drop {True, False} True − bool �
Use shake shake {True, False} True − bool �
Shake drop βmax [0.0, 1. 0]0 .5 − float �

ShapedMLP

Activation function {Sigmoid, Tanh, ReLu} Sigmoid − cat �
3[Num layers , tni−9]51 �
01[Max units per layer , 002]4201 � int �

Network shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel − cat �
0[Max dropout per layer .0, 0. 06 .2 − float �

Dropout shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel − cat �

Shaped ResNet

Activation function {Sigmoid, Tanh, ReLu} Sigmoid − cat �
3[Num layers , tni−4]9 �
1[Blocks per layer , tni−2]4 �

Use dropout {True, False} True − bool �
01[Max units per layer , 002]4201 � int �

Network shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel − cat �
0[Max dropout per layer .0, 0. 06 .2 − float �

Dropout shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel − cat �
Use shake drop {True, False} True − bool �
Use shake shake {True, False} True − bool �
Shake drop βmax [0.0, 1. 0]0 .5 − float �

Optimizers

Adam 0[Learning rate .0001, 0. 0]1 .003 � float �
0[Weight decay .0001, 0. 0]1 .05 − float �

SGD
0[Learning rate .0001, 0. 0]1 .003 � float �
0[Weight decay .0001, 0. 0]1 .05 − float �

0[Momentum .1, 0. 0]9 .3 � float �
Schedulers

Step γ [0.001, 0. 0]9 .4505 − float �
1[Step size , tni−6]01 �

Exponential γ [0.8, 0. 0]9999 .89995 − float �

OnPlateau γ [0.05, 0. 0]5 .275 − float �
3[Patience , tni−6]01 �

Cyclic
3[Cycle length , tni−6]01 �

1[Max factor .0, 2. 1]0 .5 − float �
0[Min factor .001, 1. 0]0 .5 − float �

Cosine
annealing

T0 [1, tni−01]02 �
Tmult [1.0, 2. 1]0 .5 − float �
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are not modified when heating up the learning rate, such that the next phase of
convergence is warm-started.

OnPlateau This scheduler2 changes the learning rate whenever a metric stops
improving; specifically, it multiplies the current learning rate with a factor γ if
there was no improvement after p epochs.

Similar to Auto-Net 1.0, Auto-Net 2.0 can search over pre-processing techniques.
Auto-Net 2.0 currently supports Nyström [45], Kernel principal component analysis
[34], fast independent component analysis [18], random kitchen sinks [31] and trun-
cated singular value decomposition [15]. Users can specify a list of pre-processing
techniques to be taken into account and can also choose between different balancing
and normalization strategies (for balancing strategies only weighting the loss is
available, and for normalization strategies, min-max normalization and standard-
ization are supported). In contrast to Auto-Net 1.0, Auto-Net 2.0 does not build
an ensemble at the end (although this feature will likely be added soon). All
hyperparameters of Auto-Net 2.0 with their respective ranges and default values
can be found in Table 7.2.

As optimizer for this highly conditional space, we used BOHB (Bayesian
Optimization with HyperBand) [10], which combines conventional Bayesian opti-
mization with the bandit-based strategy Hyperband [23] to substantially improve its
efficiency. Like Hyperband, BOHB uses repeated runs of Successive Halving [19]
to invest most runtime in promising neural networks and stops training neural
networks with poor performance early. Like in Bayesian optimization, BOHB learns
which kinds of neural networks yield good results. Specifically, like the BO method
TPE [2], BOHB uses a kernel density estimator (KDE) to describe regions of high
performance in the space of neural networks (architectures and hyperparameter
settings) and trades off exploration versus exploitation using this KDE. One of
the advantages of BOHB is that it is easily parallelizable, achieving almost linear
speedups with an increasing number of workers [10].

As a budget for BOHB we can either handle epochs or (wallclock) time in
minutes; by default we use runtime, but users can freely adapt the different budget
parameters. An example usage is shown in Algorithm 1. Similar to Auto-sklearn,
Auto-Net is built as a plugin estimator for scikit-learn. Users have to provide
a training set and a performance metric (e.g., accuracy). Optionally, they might

Algorithm 1 Example usage of Auto-Net 2.0
from autonet import AutoNetClassification

cls = AutoNetClassification(min_budget=5, max_budget=20, max_runtime=120)
cls.fit(X_train, Y_train)
predictions = cls.predict(X_test)

2Implemented by PyTorch.
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specify a validation and testset. The validation set is used during training to get a
measure for the performance of the network and to train the KDE models of BOHB.

7.4 Experiments

We now empirically evaluate our methods. Our implementations of Auto-Net run on
both CPUs and GPUs, but since neural networks heavily employ matrix operations
they run much faster on GPUs. Our CPU-based experiments were run on a compute
cluster, each node of which has two eight-core Intel Xeon E5-2650 v2 CPUs,
running at 2.6 GHz, and a shared memory of 64 GB. Our GPU-based experiments
were run on a compute cluster, each node of which has four GeForce GTX TITAN
X GPUs.

7.4.1 Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn

In our first experiment, we compare different instantiations of Auto-Net 1.0 on the
five datasets of phase 0 of the AutoML challenge. First, we use the CPU-based and
GPU-based versions to study the difference of running NNs on different hardware.
Second, we allow the combination of neural networks with the models from Auto-
sklearn. Third, we also run Auto-sklearn without neural networks as a baseline.
On each dataset, we performed 10 one-day runs of each method, allowing up to
100 min for the evaluation of a single configuration by five-fold cross-validation
on the training set. For each time step of each run, following [11] we constructed
an ensemble from the models it had evaluated so far and plot the test error of that
ensemble over time. In practice, we would either use a separate process to calculate
the ensembles in parallel or compute them after the optimization process.

Fig. 7.1 shows the results on two of the five datasets. First, we note that the
GPU-based version of Auto-Net was consistently about an order of magnitude faster
than the CPU-based version. Within the given fixed compute budget, the CPU-based
version consistently performed worst, whereas the GPU-based version performed
best on the newsgroups dataset (see Fig. 7.1a), tied with Auto-sklearn on 3 of the
other datasets, and performed worse on one. Despite the fact that the CPU-based
Auto-Net was very slow, in 3/5 cases the combination of Auto-sklearn and CPU-
based Auto-Net still improved over Auto-sklearn; this can, for example, be observed
for the dorothea dataset in Fig. 7.1b.

7.4.2 Results for AutoML Competition Datasets

Having developed Auto-Net 1.0 during the first AutoML challenge, we used a
combination of Auto-sklearn and GPU-based Auto-Net for the last two phases
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Fig. 7.1 Results for the four methods on two datasets from Tweakathon0 of the AutoML
challenge. We show errors on the competition’s validation set (not the test set since its true labels
are not available), with our methods only having access to the training set. To avoid clutter, we plot
mean error ± 1/4 standard deviations over the 10 runs of each method. (a) newsgroups dataset.
(b) dorothea dataset

Fig. 7.2 Official AutoML human expert track competition results for the three datasets for which
we used Auto-Net. We only show the top 10 entries. (a) alexis dataset. (b) yolanda dataset.
(c) tania dataset

to win the respective human expert tracks. Auto-sklearn has been developed for
much longer and is much more robust than Auto-Net, so for 4/5 datasets in the
3rd phase and 3/5 datasets in the 4th phase Auto-sklearn performed best by itself
and we only submitted its results. Here, we discuss the three datasets for which we
used Auto-Net. Fig. 7.2 shows the official AutoML human expert track competition
results for the three datasets for which we used Auto-Net. The alexis dataset
was part of the 3rd phase (“advanced phase”) of the challenge. For this, we ran
Auto-Net on five GPUs in parallel (using SMAC in shared-model mode) for 18 h.
Our submission included an automatically-constructed ensemble of 39 models and
clearly outperformed all human experts, reaching an AUC score of 90%, while
the best human competitor (Ideal Intel Analytics) only reached 80%. To our best
knowledge, this is the first time an automatically-constructed neural network won
a competition dataset. The yolanda and tania datasets were part of the 4th
phase (“expert phase”) of the challenge. For yolanda, we ran Auto-Net for 48 h
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Fig. 7.3 Performance on the tania dataset over time. We show cross-validation performance on
the training set since the true labels for the competition’s validation or test set are not available. To
avoid clutter, we plot mean error ± 1/4 standard deviations over the 10 runs of each method

on eight GPUs and automatically constructed an ensemble of five neural networks,
achieving a close third place. For tania, we ran Auto-Net for 48 h on eight GPUs
along with Auto-sklearn on 25 CPUs, and in the end our automated ensembling
script constructed an ensemble of eight 1-layer neural networks, two 2-layer neural
networks, and one logistic regression model trained with SGD. This ensemble won
the first place on the tania dataset.

For the tania dataset, we also repeated the experiments from Sect. 7.4.1.
Fig. 7.3 shows that for this dataset Auto-Net performed clearly better than Auto-
sklearn, even when only running on CPUs. The GPU-based variant of Auto-Net
performed best.

7.4.3 Comparing AutoNet 1.0 and 2.0

Finally, we show an illustrative comparison between Auto-Net 1.0 and 2.0. We note
that Auto-Net 2.0 has a much more comprehensive search space than Auto-Net 1.0,
and we therefore expect it to perform better on large datasets given enough time.
We also expect that searching the larger space is harder than searching Auto-Net
1.0’s smaller space; however, since Auto-Net 2.0 uses the efficient multi-fidelity
optimizer BOHB to terminate poorly-performing neural networks early on, it may
nevertheless obtain strong anytime performance. On the other hand, Auto-Net 2.0
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Table 7.3 Error metric of different Auto-Net versions, run for different times, all on CPU. We
compare Auto-Net 1.0, ensembles of Auto-Net 1.0 and Auto-sklearn, Auto-Net 2.0 with one
worker, and Auto-Net 2.0 with four workers. All results are means across 10 runs of each system.
We show errors on the competition’s validation set (not the test set since its true labels are not
available), with our methods only having access to the training set

newsgroups dorothea

103 s 104 s 1 day 103 s 104 s 1 day

Auto-Net 1.0 0.99 0.98 0.85 0.38 0.30 0.13

Auto-sklearn + Auto-Net 1.0 0.94 0.76 0.47 0.29 0.13 0.13

Auto-Net 2.0: 1 worker 1.0 0.67 0.55 0.88 0.17 0.16

Auto-Net 2.0: 4 workers 0.89 0.57 0.44 0.22 0.17 0.14

so far does not implement ensembling, and due to this missing regularization
component and its larger hypothesis space, it may be more prone to overfitting than
Auto-Net 1.0.

In order to test these expectations about performance on different-sized datasets,
we used a medium-sized dataset (newsgroups, with 13k training data points) and
a small one (dorothea, with 800 training data points). The results are presented
in Table 7.3.

On the medium-sized dataset newsgroups, Auto-Net 2.0 performed much
better than Auto-Net 1.0, and using four workers also led to strong speedups on
top of this, making Auto-Net 2.0 competitive to the ensemble of Auto-sklearn and
Auto-Net 1.0. We found that despite Auto-Net 2.0’s larger search space its anytime
performance (using the multi-fidelity method BOHB) was better than that of Auto-
Net 1.0 (using the blackbox optimization method SMAC). On the small dataset
dorothea, Auto-Net 2.0 also performed better than Auto-Net 1.0 early on, but
given enough time Auto-Net 1.0 performed slightly better. We attribute this to the
lack of ensembling in Auto-Net 2.0, combined with its larger search space.

7.5 Conclusion

We presented Auto-Net, which provides automatically-tuned deep neural networks
without any human intervention. Even though neural networks show superior
performance on many datasets, for traditional data sets with manually-defined
features they do not always perform best. However, we showed that, even in cases
where other methods perform better, combining Auto-Net with Auto-sklearn to an
ensemble often leads to an equal or better performance than either approach alone.

Finally, we reported results on three datasets from the AutoML challenge’s
human expert track, for which Auto-Net won one third place and two first places.
We showed that ensembles of Auto-sklearn and Auto-Net can get users the best of
both worlds and quite often improve over the individual tools. First experiments
on the new Auto-Net 2.0 showed that using a more comprehensive search space,
combined with BOHB as an optimizer yields promising results.
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In future work, we aim to extend Auto-Net to more general neural network
architectures, including convolutional and recurrent neural networks.
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Chapter 8
TPOT: A Tree-Based Pipeline
Optimization Tool for Automating
Machine Learning

Randal S. Olson and Jason H. Moore

Abstract As data science becomes increasingly mainstream, there will be an
ever-growing demand for data science tools that are more accessible, flexible,
and scalable. In response to this demand, automated machine learning (AutoML)
researchers have begun building systems that automate the process of designing and
optimizing machine learning pipelines. In this chapter we present TPOT v0.3, an
open source genetic programming-based AutoML system that optimizes a series of
feature preprocessors and machine learning models with the goal of maximizing
classification accuracy on a supervised classification task. We benchmark TPOT
on a series of 150 supervised classification tasks and find that it significantly
outperforms a basic machine learning analysis in 21 of them, while experiencing
minimal degradation in accuracy on 4 of the benchmarks—all without any domain
knowledge nor human input. As such, genetic programming-based AutoML systems
show considerable promise in the AutoML domain.

8.1 Introduction

Machine learning is commonly described as a “field of study that gives computers
the ability to learn without being explicitly programmed” [19]. Despite this common
claim, experienced machine learning practitioners know that designing effective
machine learning pipelines is often a tedious endeavor, and typically requires
considerable experience with machine learning algorithms, expert knowledge of the
problem domain, and time-intensive brute force search to accomplish [13]. Thus,
contrary to what machine learning enthusiasts would have us believe, machine
learning still requires considerable explicit programming.
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In response to this challenge, several automated machine learning methods have
been developed over the years [10]. Over the past several years, we have been
developing a Tree-based Pipeline Optimization Tool (TPOT) that automatically
designs and optimizes machine learning pipelines for a given problem domain [16],
without any need for human intervention. In short, TPOT optimizes machine
learning pipelines using a version of genetic programming (GP), a well-known
evolutionary computation technique for automatically constructing computer pro-
grams [1]. Previously, we demonstrated that combining GP with Pareto optimization
enables TPOT to automatically construct high-accuracy and compact pipelines that
consistently outperform basic machine learning analyses [13]. In this chapter, we
extend that benchmark to include 150 supervised classification tasks and evaluate
TPOT in a wide variety of application domains ranging from genetic analyses to
image classification and more.

This chapter is an extended version of our 2016 paper introducing TPOT,
presented at the 2016 ICML Workshop on AutoML [15].

8.2 Methods

In the following sections, we provide an overview of the Tree-based Pipeline
Optimization Tool (TPOT) v0.3, including the machine learning operators used as
genetic programming (GP) primitives, the tree-based pipelines used to combine the
primitives into working machine learning pipelines, and the GP algorithm used to
evolve said tree-based pipelines. We follow with a description of the datasets used to
evaluate the latest version of TPOT in this chapter. TPOT is an open source project
on GitHub, and the underlying Python code can be found at https://github.com/
rhiever/tpot.

8.2.1 Machine Learning Pipeline Operators

At its core, TPOT is a wrapper for the Python machine learning package, scikit-
learn [17]. Thus, each machine learning pipeline operator (i.e., GP primitive)
in TPOT corresponds to a machine learning algorithm, such as a supervised
classification model or standard feature scaler. All implementations of the machine
learning algorithms listed below are from scikit-learn (except XGBoost), and we
refer to the scikit-learn documentation [17] and [9] for detailed explanations of the
machine learning algorithms used in TPOT.

Supervised Classification Operators DecisionTree, RandomForest, eXtreme
Gradient Boosting Classifier (from XGBoost, [3]), LogisticRegression, and
KNearestNeighborClassifier. Classification operators store the classifier’s
predictions as a new feature as well as the classification for the pipeline.

https://github.com/rhiever/tpot
https://github.com/rhiever/tpot
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Fig. 8.1 An example tree-based pipeline from TPOT. Each circle corresponds to a machine
learning operator, and the arrows indicate the direction of the data flow

Feature Preprocessing Operators StandardScaler, RobustScaler, MinMaxScaler,
MaxAbsScaler, RandomizedPCA [12], Binarizer, and PolynomialFeatures. Prepro-
cessing operators modify the dataset in some way and return the modified dataset.

Feature Selection Operators VarianceThreshold, SelectKBest, SelectPercentile,
SelectFwe, and Recursive Feature Elimination (RFE). Feature selection operators
reduce the number of features in the dataset using some criteria and return the
modified dataset.

We also include an operator that combines disparate datasets, as demonstrated in
Fig. 8.1, which allows multiple modified variants of the dataset to be combined into
a single dataset. Additionally, TPOT v0.3 does not include missing value imputation
operators, and therefore does not support datasets with missing data. Lastly, we
provide integer and float terminals to parameterize the various operators, such as
the number of neighbors k in the k-Nearest Neighbors Classifier.

8.2.2 Constructing Tree-Based Pipelines

To combine these operators into a machine learning pipeline, we treat them as GP
primitives and construct GP trees from them. Fig. 8.1 shows an example tree-based
pipeline, where two copies of the dataset are provided to the pipeline, modified in
a successive manner by each operator, combined into a single dataset, and finally
used to make classifications. Other than the restriction that every pipeline must have
a classifier as its final operator, it is possible to construct arbitrarily shaped machine
learning pipelines that can act on multiple copies of the dataset. Thus, GP trees
provide an inherently flexible representation of machine learning pipelines.
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In order for these tree-based pipelines to operate, we store three additional
variables for each record in the dataset. The “class” variable indicates the true label
for each record, and is used when evaluating the accuracy of each pipeline. The
“guess” variable indicates the pipeline’s latest guess for each record, where the
predictions from the final classification operator in the pipeline are stored as the
“guess”. Finally, the “group” variable indicates whether the record is to be used as
a part of the internal training or testing set, such that the tree-based pipelines are
only trained on the training data and evaluated on the testing data. We note that the
dataset provided to TPOT as training data is further split into an internal stratified
75%/25% training/testing set.

8.2.3 Optimizing Tree-Based Pipelines

To automatically generate and optimize these tree-based pipelines, we use a genetic
programming (GP) algorithm [1] as implemented in the Python package DEAP [7].
The TPOT GP algorithm follows a standard GP process: To begin, the GP algorithm
generates 100 random tree-based pipelines and evaluates their balanced cross-
validation accuracy on the dataset. For every generation of the GP algorithm, the
algorithm selects the top 20 pipelines in the population according to the NSGA-
II selection scheme [4], where pipelines are selected to simultaneously maximize
classification accuracy on the dataset while minimizing the number of operators
in the pipeline. Each of the top 20 selected pipelines produce five copies (i.e.,
offspring) into the next generation’s population, 5% of those offspring cross over
with another offspring using one-point crossover, then 90% of the remaining
unaffected offspring are randomly changed by a point, insert, or shrink mutation
(1/3 chance of each). Every generation, the algorithm updates a Pareto front of the
non-dominated solutions [4] discovered at any point in the GP run. The algorithm
repeats this evaluate-select-crossover-mutate process for 100 generations—adding
and tuning pipeline operators that improve classification accuracy and pruning
operators that degrade classification accuracy—at which point the algorithm selects
the highest-accuracy pipeline from the Pareto front as the representative “best”
pipeline from the run.

8.2.4 Benchmark Data

We compiled 150 supervised classification benchmarks1 from a wide variety of
sources, including the UCI machine learning repository [11], a large preexisting
benchmark repository from [18], and simulated genetic analysis datasets from [20].

1Benchmark data at https://github.com/EpistasisLab/penn-ml-benchmarks

https://github.com/EpistasisLab/penn-ml-benchmarks
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These benchmark datasets range from 60 to 60,000 records, few to hundreds
of features, and include binary as well as multi-class supervised classification
problems. We selected datasets from a wide range of application domains, including
genetic analysis, image classification, time series analysis, and many more. Thus,
this benchmark—called the Penn Machine Learning Benchmark (PMLB) [14]—
represents a comprehensive suite of tests with which to evaluate automated machine
learning systems.

8.3 Results

To evaluate TPOT, we ran 30 replicates of it on each of the 150 benchmarks,
where each replicate had 8 h to complete 100 generations of optimization (i.e.,
100 × 100 = 10,000 pipeline evaluations). In each replicate, we divided the dataset
into a stratified 75%/25% training/testing split and used a distinct random number
generator seed for each split and subsequent TPOT run.

In order to provide a reasonable control as a baseline comparison, we similarly
evaluated 30 replicates of a Random Forest with 500 trees on the 150 benchmarks,
which is meant to represent a basic machine learning analysis that a novice
practitioner would perform. We also ran 30 replicates of a version of TPOT that
randomly generates and evaluates the same number of pipelines (10,000), which is
meant to represent a random search in the TPOT pipeline space. In all cases, we
measured accuracy of the resulting pipelines or models as balanced accuracy [21],
which corrects for class frequency imbalances in datasets by computing the accuracy
on a per-class basis then averaging the per-class accuracies. In the remainder of this
chapter, we refer to “balanced accuracy” as simply “accuracy.”

Shown in Fig. 8.2, the average performance of TPOT and a Random Forest with
500 trees is similar on most of the datasets. Overall, TPOT discovered pipelines that
perform statistically significantly better than a Random Forest on 21 benchmarks,
significantly worse on 4 benchmarks, and had no statistically significant difference
on 125 benchmarks. (We determined statistical significance using a Wilcoxon rank-
sum test, where we used a conservative Bonferroni-corrected p-value threshold of <

0.000333 ( 0.05
150 ) for significance.) In Fig. 8.3, we show the distributions of accuracies

on the 25 benchmarks that had significant differences, where the benchmarks are
sorted by the difference in median accuracy between the two experiments.

Notably, the majority of TPOT’s improvements on the benchmarks are quite
large, with several ranging from 10% to 60% median accuracy improvement over
a Random Forest analysis. In contrast, the 4 benchmarks where TPOT experienced
a degradation in median accuracy ranged from only 2–5% accuracy degradation.
In some cases, TPOT’s improvements were made by discovering useful feature
preprocessors that allow the models to better classify the data,2 e.g., TPOT

2Full list: https://gist.github.com/rhiever/578cc9c686ffd873f46bca29406dde1d

https://gist.github.com/rhiever/578cc9c686ffd873f46bca29406dde1d
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Fig. 8.2 Scatter plot showing the median balanced accuracies of TPOT and a Random Forest with
500 trees on the 150 benchmark datasets. Each dot represents the accuracies on one benchmark
dataset, and the diagonal line represents the line of parity (i.e., when both algorithms achieve the
same accuracy score). Dots above the line represent datasets where TPOT performed better than
the Random Forest, and dots below the line represent datasets where Random Forests performed
better

discovered that applying a RandomizedPCA feature preprocessor prior to modeling
the “Hill_valley” benchmarks allows Random Forests to classify the dataset with
near-perfect accuracy. In other cases, TPOT’s improvements were made by applying
a different model to the benchmark, e.g., TPOT discovered that a k-nearest-neighbor
classifier with k = 10 neighbors can classify the “parity5” benchmark, whereas a
Random Forest consistently achieved 0% accuracy on the same benchmark.

When we compared TPOT to a version of TPOT that uses random search (“TPOT
Random” in Fig. 8.3), we found that random search typically discovered pipelines
that achieve comparable accuracy to pipelines discovered by TPOT, except in the
“dis” benchmark where TPOT consistently discovered better-performing pipelines.
For 17 of the presented benchmarks, none of the random search runs finished within
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Fig. 8.3 Box plots showing the distribution of balanced accuracies for the 25 benchmarks with
a significant difference in median accuracy between TPOT and a Random Forest with 500 trees.
Each box plot represents 30 replicates, the inner line shows the median, the notches represent the
bootstrapped 95% confidence interval of the median, the ends of the box represent the first and
third quartiles, and the dots represent outliers



158 R. S. Olson and J. H. Moore

24 h, which we indicated by leaving the box plot blank in Fig. 8.3. We found that
random search often generated needlessly complex pipelines for the benchmark
problems, even when a simple pipeline with a tuned model was sufficient to classify
the benchmark problem. Thus, even if random search can sometimes perform as
well as TPOT in terms of accuracy, performing a guided search for pipelines
that achieve high accuracy with as few pipeline operations as possible still offers
considerable advantages in terms of search run-time, model complexity, and model
interpretability.

8.4 Conclusions and Future Work

We benchmarked the Tree-based Pipeline Optimization Tool (TPOT) v0.3 on 150
supervised classification datasets and found that it discovers machine learning
pipelines that can outperform a basic machine learning analysis on several bench-
marks. In particular, we note that TPOT discovered these pipelines without any
domain knowledge nor human input. As such, TPOT shows considerable promise
in the automated machine learning (AutoML) domain and we will continue to refine
TPOT until it consistently discovers human-competitive machine learning pipelines.
We discuss some of these future refinements below.

First, we will explore methods to provide sensible initialization [8] for genetic
programming (GP)-based AutoML systems such as TPOT. For example, we can
use meta-learning techniques to intelligently match pipeline configurations that
may work well on the particular problem being solved [6]. In brief, meta-learning
harnesses information from previous machine learning runs to predict how well
each pipeline configuration will work on a particular dataset. To place datasets
on a standard scale, meta-learning algorithms compute meta-features from the
datasets, such as dataset size, the number of features, and various aspects about
the features, which are then used to map dataset meta-features to corresponding
pipeline configurations that may work well on datasets with those meta-features.
Such an intelligent meta-learning algorithm is likely to improve the TPOT sensible
initialization process.

Furthermore, we will attempt to characterize the ideal “shape” of a machine
learning pipeline. In auto-sklearn, [5] imposed a short and fixed pipeline structure
of a data preprocessor, a feature preprocessor, and a model. In another GP-
based AutoML system, [22] allowed the GP algorithm to design arbitrarily-shaped
pipelines and found that complex pipelines with several preprocessors and models
were useful for signal processing problems. Thus, it may be vital to allow AutoML
systems to design arbitrarily-shaped pipelines if they are to achieve human-level
competitiveness.

Finally, genetic programming (GP) optimization methods are typically criticized
for optimizing a large population of solutions, which can sometimes be slow
and wasteful for certain optimization problems. Instead, it is possible to turn
GP’s purported weakness into a strength by creating an ensemble out of the GP
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populations. Bhowan et al. [2] explored one such population ensemble method
previously with a standard GP algorithm and showed that it significantly improved
performance, and it is a natural extension to create ensembles out of TPOT’s
population of machine learning pipelines.

In conclusion, these experiments demonstrate that there is much to be gained
from taking a model-agnostic approach to machine learning and allowing the
machine to automatically discover what series of preprocessors and models work
best for a given problem domain. As such, AutoML stands to revolutionize data
science by automating some of the most tedious—yet most important—aspects of
machine learning.
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Chapter 9
The Automatic Statistician

Christian Steinruecken, Emma Smith, David Janz, James Lloyd,
and Zoubin Ghahramani

Abstract The Automatic Statistician project aims to automate data science, pro-
ducing predictions and human-readable reports from raw datasets with minimal
human intervention. Alongside basic graphs and statistics, the generated reports
contain a curation of high-level insights about the dataset that are obtained from
(1) an automated construction of models for the dataset, (2) a comparison of these
models, and (3) a software component that turns these results into natural language
descriptions. This chapter describes the common architecture of such Automatic
Statistician systems, and discusses some of the design decisions and technical
challenges.

9.1 Introduction

Machine Learning (ML) and data science are closely related fields of research, that
are focused on the development of algorithms for automated learning from data.
These algorithms also underpin many of the recent advances in artificial intelligence
(AI), which have had a tremendous impact in industry, ushering in a new golden age
of AI. However, many of the current approaches to machine learning, data science,
and AI, suffer from a set of important but related limitations.

Firstly, many of the approaches used are complicated black-boxes that are
difficult to interpret, understand, debug, and trust. This lack of interpretability
hampers the deployment of ML systems. For example, consider the major legal,
technical and ethical consequences of using an uninterpretable black-box system
that arrives at a prediction or decision related to a medical condition, a criminal
justice setting, or in a self-driving car. The realisation that black-box ML methods
are severely limited in such settings has led to major efforts to develop “explainable
AI”, and systems that offer interpretability, trust, and transparency.

C. Steinruecken (�) · E. Smith · D. Janz · J. Lloyd · Z. Ghahramani
Department of Engineering, University of Cambridge, Cambridge, UK
e-mail: tcs27@cam.ac.uk

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_9

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_9&domain=pdf
mailto:tcs27@cam.ac.uk
https://doi.org/10.1007/978-3-030-05318-5_9


162 C. Steinruecken et al.

Secondly, the development of ML systems has turned into a cottage industry
where ML experts tackle problems by hand-designing solutions that often reflect
a set of ad-hoc manual decisions, or the preferences and biases of the expert. It is
ironic that machine learning, a field dedicated to building systems that automatically
learn from data, is so dependent on human experts and manual tuning of models
and learning algorithms. Manual search over possible models and methods can
result in solutions that are sub-optimal across any number of metrics. Moreover,
the tremendous imbalance between the supply of experts and the demand for data
science and ML solutions is likely resulting in many missed opportunities for
applications that could have a major benefit for society.

The vision of the Automatic Statistician is to automate many aspects of data
analysis, model discovery, and explanation. In a sense, the goal is to develop
an AI for data science – a system that can reason about patterns in data and
explain them to the user. Ideally, given some raw data, such a system should be
able to:

• automate the process of feature selection and transformation,
• deal with the messiness of real data, including missing values, outliers, and

different types and encodings of variables,
• search over a large space of models so as to automatically discover a good model

that captures any reliable patterns in the data,
• find such a model while avoiding both overfitting and underfitting,
• explain the patterns that have been found to the user, ideally by having a

conversation with the user about the data, and
• do all of this in a manner that is efficient and robust with respect to

constraints on compute time, memory, amount of data, and other relevant
resources.

While this agenda is obviously a very ambitious one, the work to date on the
Automatic Statistician project has made progress on many of the above desiderata.
In particular, the ability to discover plausible models from data and to explain these
discoveries in plain English, is one of the distinguishing features of the Automatic
Statistician [18]. Such a feature could be useful to almost any field or endeavour that
is reliant on extracting knowledge from data.

In contrast to much of the machine learning literature that has been focused on
extracting increasing performance improvements on pattern recognition problems
(using techniques such as kernel methods, random forests, or deep learning), the
Automatic Statistician needs to build models that are composed of interpretable
components, and to have a principled way of representing uncertainty about model
structures given data. It also needs to be able to give reasonable answers not just for
big data sets, but also for small ones.
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Data Search Model

Explanation

Prediction

Checking

Language of models

Evaluation

Report

Fig. 9.1 A simplified flow diagram outlining the operation of a report-writing Automatic Statisti-
cian. Models for the data are automatically constructed (from the open-ended language of models),
and evaluated on the data. This evaluation is done in a way that allows models to be compared to
each other. The best models are then inspected to produce a report. Each model can be used to
make extrapolations or predictions from the data, and the construction blue-print of the model can
be turned into a human-readable description. For some models, it is also possible to generate model
criticism, and report on where the modelling assumptions do not match the data well

9.2 Basic Anatomy of an Automatic Statistician

At the heart of the Automatic Statistician is the idea that a good solution to the
above challenges can be obtained by working in the framework of model-based
machine learning [2, 9]. In model-based ML, the basic idea is that probabilistic
models are explanations for patterns in data, and that the probabilistic framework (or
Bayesian Occam’s razor) can be used to discover models that avoid both overfitting
and underfitting [21]. Bayesian approaches provide an elegant way of trading off
the complexity of the model and the complexity of the data, and probabilistic
models are compositional and interpretable as described previously. Moreover,
the model-based philosophy maintains that tasks such as data pre-processing and
transformation are all parts of the model and should ideally all be conducted at
once [35].

An Automatic Statistician contains the following key ingredients:

1. An open-ended language of models – expressive enough to capture real-world
phenomena, and to allow applying the techniques used by human statisticians
and data scientists.

2. A search procedure to efficiently explore the language of models.
3. A principled method of evaluating models, trading off complexity, fit to data,

and resource usage.
4. A procedure to automatically explain the models, making the assumptions of

the models explicit in a way that is simultaneously accurate and intelligible to
non-experts.

Fig. 9.1 shows a high-level overview of how these components could be used to
produce a basic version of a report-writing Automatic Statistician.

As will be discussed later in this chapter, it is possible to build Automatic
Statistician systems that exchange ingredient (4) for procedures that produce other
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desirable outputs, for example raw predictions or decisions. In such cases, the
language, search, and evaluation components may be modified appropriately to
prioritise the chosen objective.

9.2.1 Related Work

Important earlier work includes statistical expert systems [11, 37], and equation
learning [26, 27]. The Robot Scientist [16] integrates machine learning and scientific
discovery in a closed loop with an experimental platform in microbiology to
automate the design and execution of new experiments. Auto-WEKA [17, 33] and
Auto-sklearn [6] are projects that automate learning classifiers, making heavy use
of Bayesian optimisation techniques. Efforts to automate the application of machine
learning methods to data have recently gained momentum, and may ultimately result
in practical AI systems for data science.

9.3 An Automatic Statistician for Time Series Data

Automatic Statistician systems can be defined for a variety of different objectives,
and can be based on different underlying model families. We’ll start by describing
one such system, and discuss the wider taxonomy later, with notes on common
design elements and general architecture.

An early Automatic Statistician for one-dimensional regression tasks was
described by Lloyd et al. [18]. Their system, called Automatic Bayesian Covariance
Discovery (ABCD), uses an open-ended language of Gaussian process models
through a compositional grammar over kernels. A Gaussian process (GP) defines a
distribution over functions, and the parameters of the GP – its mean and its kernel –
determine the properties of the functions [25]. There is a broad choice of available
kernels that induce function distributions with particular properties; for example
distributions over functions that are linear, polynomial, periodic, or uncorrelated
noise. A pictorial overview of this system is shown in Fig. 9.2.

9.3.1 The Grammar over Kernels

As mentioned above, a grammar over GP kernels makes it possible to represent
many interesting properties of functions, and gives a systematic way of constructing
distributions over such functions. This grammar over kernels is compositional: it
comprises a set of fixed base kernels, and kernel operators that make it possible to
compose new kernels from existing ones. This grammar was carefully chosen to be
interpretable: each expression in the grammar defines a kernel that can be described
with a simple but descriptive set of words in human language.
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Fig. 9.2 A flow diagram describing a report-writing Automatic Statistician for time-series data.
(a) The input to the system is data, in this case represented as time series. (b) The system searches
over a grammar of models to discover a good interpretation of the data, using Bayesian inference
to score models. (c) Components of the model discovered are translated into English phrases. (d)
The end result is a report with text, figures and tables, describing in detail what has been inferred
about the data, including a section on model checking and criticism [8, 20]

The base kernels in the grammar are: C (constant), LIN (linear), SE (squared
exponential), PER (periodic), and WN (white noise). The kernel operators are: +
(addition), × (multiplication), and CP (a change point operator), defined as follows:

(k1 + k2)(x, x ′) = k1(x, x ′) + k2(x, x ′)

(k1 × k2)(x, x ′) = k1(x, x ′) × k2(x, x ′)

CP (k1, k2) (x, x ′) = k1(x, x ′) σ (x) σ (x ′) + k2(x, x ′) (1 − σ(x)) (1 − σ(x ′))

where σ(x) = 1
2

(
1 + tanh l−x

s

)
is a sigmoidal function, and l and s are parameters

of the change point. The base kernels can be arbitrarily combined using the above
operators to produce new kernels.

The infinite space of kernels defined by this grammar allows a large class of
interesting distributions over functions to be searched, evaluated, and described in
an automated way. This type of grammar was first described in [10] for matrix
factorization problems, and then refined in [5] and [18] for GP models.

9.3.2 The Search and Evaluation Procedure

ABCD performs a greedy search over the space of models (as defined by the
grammar). The kernel parameters of each proposed model are optimised by a
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conjugate-gradient method; the model with optimised parameters is then evaluated
using the Bayesian Information Criterion [29]:

BIC (M) = −2 log p (D | M) + |M| log N (9.1)

where M is the optimised model, p (D | M) is the marginal likelihood of
the model integrating out the latent GP function, |M| is the number of
kernel parameters in M , and N is the size of the dataset. The Bayesian
Information Criterion trades off model complexity and fit to the data, and
approximates the full marginal likelihood (which integrates out latent functions and
hyperparameters).

The best-scoring model in each round is used to construct new proposed models,
either by: (1) expanding the kernel with production rules from the grammar, such
as introducing a sum, product, or change point; or (2) mutating the kernel by
swapping out a base kernel for a different one. The new set of proposed kernels
is then evaluated in the next round. It is possible with the above rules that a kernel
expression gets proposed several times, but a well-implemented system will keep
records and only ever evaluate each expression once. The search and evaluation
procedure stops either when the score of all newly proposed models is worse than
the best model from the previous round, or when a pre-defined search depth is
exceeded.

This greedy search procedure is not guaranteed to find the best model in the
language for any given dataset: a better model might be hiding in one of the
subtrees that weren’t expanded out. Finding the globally best model isn’t usually
essential, as long as a good interpretable models is found in a reasonable amount
of time. There are other ways of conducting the search and evaluation of models.
For example, Malkomes et al. [22] describe a kernel search procedure based on
Bayesian optimisation. Janz et al. [14] implemented a kernel search method using
particle filtering and Hamiltonian Monte Carlo.

9.3.3 Generating Descriptions in Natural Language

When the search procedure terminates, it produces a list of kernel expressions
and their scores on the dataset. The expression with the best score is then used
to generate a natural-language description. To convert a kernel to a description
in natural language, the kernel is first converted to a canonical form, using the
following process:

1. Nested sums and products are flattened into a sum of products form.
2. Some products of kernels can be simplified into base kernels with modified

parameters, for example: SE × SE → SE∗, C × k → k∗ for any k, and
WN × k → WN∗ for any k ∈ {C, SE, WN, PER}.
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After applying these rules, the kernel expression is a sum of product terms, where
each product term has the following canonical form:

k ×
∏
m

LIN(m) ×
∏
n

σ (n) (9.2)

where σ (x, x ′) = σ(x) σ (x ′) is a product of two sigmoid functions, and k has one
of the following forms: 1, WN, C, SE,

∏
j PER(j), or SE ×∏

j PER(j). The notation∏
j k(j) stands for products of kernels, each with separate parameters.
In this canonical form, the kernel is a sum of products, and the number of terms in

the sum is described first: “The structure search algorithm has identified N additive
components in the data.” This sentence is then followed by a description of each
additive component (i.e. each product in the sum), using the following algorithm:

1. Choose one of the kernels in the product to be the noun descriptor. A heuristic
recommended by Lloyd et al. [18] is to pick according to the following
preference: PER > {C, SE, WN} >

∏
j LIN(j) >

∏
j σ (j), where PER is the most

preferred.
2. Convert the chosen kernel type to a string using this table:

WN “uncorrelated noise” SE “smooth function”

PER “periodic function” LIN “linear function”

C “constant”
∏

j LIN(j) “polynomial”

3. The other kernels in the product are converted to post-modifier expressions that
are appended to the noun descriptor. The post modifiers are converted using this
table:

SE “whose shape changes smoothly”

PER “modulated by a periodic function”

LIN “with linearly varying amplitude”∏
j LIN(j) “with polynomially varying amplitude”∏
j σ (j) “which applies from / until [changepoint]”

4. Further refinements to the description are possible, including insights from
kernel parameters, or extra information calculated from the data. Some of these
refinements are described in [18].

More details on the translation of kernel expressions to natural language can be
found in [18] and [19]. An example extract from a generated report is shown in
Fig. 9.3.



168 C. Steinruecken et al.
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This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Fig. 9.3 Extract from an automatically generated report that describes the model components
discovered by ABCD. This part of the report isolates and describes the approximately 11-year
sunspot cycle, also noting its disappearance during the sixteenth century, a time period known as
the Maunder minimum. (This figure is reproduced from [18])

9.3.4 Comparison with Humans

An interesting question to consider is to what extent predictions made by an
Automated Statistician (such as the ABCD algorithm) are human-like, and how they
compare to predictions made with other methods that are also based on Gaussian
processes. To answer that question, Schulz et al. [28] presented participants with the
task of extrapolating from a given set of data, and choosing a preferred extrapolation
from a given set. The results were encouraging for composite kernel search in two
ways: Firstly, the participants preferred the extrapolations made by ABCD over
those made with Spectral Kernels [36], and over those made with a simple RBF
(radial basis function) kernel. Secondly, when human participants were asked to
extrapolate the data themselves, their predictions were most similar to those given
by ABCD’s composite search procedure.

One of the design goals of a report-writing Automatic Statistician is the ability
to explain its findings in terms that are understandable by humans. The system
described earlier restricts itself to a space of models that can be explained in human
language using simple terms, even though this design choice may come at the
cost of predictive accuracy. In general, it is not straight-forward to measure the
interpretability of machine learning systems; one possible framework is suggested
by Doshi-Velez and Kim [4]. We note in passing that not all machine learning
systems require such functionality. For example, when the results of a system have
little impact on society, especially in terms of social norms and interactions, it is
acceptable to optimise for performance or accuracy instead (e.g. recognising post
codes for automatic mail sorting).
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9.4 Other Automatic Statistician Systems

The ability to generate human-readable reports is perhaps one of the distinguishing
features of Automatic Statistician systems. But, as mentioned earlier, software of
this nature can serve other purposes as well. For example, users might be interested
in raw predictions from the data (with or without explanations), or they might want
the system to make data-driven decisions directly on their behalf.

Also, it is possible to build Automatic Statistician systems for model families
that are different from Gaussian processes or grammars. For example, we built
Automated Statistician systems for regression [5, 18], classification [12, 23],
univariate and multivariate data; systems based on various different model classes,
and systems with and without intelligent resource control. This section discusses
some of the design elements that are shared across many Automatic Statistician
systems.

9.4.1 Core Components

One of the key tasks that an Automatic Statistician has to perform is to select,
evaluate, and compare models. These types of task can be run concurrently, but they
have interdependencies. For example, the evaluation of one set of models might
influence the selection of the next set of models.

Most generally, the selection strategy component in our system is responsible
for choosing models to evaluate: it might choose from a fixed or open-ended family
of models, or it might generate and refine models based on the evaluation and
comparison of previously chosen models. Sometimes, the types of the variables
in the dataset (whether inferred from the data or annotated by the user) influence
which models might be chosen by the selection strategy. For example, one might
want to distinguish continuous and discrete data, and to use different treatments for
categorical and ordinal data.

The model evaluation task trains a given model on part of the user-supplied
dataset, and then produces a score by testing the model on held-out data. Some
models do not require a separate training phase and can produce a log-likelihood for
the entire dataset directly. Model evaluation is probably one of the most important
tasks to parallelise: at any given time, multiple selected models can be evaluated
simultaneously, on multiple CPUs or even multiple computers.

The report curator component is the piece of software that decides which results
to include in the final report. For example, it might include sections that describe the
best fitting models, along with extrapolations, graphs, or data tables. Depending on
the evaluation results, the report curator might choose to include additional material,
such as data falsification/model criticism sections, recommendations, or a summary.
In some systems the deliverable might be something other than a report, such as raw
predictions, parameter settings, or model source code.
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In interactive systems, a data loading stage provides an instant summary about
the uploaded dataset, and allows the user to correct any assumptions about the
format of the data. The user can make type annotations, remove columns from the
dataset, choose an output variable (e.g. for classification), and specify the analyses
that should be run.

9.4.2 Design Challenges

9.4.2.1 User Interaction

While the aim of an Automatic Statistician is to automate all aspects of data
handling (from low-level tasks such as formatting and clean-up, to high-level tasks
such as model construction, evaluation, and criticism), it is also useful to give
users the option to interact with the system and influence the choices it makes. For
example, users might want to specify which parts or which aspects of the data they
are interested in, and which parts can be ignored. Some users might want to choose
the family of models that the system will consider in the model construction or
evaluation phase. Finally, the system may want to engage in a dialogue with the
user to explore or explain what it found in the data. Such interactivity needs to be
supported by the underlying system.

9.4.2.2 Missing and Messy Data

A common problem with real-world datasets is that they may have missing or
corrupt entries, unit or formatting inconsistencies, or other kinds of defects. These
kinds of defects may require some pre-processing of the data, and while many
decisions could be made automatically, some might benefit from interaction with
the user. Good models can handle missing data directly, and as long as the missing
data is detected correctly by the data loading stage, everything should be fine.
But there are some data models that cannot handle missing data natively. In such
cases, it might be useful to perform data imputation to feed these models a version
of the dataset that has the missing values filled in. This imputation task itself is
performed by a model that is trained on the data. Examples of such techniques
include e.g. MissForest [31], MissPaLasso [30], mice [3], KNNimpute [34], and
Bayesian approaches [1, 7].

9.4.2.3 Resource Allocation

Another important aspect of an Automatic Statistician is resource usage. For
example, a user might only have a limited number of CPU cores available, or
might be interested to get the best possible report within a fixed time limit,
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e.g. before a given deadline. To make good model selection and evaluation choices,
an intelligent system might take into account such resource constraints. The ability
to do so will affect the overall usability of the system.

Even when there are no direct constraints on computation time, CPU cores, or
memory usage, an intelligent system might benefit from allocating resources to
models whose evaluation is promising for the chosen deliverable. Such functionality
can be implemented for models that support some form of gradual evaluation, for
example by training incrementally on increasingly large subsets of the dataset. One
of our systems used a variant of Freeze-thaw Bayesian optimisation [32] for this
purpose.

9.5 Conclusion

Our society has entered an era of abundant data. Analysis and exploration of the
data is essential for harnessing the benefits of this growing resource. Unfortunately,
the growth of data currently outpaces our ability to analyse it, especially because
this task still largely rests on human experts. But many aspects of machine learning
and data analysis can be automated, and one guiding principle in pursuit of this goal
is to “apply machine learning to itself”.

The Automatic Statistician project aims to automate data science by taking care
of all aspects of data analysis, from data pre-processing, modelling and evaluation,
to the generation of useful and transparent results. All these tasks should be
performed in a way that requires little user expertise, minimises the amount of user
interaction, and makes intelligent and controlled use of computational resources.

While this aim is ambitious, and a lot of the work still needs to happen,
encouraging progress has been made towards the creation of such automated
systems. Multiple Automatic Statistician systems have been built, each with slight
differences in purpose and underlying technology, but they all share the same
intent and much of the same design philosophy. We hope that the creation of such
instruments will bring the ability to gain insights from data to a larger group of
people, and help empower society to make great use of our data resources.
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Abstract The ChaLearn AutoML Challenge (The authors are in alphabetical order
of last name, except the first author who did most of the writing and the second
author who produced most of the numerical analyses and plots.) (NIPS 2015
– ICML 2016) consisted of six rounds of a machine learning competition of
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a one-round AutoML challenge (PAKDD 2018). The AutoML setting differs from
former model selection/hyper-parameter selection challenges, such as the one we
previously organized for NIPS 2006: the participants aim to develop fully automated
and computationally efficient systems, capable of being trained and tested without
human intervention, with code submission. This chapter analyzes the results of these
competitions and provides details about the datasets, which were not revealed to the
participants. The solutions of the winners are systematically benchmarked over all
datasets of all rounds and compared with canonical machine learning algorithms
available in scikit-learn. All materials discussed in this chapter (data and code) have
been made publicly available at http://automl.chalearn.org/.

10.1 Introduction

Until about 10 years ago, machine learning (ML) was a discipline little known
to the public. For ML scientists, it was a “seller’s market”: they were producing
hosts of algorithms in search for applications and were constantly looking for new
interesting datasets. Large internet corporations accumulating massive amounts of
data such as Google, Facebook, Microsoft and Amazon have popularized the use
of ML and data science competitions have engaged a new generation of young
scientists in this wake. Nowadays, government and corporations keep identifying
new applications of ML and with the increased availability of open data, we have
switched to a “buyer’s market”: everyone seems to be in need of a learning machine.
Unfortunately however, learning machines are not yet fully automatic: it is still
difficult to figure out which software applies to which problem, how to horseshoe-fit
data into a software and how to select (hyper-)parameters properly. The ambition
of the ChaLearn AutoML challenge series is to channel the energy of the ML
community to reduce step by step the need for human intervention in applying ML
to a wide variety of practical problems.

Full automation is an unbounded problem since there can always be novel
settings, which have never been encountered before. Our first challenges AutoML1
were limited to:

• Supervised learning problems (classification and regression).
• Feature vector representations.
• Homogeneous datasets (same distribution in the training, validation, and test

set).
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• Medium size datasets of less than 200 MBytes.
• Limited computer resources with execution times of less than 20 min per

dataset on an 8 core x86_64 machine with 56 GB RAM.

We excluded unsupervised learning, active learning, transfer learning, and causal
discovery problems, which are all very dear to us and have been addressed in past
ChaLearn challenges [31], but which require each a different evaluation setting,
thus making result comparisons very difficult. We did not exclude the treatment of
video, images, text, and more generally time series and the selected datasets actually
contain several instances of such modalities. However, they were first preprocessed
in a feature representation, thus de-emphasizing feature learning. Still, learning from
data pre-processed in feature-based representations already covers a lot of grounds
and a fully automated method resolving this restricted problem would already be a
major advance in the field.

Within this constrained setting, we included a variety of difficulties:

• Different data distributions: the intrinsic/geometrical complexity of the dataset.
• Different tasks: regression, binary classification, multi-class classification,

multi-label classification.
• Different scoring metrics: AUC, BAC, MSE, F1, etc. (see Sect. 10.4.2).
• Class balance: Balanced or unbalanced class proportions.
• Sparsity: Full matrices or sparse matrices.
• Missing values: Presence or absence of missing values.
• Categorical variables: Presence or absence of categorical variables.
• Irrelevant variables: Presence or absence of additional irrelevant variables

(distractors).
• Number Ptr of training examples: Small or large number of training examples.
• Number N of variables/features: Small or large number of variables.
• Ratio Ptr/N of the training data matrix: Ptr � N,Ptr = N or Ptr � N .

In this setting, the participants had to face many modeling/hyper-parameter choices.
Some other, equally important, aspects of automating machine learning were not
addressed in this challenge and are left for future research. Those include data
“ingestion” and formatting, pre-processing and feature/representation learning,
detection and handling of skewed/biased data, inhomogeneous, drifting, multi-
modal, or multi-view data (hinging on transfer learning), matching algorithms to
problems (which may include supervised, unsupervised, or reinforcement learning,
or other settings), acquisition of new data (active learning, query learning, rein-
forcement learning, causal experimentation), management of large volumes of data
including the creation of appropriately-sized and stratified training, validation, and
test sets, selection of algorithms that satisfy arbitrary resource constraints at training
and run time, the ability to generate and reuse workflows, and generating meaningful
reports.
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This challenge series started with the NIPS 2006 “model selection game”1 [37],
where the participants were provided with a machine learning toolbox based on
the Matlab toolkit CLOP [1] built on top of the “Spider” package [69]. The toolkit
provided a flexible way of building models by combining preprocessing, feature
selection, classification and post-processing modules, also enabling the building
of ensembles of classifiers. The goal of the game was to build the best hyper-
model: the focus was on model selection, not on the development of new algorithms.
All problems were feature-based binary classification problems. Five datasets were
provided. The participants had to submit the schema of their model. The model
selection game confirmed the effectiveness of cross-validation (the winner invented
a new variant called cross-indexing) and emphasized the need to focus more on
search effectiveness with the deployment of novel search techniques such as particle
swarm optimization.

New in the 2015/2016 AutoML challenge, we introduced the notion of “task”:
each dataset was supplied with a particular scoring metric to be optimized and a
time budget. We initially intended to vary widely the time budget from dataset to
dataset in an arbitrary way. We ended up fixing it to 20 min for practical reasons
(except for Round 0 where the time budget ranged from 100 to 300 s). However,
because the datasets varied in size, this put pressure on the participants to manage
their allotted time. Other elements of novelty included the freedom of submitting
any Linux executable. This was made possible by using automatic execution on the
open-source platform Codalab.2 To help the participants we provided a starting kit
in Python based on the scikit-learn library [55].3 This induced many of them to
write a wrapper around scikit-learn. This has been the strategy of the winning entry
“auto-sklearn” [25–28].4 Following the AutoML challenge, we organized a “beat
auto-sklearn” game on a single dataset (madeline), in which the participants could
provide hyper-parameters “by hand” to try to beat auto-sklearn. But nobody could
beat auto-sklearn! Not even their designers. The participants could submit a json file
which describes a sklearn model and hyper-parameter settings, via a GUI interface.
This interface allows researchers who want to compare their search methods with
auto-sklearn to use the exact same set of hyper-models.

A large number of satellite events including bootcamps, summer schools, and
workshops have been organized in 2015/2016 around the AutoML challenge.5 The
AutoML challenge was part of the official selection of the competition program of
IJCNN 2015 and 2016 and the results were discussed at the AutoML and CiML
workshops at ICML and NIPS in 2015 and 2016. Several publications accompanied
these events: in [33] we describe the details of the design of the AutoML challenge.6

1http://clopinet.com/isabelle/Projects/NIPS2006/
2http://competitions.codalab.org
3http://scikit-learn.org/
4https://automl.github.io/auto-sklearn/stable/
5See http://automl.chalearn.org
6http://codalab.org/AutoML
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In [32] and [34] we review milestone and final results presented at the ICML 2015
and 2016 AutoML workshops. The 2015/2016 AutoML challenge had 6 rounds
introducing 5 datasets each. We also organized a follow-up event for the PAKDD
conference 20187 in only 2 phases, with 5 datasets in the development phase and 5
datasets in the final “blind test” round.

Going beyond the former published analyses, this chapter presents systematic
studies of the winning solutions on all the datasets of the challenge and conducts
comparisons with commonly used learning machines implemented in scikit-learn.
It provides unpublished details about the datasets and reflective analyses.

This chapter is in part based on material that has appeared previously [32–34, 36].
This chapter is complemented by a 46-page online appendix that can be accessed
from the book’s webpage: http://automl.org/book.

10.2 Problem Formalization and Overview

10.2.1 Scope of the Problem

This challenge series focuses on supervised learning in ML and, in particular, solv-
ing classification and regression problems, without any further human intervention,
within given constraints. To this end, we released a large number of datasets pre-
formatted in given feature representations (i.e., each example consists of a fixed
number of numerical coefficients; more in Sect. 10.3).

The distinction between input and output variables is not always made in ML
applications. For instance, in recommender systems, the problem is often stated as
making predictions of missing values for every variable rather than predicting the
values of a particular variable [58]. In unsupervised learning [30], the purpose is
to explain data in a simple and compact way, eventually involving inferred latent
variables (e.g., class membership produced by a clustering algorithm).

We consider only the strict supervised learning setting where data present them-
selves as identically and independently distributed input-output pairs. The models
used are limited to fixed-length vectorial representations, excluding problems of
time series prediction. Text, speech, and video processing tasks included in the chal-
lenge have been preprocessed into suitable fixed-length vectorial representations.

The difficulty of the proposed tasks lies in the data complexity (class imbalance,
sparsity, missing values, categorical variables). The testbed is composed of data
from a wide variety of domains. Although there exist ML toolkits that can tackle
all of these problems, it still requires considerable human effort to find, for a
given dataset, task, evaluation metric, the methods and hyper-parameter settings
that maximize performance subject to a computational constraint. The participant
challenge is to create the perfect black box that removes human interaction,
alleviating the shortage of data scientists in the coming decade.

7https://www.4paradigm.com/competition/pakdd2018

http://automl.org/book
https://www.4paradigm.com/competition/pakdd2018
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10.2.2 Full Model Selection

We refer to participant solutions as hyper-models to indicate that they are built
from simpler components. For instance, for classification problems, participants
might consider a hyper-model that combines several classification techniques such
as nearest neighbors, linear models, kernel methods, neural networks, and random
forests. More complex hyper-models may also include preprocessing, feature
construction, and feature selection modules.

Generally, a predictive model of the form y = f (x; α) has:

• a set of parameters α = [α0, α1, α2, . . . , αn];
• a learning algorithm (referred to as trainer), which serves to optimize the

parameters using training data;
• a trained model (referred to as predictor) of the form y = f (x) produced by the

trainer;
• a clear objective function J (f ), which can be used to assess the model’s

performance on test data.

Consider now the model hypothesis space defined by a vector θ =
[θ1, θ2, . . . , θn] of hyper-parameters. The hyper-parameter vector may include
not only parameters corresponding to switching between alternative models, but
also modeling choices such as preprocessing parameters, type of kernel in a kernel
method, number of units and layers in a neural network, or training algorithm
regularization parameters [59]. Some authors refer to this problem as full model
selection [24, 62], others as the CASH problem (Combined Algorithm Selection
and Hyperparameter optimization) [65]. We will denote hyper-models as

y = f (x; θ) = f (x; α(θ), θ), (10.1)

where the model parameter vector α is an implicit function of the hyper-parameter
vector θ obtained by using a trainer for a fixed value of θ , and training data
composed of input-output pairs {xi , yi}. The participants have to devise algorithms
capable of training the hyper-parameters θ . This may require intelligent sampling
of the hyper-parameter space and splitting the available training data into subsets
for both training and evaluating the predictive power of solutions—one or multiple
times.

As an optimization problem, model selection is a bi-level optimization pro-
gram [7, 18, 19]; there is a lower objective J1 to train the parameters α of the
model, and an upper objective J2 to train the hyper-parameters θ , both optimized
simultaneously (see Fig. 10.1). As a statistics problem, model selection is a problem
of multiple testing in which error bars on performance prediction ε degrade with the
number of models/hyper-parameters tried or, more generally, the complexity of the
hyper-model C2(θ). A key aspect of AutoML is to avoid overfitting the upper-level
objective J2 by regularizing it, much in the same way as lower level objectives J1
are regularized.
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Input

Output

Hyperparameters

Parameters

(a)

Hyperparameters ( )

Parameters ( )

argmin Rcv[f( . ; , )] argmin Rtr[f( . ; , )]J2 J1

(b)

Fig. 10.1 Bi-level optimization. (a) Representation of a learning machine with parameters and
hyper-parameters to be adjusted. (b) De-coupling of parameter and hyper-parameter adjustment in
two levels. The upper level objective J2 optimizes the hyper-parameters θ ; the lower objective J1
optimizes the parameters α

The problem setting also lends itself to using ensemble methods, which let
several “simple” models vote to make the final decision [15, 16, 29]. In this case,
the parameters θ may be interpreted as voting weights. For simplicity we lump all
parameters in a single vector, but more elaborate structures, such as trees or graphs
can be used to define the hyper-parameter space [66].

10.2.3 Optimization of Hyper-parameters

Everyone who has worked with data has had to face some common modeling
choices: scaling, normalization, missing value imputation, variable coding (for
categorical variables), variable discretization, degree of nonlinearity and model
architecture, among others. ML has managed to reduce the number of hyper-
parameters and produce black-boxes to perform tasks such as classification and
regression [21, 40]. Still, any real-world problem requires at least some preparation
of the data before it can be fitted into an “automatic” method, hence requiring some
modeling choices. There has been much progress on end-to-end automated ML for
more complex tasks such as text, image, video, and speech processing with deep-
learning methods [6]. However, even these methods have many modeling choices
and hyper-parameters.

While producing models for a diverse range of applications has been a focus
of the ML community, little effort has been devoted to the optimization of hyper-
parameters. Common practices that include trial and error and grid search may lead
to overfitting models for small datasets or underfitting models for large datasets.
By overfitting we mean producing models that perform well on training data but
perform poorly on unseen data, i.e., models that do not generalize. By underfitting
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we mean selecting too simple a model, which does not capture the complexity of
the data, and hence performs poorly both on training and test data. Despite well-
optimized off-the-shelf algorithms for optimizing parameters, end-users are still
responsible for organizing their numerical experiments to identify the best of a
number of models under consideration. Due to lack of time and resources, they
often perform model/hyper-parameter selection with ad hoc techniques. Ioannidis
and Langford [42, 47] examine fundamental, common mistakes such as poor con-
struction of training/test splits, inappropriate model complexity, hyper-parameter
selection using test sets, misuse of computational resources, and misleading test
metrics, which may invalidate an entire study. Participants must avoid these flaws
and devise systems that can be blind-tested.

An additional twist of our problem setting is that code is tested with limited
computational resources. That is, for each task an arbitrary limit on execution time
is fixed and a maximum amount of memory is provided. This places a constraint on
the participant to produce a solution in a given time, and hence to optimize the model
search from a computational point of view. In summary, participants have to jointly
address the problem of over-fitting/under-fitting and the problem of efficient search
for an optimal solution, as stated in [43]. In practice, the computational constraints
have turned out to be far more challenging to challenge participants than the problem
of overfitting. Thus the main contributions have been to devise novel efficient search
techniques with cutting-edge optimization methods.

10.2.4 Strategies of Model Search

Most practitioners use heuristics such as grid search or uniform sampling to sample
θ space, and use k-fold cross-validation as the upper-level objective J2 [20]. In

000

100 010 001

110 101 011

111

(a) Filter

100

000

010 001

110 101 011

111

(b) Wrapper

000

100 010 001

110 101 011

111

(c) Embedded

Fig. 10.2 Approaches to two-level inference. (a) Filter methods select the hyper-parameters
without adjusting the learner parameters. (No arrows indicates no parameter training.) (b)
Wrapper methods select the hyper-parameters using trained learners, treating them as black-
boxes. (c) Embedded methods use knowledge of the learner structure and/or parameters to guide
the hyper-parameter search
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this framework, the optimization of θ is not performed sequentially [8]. All the
parameters are sampled along a regular scheme, usually in linear or log scale. This
leads to a number of possibilities that exponentially increases with the dimension
of θ . k-fold cross-validation consists of splitting the dataset into k folds; (k − 1)

folds are used for training and the remaining fold is used for testing; eventually, the
average of the test scores obtained on the k folds is reported. Note that some ML
toolkits currently support cross-validation. There is a lack of principled guidelines
to determine the number of grid points and the value of k (with the exception of
[20]), and there is no guidance for regularizing J2, yet this simple method is a good
baseline approach.

Efforts have been made to optimize continuous hyper-parameters with bilevel
optimization methods, using either the k-fold cross-validation estimator [7, 50]
or the leave-one-out estimator as the upper-level objective J2. The leave-one-out
estimator may be efficiently computed, in closed form, as a by-product of training
only one predictor on all the training examples (e.g., virtual-leave-one-out [38]).
The method was improved by adding a regularization of J2 [17]. Gradient descent
has been used to accelerate the search, by making a local quadratic approximation
of J2 [44]. In some cases, the full J2(θ) can be computed from a few key examples
[39, 54]. Other approaches minimize an approximation or an upper bound of the
leave-one-out error, instead of its exact form [53, 68]. Nevertheless, these methods
are still limited to specific models and continuous hyper-parameters.

An early attempt at full model selection was the pattern search method that uses
k-fold cross-validation for J2. It explores the hyper-parameter space by steps of the
same magnitude, and when no change in any parameter further decreases J2, the
step size is halved and the process repeated until the steps are deemed sufficiently
small [49]. Escalante et al. [24] addressed the full model selection problem using
Particle Swarm Optimization, which optimizes a problem by having a population
of candidate solutions (particles), and moving these particles around the hyper-
parameter space using the particle’s position and velocity. k-fold cross-validation is
also used for J2. This approach retrieved the winning model in ∼76% of the cases.
Overfitting was controlled heuristically with early stopping and the proportion of
training and validation data was not optimized. Although progress has been made
in experimental design to reduce the risk of overfitting [42, 47], in particular by
splitting data in a principled way [61], to our knowledge, no one has addressed the
problem of optimally splitting data.

While regularizing the second level of inference is a recent addition to the
frequentist ML community, it has been an intrinsic part of Bayesian modeling
via the notion of hyper-prior. Some methods of multi-level optimization combine
importance sampling and Monte-Carlo Markov Chains [2]. The field of Bayesian
hyper-parameter optimization has rapidly developed and yielded promising results,
in particular by using Gaussian processes to model generalization performance [60,
63]. But Tree-structured Parzen Estimator (TPE) approaches modeling P(x|y) and
P(y) rather than modeling P(y|x) directly [9, 10] have been found to outperform
GP-based Bayesian optimization for structured optimization problems with many
hyperparameters including discrete ones [23]. The central idea of these methods is
to fit J2(θ) to a smooth function in an attempt to reduce variance and to estimate the
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variance in regions of the hyper-parameter space that are under-sampled to guide
the search towards regions of high variance. These methods are inspirational and
some of the ideas can be adopted in the frequentist setting. For instance, the random-
forest-based SMAC algorithm [41], which has helped speed up both local search and
tree search algorithms by orders of magnitude on certain instance distributions, has
also been found to be very effective for the hyper-parameter optimization of machine
learning algorithms, scaling better to high dimensions and discrete input dimensions
than other algorithms [23]. We also notice that Bayesian optimization methods are
often combined with other techniques such as meta-learning and ensemble methods
[25] in order to gain advantage in some challenge settings with a time limit [32].
Some of these methods consider jointly the two-level optimization and take time
cost as a critical guidance for hyper-parameter search [45, 64].

Besides Bayesian optimization, several other families of approaches exist in the
literature and have gained much attention with the recent rise of deep learning.
Ideas borrowed from reinforcement learning have recently been used to construct
optimal neural network architectures [4, 70]. These approaches formulate the hyper-
parameter optimization problem in a reinforcement learning flavor, with for example
states being the actual hyper-parameter setting (e.g., network architecture), actions
being adding or deleting a module (e.g., a CNN layer or a pooling layer), and reward
being the validation accuracy. They can then apply off-the-shelf reinforcement
learning algorithms (e.g., RENFORCE, Q-learning, Monte-Carlo Tree Search) to
solve the problem. Other architecture search methods use evolutionary algorithms
[3, 57]. These approaches consider a set (population) of hyper-parameter settings
(individuals), modify (mutate and reproduce) and eliminate unpromising settings
according to their cross-validation score (fitness). After several generations, the
global quality of the population increases. One important common point of rein-
forcement learning and evolutionary algorithms is that they both deal with the
exploration-exploitation trade-off. Despite the impressive results, these approaches
require a huge amount of computational resources and some (especially evolution-
ary algorithms) are hard to scale. Pham et al. [56] recently proposed weight sharing
among child models to speed up the process considerably [70] while achieving
comparable results.

Note that splitting the problem of parameter fitting into two levels can be
extended to more levels, at the expense of extra complexity—i.e., need for a hier-
archy of data splits to perform multiple or nested cross-validation [22], insufficient
data to train and validate at the different levels, and increase of the computational
load.

Table 10.1 shows a typical example of multi-level parameter optimization in a
frequentist setting. We assume that we are using an ML toolbox with two learning
machines: Kridge (kernel ridge regression) and Neural (a neural network a.k.a.
“deep learning” model). At the top level we use a test procedure to assess the
performance of the final model (this is not an inference level). The top-level
inference algorithm Validation({GridCV(Kridge, MSE), GridCV(Neural, MSE)},
MSE) is decomposed into its elements recursively. Validation uses the data split
D = [DT r,DV a] to compare the learning machines Kridge and Neural (trained
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Table 10.1 Typical example of multi-level inference algorithm. The top-level algorithm Vali-
dation({GridCV(Kridge, MSE), GridCV(Neural, MSE)}, MSE) is decomposed into its elements
recursively. Calling the method “train” on it using data DT rV a results in a function f , then tested
with test(f,MSE,DT e). The notation [.]CV indicates that results are averages over multiple data
splits (cross-validation). NA means “not applicable”. A model family F of parameters α and
hyper-parameters θ is represented as f(θ ,α). We derogate to the usual convention of putting
hyper-parameters last, the hyper-parameters are listed in decreasing order of inference level. F ,
thought of as a bottom level algorithm, does not perform any training: train(f(θ ,α)) just returns
the function f (x; θ,α)

Parameters

Level Algorithm Fixed Varying Optimization performed Data split

NA f All All Performance assessment
(no inference)

DT e

4 Validation None All Final algorithm
selection using
validation data

D = [DT r,DV a ]

3 GridCV Model index i θ, γ,α 10-fold CV on regularly
sampled values of θ

DT r = [Dtr ,Dva ]CV

2 Kridge(θ )

Neural(θ )

i, θ γ,α Virtual LOO CV to
select regularization
parameter γ

Dtr = [D\{d}
tr , d]CV

1 Kridge(θ , γ )

Neural(θ , γ )

i, θ, γ α Matrix inversion of
gradient descent to
compute α

Dtr

0 Kridge(θ , γ,α)

Neural(θ , γ,α)

All None NA NA

using DT r on the validation set DV a , using the mean-square error) (MSE) evaluation
function. The algorithm GridCV, a grid search with 10-fold cross-validation (CV)
MSE evaluation function, then optimizes the hyper-parameters θ . Internally, both
Kridge and Neural use virtual leave-one-out (LOO) cross-validation to adjust γ and
a classical L2 regularized risk functional to adjust α.

Borrowing from the conventional classification of feature selection methods
[11, 38, 46], model search strategies can be categorized into filters, wrappers,
and embedded methods (see Fig. 10.2). Filters are methods for narrowing down
the model space, without training the learner. Such methods include prepro-
cessing, feature construction, kernel design, architecture design, choice of prior
or regularizers, choice of noise model, and filter methods for feature selection.
Although some filters use training data, many incorporate human prior knowledge
of the task or knowledge compiled from previous tasks. Recently, [5] proposed to
apply collaborative filtering methods to model search. Wrapper methods consider
learners as a black-box capable of learning from examples and making predictions
once trained. They operate with a search algorithm in the hyper-parameter space
(grid search or stochastic search) and an evaluation function assessing the trained
learner’s performance (cross-validation error or Bayesian evidence). Embedded
methods are similar to wrappers, but they exploit the knowledge of the machine
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learning algorithm to make the search more efficient. For instance, some embedded
methods compute the leave-one-out solution in a closed form, without leaving
anything out, i.e., by performing a single model training on all the training data (e.g.,
[38]). Other embedded methods jointly optimize parameters and hyper-parameters
[44, 50, 51].

In summary, many authors focus only on the efficiency of search, ignoring the
problem of overfitting the second level objective J2, which is often chosen to be
k-fold cross-validation with an arbitrary value for k. Bayesian methods introduce
techniques of overfitting avoidance via the notion of hyper-priors, but at the expense
of making assumptions on how the data were generated and without providing
guarantees of performance. In all the prior approaches to full model selection
we know of, there is no attempt to treat the problem as the optimization of a
regularized functional J2 with respect to both (1) modeling choices and (2) data
split. Much remains to be done to jointly address statistical and computational
issues. The AutoML challenge series offers benchmarks to compare and contrast
methods addressing these problems, free of the inventor/evaluator bias.

10.3 Data

We gathered a first pool of 70 datasets during the summer 2014 with the help
of numerous collaborators and ended up selecting 30 datasets for the 2015/2016
challenge (see Table 10.2 and the online appendix), chosen to illustrate a wide
variety of domains of applications: biology and medicine, ecology, energy and
sustainability management, image, text, audio, speech, video and other sensor data
processing, internet social media management and advertising, market analysis and
financial prediction. We preprocessed data to obtain feature representations (i.e.,
each example consists of a fixed number of numerical coefficients). Text, speech,
and video processing tasks were included in the challenge, but not in their native
variable-length representations.

For the 2018 challenge, three datasets from the first pool (but unused in the first
challenge) were selected and seven new datasets collected by the new organizers
and sponsors were added (see Table 10.3 and the online appendix).

Some datasets were obtained from public sources, but they were reformatted
into new representations to conceal their identity, except for the final round of the
2015/2016 challenge and the final phase of the 2018 challenge, which included
completely new data.

In the 2015/2016 challenge, data difficulty progressively increased from round
to round. Round 0 introduced five (public) datasets from previous challenges
illustrating the various difficulties encountered in subsequent rounds:

Novice Binary classification problems only. No missing data; no categorical
features; moderate number of features (<2,000); balanced classes. Challenge
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Table 10.3 Datasets of the 2018 AutoML challenge. All tasks are binary classification problems.
The metric is the AUC for all tasks. The time budget is also the same for all datasets (1200 s). Phase
1 was the development phase and phase 2 the final “blind test” phase

Phase DATASET Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

1 1 ADA 1 0.67 0 0 0 41,471 415 4147 48 86.39
1 2 ARCENE 0.22 0.54 0 0 0 700 100 100 10,000 0.01
1 3 GINA 1 0.03 0.31 0 0 31,532 315 3153 970 3.25
1 4 GUILLERMO 0.33 0.53 0 0 0 5000 5000 20,000 4296 4.65
1 5 RL 0.10 0 0.11 1 0 24,803 0 31,406 22 1427.5
2 1 PM 0.01 0 0.11 1 0 20,000 0 29,964 89 224.71
2 2 RH 0.04 0.41 0 1 0 28,544 0 31,498 76 414.44
2 3 RI 0.02 0.09 0.26 1 0 26,744 0 30,562 113 270.46
2 4 RICCARDO 0.67 0.51 0 0 0 5000 5000 20,000 4296 4.65
2 5 RM 0.001 0 0.11 1 0 26,961 0 28,278 89 317.73

lies in dealing with sparse and full matrices, presence of irrelevant variables, and
various P tr/N .

Intermediate Binary and multi-class classification problems. Challenge lies in
dealing with unbalanced classes, number of classes, missing values, categorical
variables, and up to 7,000 features.

Advanced Binary, multi-class, and multi-label classification problems. Challenge
lies in dealing with up to 300,000 features.

Expert Classification and regression problems. Challenge lies in dealing with the
entire range of data complexity.

Master Classification and regression problems of all difficulties. Challenge lies
in learning from completely new datasets.

The datasets of the 2018 challenge were all binary classification problems.
Validation partitions were not used because of the design of this challenge, even
when they were available for some tasks. The three reused datasets had similar
difficulty as those of rounds 1 and 2 of the 2015/2016 challenge. However, the seven
new data sets introduced difficulties that were not present in the former challenge.
Most notably an extreme class imbalance, presence of categorical features and a
temporal dependency among instances that could be exploited by participants to
develop their methods.8 The datasets from both challenges are downloadable from
http://automl.chalearn.org/data.

10.4 Challenge Protocol

In this section, we describe design choices we made to ensure the thoroughness and
fairness of the evaluation. As previously indicated, we focus on supervised learning
tasks (classification and regression problems), without any human intervention,

8In RL, PM, RH, RI and RM datasets instances were chronologically sorted, this information was
made available to participants and could be used for developing their methods.

http://automl.chalearn.org/data
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within given time and computer resource constraints (Sect. 10.4.1), and given a
particular metric (Sect. 10.4.2), which varies from dataset to dataset. During the
challenges, the identity and description of the datasets is concealed (except in the
very first round or phase where sample data is distributed) to avoid the use of domain
knowledge and to push participants to design fully automated ML solutions. In the
2015/2016 AutoML challenge, the datasets were introduced in a series of rounds
(Sect. 10.4.3), alternating periods of code development (Tweakathon phases) and
blind tests of code without human intervention (AutoML phases). Either results or
code could be submitted during development phases, but code had to be submitted
to be part of the AutoML “blind test” ranking. In the 2018 edition of the AutoML
challenge, the protocol was simplified. We had only one round in two phases: a
development phase in which 5 datasets were released for practice purposes, and a
final “blind test” phase with 5 new datasets that were never used before.

10.4.1 Time Budget and Computational Resources

The Codalab platform provides computational resources shared by all participants.
We used up to 10 compute workers processing in parallel the queue of submissions
made by participants. Each compute worker was equipped with 8 cores x86_64.
Memory was increased from 24 to 56 GB after round 3 of the 2015/2016
AutoML challenge. For the 2018 AutoML challenge computing resources were
reduced, as we wanted to motivate the development of more efficient yet effective
AutoML solutions. We used 6 compute workers processing in parallel the queue of
submissions. Each compute worker was equipped with 2 cores x86_64 and 8 GB of
memory.

To ensure fairness, when a code submission was evaluated, a compute worker
was dedicated to processing that submission only, and its execution time was limited
to a given time budget (which may vary from dataset to dataset). The time budget
was provided to the participants with each dataset in its info file. It was generally set
to 1200 s (20 min) per dataset, for practical reasons, except in the first phase of the
first round. However, the participants did not know this ahead of time and therefore
their code had to be capable to manage a given time budget. The participants who
submitted results instead of code were not constrained by the time budget since
their code was run on their own platform. This was potentially advantageous for
entries counting towards the Final phases (immediately following a Tweakathon).
Participants wishing to also enter the AutoML (blind testing) phases, which required
submitting code, could submit both results and code (simultaneously). When results
were submitted, they were used as entries in the on-going phase. They did not need
to be produced by the submitted code; i.e., if a participant did not want to share
personal code, he/she could submit the sample code provided by the organizers
together with his/her results. The code was automatically forwarded to the AutoML
phases for “blind testing”. In AutoML phases, result submission was not possible.
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The participants were encouraged to save and submit intermediate results so we
could draw learning curves. This was not exploited during the challenge. But we
study learning curves in this chapter to evaluate the capabilities of algorithms to
quickly attain good performances.

10.4.2 Scoring Metrics

The scores are computed by comparing submitted predictions to reference target
values. For each sample i, i = 1 : P (where P is the size of the validation set or
of the test set), the target value is a continuous numeric coefficient yi for regression
problems, a binary indicator in {0, 1} for two-class problems, or a vector of binary
indicators [yil] in {0, 1} for multi-class or multi-label classification problems (one
per class l). The participants had to submit prediction values matching as closely
as possible the target values, in the form of a continuous numeric coefficient qi for
regression problems and a vector of numeric coefficients [qil] in the range [0, 1] for
multi-class or multi-label classification problems (one per class l).

The provided starting kit contains an implementation in Python of all scoring
metrics used to evaluate the entries. Each dataset has its own scoring criterion
specified in its info file. All scores are normalized such that the expected value
of the score for a random prediction, based on class prior probabilities, is 0
and the optimal score is 1. Multi-label problems are treated as multiple binary
classification problems and are evaluated using the average of the scores of each
binary classification subproblem.

We first define the notation 〈·〉 for the average over all samples P indexed by i.
That is,

〈yi〉 = (1/P )

P∑
i=1

(yi). (10.2)

The score metrics are defined as follows:

R2 The coefficient of determination is used for regression problems only. The
metric is based on the mean squared error (MSE) and the variance (VAR), and
computed as

R2 = 1 − MSE/VAR, (10.3)

where MSE = 〈(yi − qi)
2〉 and VAR = 〈(yi − m)2〉, with m = 〈yi〉.

ABS This coefficient is similar to R2 but based on the mean absolute error (MAE)
and the mean absolute deviation (MAD), and computed as

ABS = 1 − MAE/MAD, (10.4)
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where MAE = 〈abs(yi − qi)〉 and MAD = 〈abs(yi − m)〉.
BAC Balanced accuracy is the average of class-wise accuracy for classification
problems—and the average of sensitivity (true positive rate) and specificity (true
negative rate) for binary classification:

BAC =

⎧⎪⎨
⎪⎩

1
2 [TP

P + TN
N ], for binary

1
C

C∑
i=1

TPi

Ni
, for multi-class

(10.5)

where P (N) is the number of positive (negative) examples, TP (TN) is the number
of well classified positive (negative) examples, C is the number of classes, TPi is
the number of well classified examples of class i and Ni the number of examples of
class i.

For binary classification problems, the class-wise accuracy is the fraction of
correct class predictions when qi is thresholded at 0.5, for each class. For multi-
label problems, the class-wise accuracy is averaged over all classes. For multi-class
problems, the predictions are binarized by selecting the class with maximum
prediction value arg maxl qil before computing the class-wise accuracy.

We normalize the metric as follows:

|BAC| = (BAC − R)/(1 − R), (10.6)

where R is the expected value of BAC for random predictions (i.e., R = 0.5 for
binary classification and R = (1/C) for C-class problems).

AUC The area under the ROC curve is used for ranking and binary classification
problems. The ROC curve is the curve of sensitivity vs. 1-specificity at various
prediction thresholds. The AUC and BAC values are the same for binary predictions.
The AUC is calculated for each class separately before averaging over all classes.
We normalize the metric as

|AUC| = 2AUC − 1. (10.7)

F1 score The harmonic mean of precision and recall is computed as

F1 = 2 ∗ (precision ∗ recall)/(precision + recall), (10.8)

precision = true positive/(true positive + false positive) (10.9)

recall = true positive/(true positive + false negative) (10.10)

Prediction thresholding and class averaging is handled similarly as in BAC. We
normalize the metric as follows:
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|F1| = (F1 − R)/(1 − R), (10.11)

where R is the expected value of F1 for random predictions (see BAC).

PAC Probabilistic accuracy is based on the cross-entropy (or log loss) and com-
puted as

PAC = exp(−CE), (10.12)

CE =

⎧⎪⎪⎨
⎪⎪⎩

average
∑

l log(qil), for multi-class

−〈yi log(qi),

+(1 − yi) log(1 − qi)〉, for binary and multi-label

(10.13)

Class averaging is performed after taking the exponential in the multi-label case.
We normalize the metric as follows:

|PAC| = (PAC − R)/(1 − R), (10.14)

where R is the score obtained using qi = 〈yi〉 or qil = 〈yil〉 (i.e., using as predictions
the fraction of positive class examples, as an estimate of the prior probability).

Note that the normalization of R2, ABS, and PAC uses the average target value
qi = 〈yi〉 or qil = 〈yil〉. In contrast, the normalization of BAC, AUC, and F1 uses a
random prediction of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other metrics
for completeness by replacing the target values with binary values after thresholding
them in the mid-range.

10.4.3 Rounds and Phases in the 2015/2016 Challenge

The 2015/2016 challenge was run in multiple phases grouped in six rounds. Round
0 (Preparation) was a practice round using publicly available datasets. It was
followed by five rounds of progressive difficulty (Novice, Intermediate, Advanced,
Expert, and Master). Except for rounds 0 and 5, all rounds included three phases
that alternated AutoML and Tweakathons contests. These phases are described in
Table 10.4.

Submissions were made in Tweakathon phases only. The results of the latest
submission were shown on the leaderboard and such submission automatically
migrated to the following phase. In this way, the code of participants who abandoned
before the end of the challenge had a chance to be tested in subsequent rounds and
phases. New participants could enter at any time. Prizes were awarded in phases
marked with a * during which there was no submission. To participate in phase
AutoML[n], code had to be submitted in Tweakathon[n-1].
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Table 10.4 Phases of round n in the 2015/2016 challenge. For each dataset, one labeled training
set is provided and two unlabeled sets (validation set and test set) are provided for testing

Phase in round
[n] Goal Duration Submissions Data

Leader-board
scores Prizes

* AutoML[n] Blind Short NONE New datasets, Test Yes
test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

* Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

In order to encourage participants to try GPUs and deep learning, a GPU track
sponsored by NVIDIA was included in Round 4.

To participate in the Final[n], code or results had to be submitted in
Tweakathon[n]. If both code and (well-formatted) results were submitted, the
results were used for scoring rather than rerunning the code in Tweakathon[n]
and Final[n]. The code was executed when results were unavailable or not well
formatted. Thus, there was no disadvantage in submitting both results and code. If
a participant submitted both results and code, different methods could be used to
enter the Tweakathon/Final phases and the AutoML phases. Submissions were made
only during Tweakathons, with a maximum of five submissions per day. Immediate
feedback was provided on the leaderboard on validation data. The participants were
ranked on the basis of test performance during the Final and AutoML phases.

We provided baseline software using the ML library scikit-learn [55]. It uses
ensemble methods, which improve over time by adding more base learners. Other
than the number of base learners, the default hyper-parameter settings were used.
The participants were not obliged to use the Python language nor the main Python
script we gave as an example. However, most participants found it convenient to
use the main python script, which managed the sparse format, the any-time learning
settings and the scoring metrics. Many limited themselves to search for the best
model in the scikit-learn library. This shows the importance of providing a good
starting kit, but also the danger of biasing results towards particular solutions.

10.4.4 Phases in the 2018 Challenge

The 2015/2016 AutoML challenge was very long and few teams participated in
all rounds. Further, even though there was no obligation to participate in previous
rounds to enter new rounds, new potential participants felt they would be at a
disadvantage. Hence, we believe it is preferable to organize recurrent yearly events,
each with their own workshop and publication opportunity. This provides a good
balance between competition and collaboration.



196 I. Guyon et al.

In 2018, we organized a single round of AutoML competition in two phases. In
this simplified protocol, the participants could practice on five datasets during the
first (development) phase, by either submitting code or results. Their performances
were revealed immediately, as they became available, on the leaderboard.

The last submission of the development phase was automatically forwarded to
the second phase: the AutoML “blind test” phase. In this second phase, which was
the only one counting towards the prizes, the participants’ code was automatically
evaluated on five new datasets on the Codalab platform. The datasets were not
revealed to the participants. Hence, submissions that did not include code capable of
being trained and tested automatically were not ranked in the final phase and could
not compete towards the prizes.

We provided the same starting kit as in the AutoML 2015/2016 challenge, but
the participants also had access to the code of the winners of the previous challenge.

10.5 Results

This section provides a brief description of the results obtained during both
challenges, explains the methods used by the participants and their elements of
novelty, and provides the analysis of post-challenge experiments conducted to
answer specific questions on the effectiveness of model search techniques.

10.5.1 Scores Obtained in the 2015/2016 Challenge

The 2015/2016 challenge lasted 18 months (December 8, 2014 to May 1, 2016). By
the end of the challenge, practical solutions were obtained and open-sourced, such
as the solution of the winners [25].

Table 10.5 presents the results on the test set in the AutoML phases (blind testing)
and the Final phases (one time testing on the test set revealed at the end of the
Tweakathon phases). Ties were broken by giving preference to the participant who
submitted first. The table only reports the results of the top-ranking participants.
We also show in Fig. 10.3a comparison of the leaderboard performances of all
participants. We plot in Fig. 10.3a the Tweakathon performances on the final test
set vs. those on the validation set, which reveals no significant overfitting to the
validation set, except for a few outliers. In Fig. 10.3b we report the performance in
AutoML result (blind testing) vs. Tweakathon final test results (manual adjustments
possible). We see that many entries were made in phase 1 (binary classification) and
then participation declined as the tasks became harder. Some participants put a lot of
effort in Tweakathons and far exceeded their AutoML performances (e.g. Djajetic
and AAD Freiburg).

There is still room for improvement by manual tweaking and/or additional com-
putational resources, as revealed by the significant differences remaining between
Tweakathon and AutoML (blind testing) results (Table 10.5 and Fig. 10.3b). In



10 Analysis of the AutoML Challenge Series 2015–2018 197

Table 10.5 Results of the 2015/2016 challenge winners. < R > is the average rank over all five
data sets of the round and it was used to rank the participants. < S > is the average score over the
five data sets of the round. UP is the percent increase in performance between the average perfor-
mance of the winners in the AutoML phase and the Final phase of the same round. The GPU track
was run in round 4. Team names are abbreviated as follows: aad aad_freiburg, djaj djajetic, marc
marc.boulle, tadej tadejs, abhi abhishek4, ideal ideal.intel.analytics, mat matthias.vonrohr, lisheng
lise_sun, asml amsl.intel.com, jlr44 backstreet.bayes, post postech.mlg_exbrain, ref reference

AutoML Final
Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)

1. ideal 1.40 0.8159
0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA

3. aad 4.00 0.7714
1. aad 2.80 0.6401 1. aad 2.20 0.7479

1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15
3. tadej 4.20 0.6456 3. amsl 4.60 0.7158
1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180

2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35
3. mat 4.40 0.3449 3. aad 3.20 0.4977
1. djaj 2.40 0.0901 1. aad 1.80 0.8071

3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481
3. NA NA NA 3. ideal 3.80 0.7547
1. aad 2.20 0.3881 1. aad 1.60 0.5238

4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31
3. marc 2.60 0.3815 3. abhi 5.40 0.4911

G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

Fig. 10.3 Performances of all participants in the 2015/2016 challenge. We show the last entry
of all participants in all phases of the 2015/2016 challenge on all datasets from the competition
leaderboards. The symbols are color coded by round, as in Table 10.5. (a) Overfitting in
Tweakathons? We plot the performance on the final test set vs. the performance on the validation
set. The validation performances were visible to the participants on the leaderboard while they
were tuning their models. The final test set performances were only revealed at the end of the
Tweakathon. Except for a few outliers, most participants did not overfit the leaderboard. (b)
Gap between AutoML and Tweakathons? We plot the Tweakathons vs. AutoML performance
to visualize improvements obtained by manual tweaking and additional computational resources
available in Tweakathons. Points above the diagonal indicate such improvements
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Round 3, all but one participant failed to turn in working solutions during blind
testing, because of the introduction of sparse datasets. Fortunately, the participants
recovered, and, by the end of the challenge, several submissions were capable of
returning solutions on all the datasets of the challenge. But learning schemas can
still be optimized because, even discarding Round 3, there is a 15–35% performance
gap between AutoML phases (blind testing with computational constraints) and
Tweakathon phases (human intervention and additional compute power). The GPU
track offered (in round 4 only) a platform for trying Deep Learning methods.
This allowed the participants to demonstrate that, given additional compute power,
deep learning methods were competitive with the best solutions of the CPU track.
However, no Deep Learning method was competitive with the limited compute
power and time budget offered in the CPU track.

10.5.2 Scores Obtained in the 2018 Challenge

The 2018 challenge lasted 4 months (November 30, 2017 to March 31, 2018). As
in the previous challenge, top-ranked solutions were obtained and open sourced.
Table 10.6 shows the results of both phases of the 2018 challenge. As a reminder,
this challenge had a feedback phase and a blind test phase, the performances of the
winners in each phase are reported.

Performance in this challenge was slightly lower than that observed in the
previous edition. This was due to the difficulty of the tasks (see below) and the fact
that data sets in the feedback phase included three deceiving datasets (associated to
tasks from previous challenges, but not necessarily similar to the data sets used in
the blind test phase) out of five. We decided to proceed this way to emulate a realistic
AutoML setting. Although harder, several teams succeeded at returning submissions
performing better than chance.

The winner of the challenge was the same team that won the 2015/2016 AutoML
challenge: AAD Freiburg [28]. The 2018 challenge helped to incrementally improve
the solution devised by this team in the previous challenge. Interestingly, the second-
placed team in the challenge proposed a solution that is similar in spirit to that of
the winning team. For this challenge, there was a triple tie in the third place, prizes

Table 10.6 Results of the 2018 challenge winners. Each phase was run on five different datasets.
We show the winners of the AutoML (blind test) phase and for comparison their performances in
the Feedback phase. The full tables can be found at https://competitions.codalab.org/competitions/
17767

2. AutoML phase 1. Feedback phase
Ended Winners < R > < S > Ended Performance < R > < S >

1. aad freiburg 2.80 0.4341 aad freiburg 9.0 0.7422
2. narnars0 3.80 0.4180 narnars0 4.40 0.7324

03/31/18 3. wlWangl 5.40 0.3857 03/12/18 wlWangl 4.40 0.8029
3. thanhdng 5.40 0.3874 thanhdng 14.0 0.6845
3. Malik 5.40 0.3863 Malik 13.8 0.7116

https://competitions.codalab.org/competitions/17767
https://competitions.codalab.org/competitions/17767
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Fig. 10.4 Distribution of performance on the datasets of the 2015/2016 challenge (violin
plots). We show for each dataset the performances of participants at the end of AutoML and
Tweakathon phases, as revealed on the leaderboard. The median and quartiles are represented by
horizontal notches. The distribution profile (as fitted with a kernel method) and its mirror image
are represented vertically by the gray shaded area. We show in red the median performance over
all datasets and the corresponding quartiles. (a) AutoML (blind testing). The first 5 datasets were
provided for development purpose only and were not used for blind testing in an AutoML phase.
In round 3, the code of many participants failed because of computational limits. (b) Tweakathon
(manual tweaking). The last five datasets were only used for final blind testing and the data were
never revealed for a Tweakathon. Round 3 was not particularly difficult with additional compute
power and memory

were split among the tied teams. Among the winners, two teams used the starting
kit. Most of the other teams used either the starting kit or the solution open sourced
by the AAD Freiburg team in the 2015/2016 challenge.

10.5.3 Difficulty of Datasets/Tasks

In this section, we assess dataset difficulty, or rather task difficulty since the par-
ticipants had to solve prediction problems for given datasets, performance metrics,
and computational time constraints. The tasks of the challenge presented a variety
of difficulties, but those were not equally represented (Tables 10.2 and 10.3):

• Categorical variables and missing data. Few datasets had categorical variables
in the 2015/2016 challenge (ADULT, ALBERT, and WALDO), and not very
many variables were categorical in those datasets. Likewise, very few datasets
had missing values (ADULT and ALBERT) and those included only a few
missing values. So neither categorical variables nor missing data presented a
real difficulty in this challenge, though ALBERT turned out to be one of the
most difficult datasets because it was also one of the largest ones. This situation
changed drastically for the 2018 challenge where five out of the ten datasets
included categorical variables (RL, PM, RI, RH and RM) and missing values
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Fig. 10.5 Difficulty of tasks in the 2015/2016 challenge. We consider two indicators of task
difficulty (dataset, metric, and time budget are factored into the task): intrinsic difficulty (estimated
by the performance of the winners) and modeling difficulty (difference between the performance
of the winner and a baseline method, here Selective Naive Bayes (SNB)). The best tasks should
have a relatively low intrinsic difficulty and a high modeling difficulty to separate participants well

(GINA, PM, RL, RI and RM). These were among the main aspects that caused
the low performance of most methods in the blind test phase.

• Large number of classes. Only one dataset had a large number of classes
(DIONIS with 355 classes). This dataset turned out to be difficult for participants,
particularly because it is also large and has unbalanced classes. However, datasets
with large number of classes are not well represented in this challenge. HELENA,
which has the second largest number of classes (100 classes), did not stand out
as a particularly difficult dataset. However, in general, multi-class problems were
found to be more difficult than binary classification problems.

• Regression. We had only four regression problems: CADATA, FLORA,
YOLANDA, PABLO.

• Sparse data. A significant number of datasets had sparse data (DOROTHEA,
FABERT, ALEXIS, WALLIS, GRIGORIS, EVITA, FLORA, TANIA, ARTURO,
MARCO). Several of them turned out to be difficult, particularly ALEXIS,
WALLIS, and GRIGORIS, which are large datasets in sparse format, which
cause memory problems when they were introduced in round 3 of the 2015/2016
challenge. We later increased the amount of memory on the servers and similar
datasets introduced in later phases caused less difficulty.

• Large datasets. We expected the ratio of the number N of features over the
number Ptr of training examples to be a particular difficulty (because of the risk
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Fig. 10.6 Modeling Difficulty vs. intrinsic difficulty. For the AutoML phases of the 2015/2016
challenge, we plot an indicator of modeling difficulty vs. and indicator of intrinsic difficulty
of datasets (leaderboard highest score). (a) Modeling difficulty is estimated by the score of the
best untuned model (over KNN, NaiveBayes, RandomForest and SGD (LINEAR)). (b) Modeling
difficulty is estimated by the score of the Selective Naive Bayes (SNB) model. In all cases,
higher scores are better and negative/NaN scores are replaced by zero. The horizontal and vertical
separation lines represent the medians. The lower right quadrant represents the datasets with low
intrinsic difficulty and high modeling difficulty: those are the best datasets for benchmarking
purposes

Fig. 10.7 Meta-features most predictive of dataset intrinsic difficulty (2015/2016 challenge
data). Meta-feature GINI importances are computed by a random forest regressor, trained to
predict the highest participant leaderboard score using meta-features of datasets. Description of
these meta-features can be found in Table 1 of the supplementary material of [25]. Blue and red
colors respectively correspond to positive and negative correlations (Pearson correlations between
meta features and score medians)
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of overfitting), but modern machine learning algorithm are robust against over-
fitting. The main difficulty was rather the PRODUCT N ∗ Ptr . Most participants
attempted to load the entire dataset in memory and convert sparse matrices into
full matrices. This took very long and then caused loss in performances or pro-
gram failures. Large datasets with N ∗Ptr > 20.106 include ALBERT, ALEXIS,
DIONIS, GRIGORIS, WALLIS, EVITA, FLORA, TANIA, MARCO, GINA,
GUILLERMO, PM, RH, RI, RICCARDO, RM. Those overlap significantly with
the datasets with sparse data (in bold). For the 2018 challenge, all data sets in
the final phase exceeded this threshold, and this was the reason of why the code
from several teams failed to finish within the time budget. Only ALBERT and
DIONIS were “truly” large (few features, but over 400,000 training examples).

• Presence of probes: Some datasets had a certain proportion of distractor
features or irrelevant variables (probes). Those were obtained by randomly
permuting the values of real features. Two-third of the datasets contained
probes ADULT, CADATA, DIGITS, DOROTHEA, CHRISTINE, JASMINE,
MADELINE, PHILIPPINE, SYLVINE, ALBERT, DILBERT, FABERT, JAN-
NIS, EVITA, FLORA, YOLANDA, ARTURO, CARLO, PABLO, WALDO.
This allowed us in part to make datasets that were in the public domain less
recognizable.

• Type of metric: We used six metrics, as defined in Sect. 10.4.2. The distribution
of tasks in which they were used was not uniform: BAC (11), AUC (6), F1 (3),
and PAC (6) for classification, and R2 (2) and ABS (2) for regression. This is
because not all metrics lend themselves naturally to all types of applications.

• Time budget: Although in round 0 we experimented with giving different time
budgets for the various datasets, we ended up assigning 1200 s (20 min) to all
datasets in all other rounds. Because the datasets varied in size, this put more
constraints on large datasets.

• Class imbalance: This was not a difficulty found in the 2015/2016 datasets.
However, extreme class imbalance was the main difficulty for the 2018 edition.
Imbalance ratios lower or equal to 1–10 were present in RL, PM, RH, RI, and
RM datasets, in the latter data set class imbalance was as extreme as 1–1000.
This was the reason why the performance of teams was low.

Fig. 10.4 gives a first view of dataset/task difficulty for the 2015/2016 challenge.
It captures, in a schematic way, the distribution of the participants’ performance in
all rounds on test data, in both AutoML and Tweakathon phases. One can see that the
median performance over all datasets improves between AutoML and Tweakathon,
as can be expected. Correspondingly, the average spread in performance (quartile)
decreases. Let us take a closer look at the AutoML phases: The “accident” of
round 3 in which many methods failed in blind testing is visible (introduction of
sparse matrices and larger datasets).9 Round 2 (multi-class classification) appears to
have also introduced a significantly higher degree of difficulty than round 1 (binary

9Examples of sparse datasets were provided in round 0, but they were of smaller size.
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classification). In round 4, two regression problems were introduced (FLORA and
YOLANDA), but it does not seem that regression was found significantly harder
than multiclass classification. In round 5 no novelty was introduced. We can observe
that, after round 3, the dataset median scores are scattered around the overall
median. Looking at the corresponding scores in the Tweakathon phases, one can
remark that, once the participants recovered from their surprise, round 3 was not
particularly difficult for them. Rounds 2 and 4 were comparatively more difficult.

For the datasets used in the 2018 challenge, the tasks’ difficulty was clearly
associated with extreme class imbalance, inclusion of categorical variables and high
dimensionality in terms of N ×Ptr . However, for the 2015/2016 challenge data sets
we found that it was generally difficult to guess what makes a task easy or hard,
except for dataset size, which pushed participants to the frontier of the hardware
capabilities and forced them to improve the computational efficiency of their
methods. Binary classification problems (and multi-label problems) are intrinsically
“easier” than multiclass problems, for which “guessing” has a lower probability of
success. This partially explains the higher median performance in rounds 1 and 3,
which are dominated by binary and multi-label classification problems. There is not
a large enough number of datasets illustrating each type of other difficulties to draw
other conclusions.

We ventured however to try to find summary statistics capturing overall takes
difficulty. If one assumes that data are generated from an i.i.d.10 process of the type:

y = F(x, noise)

where y is the target value, x is the input feature vector, F is a function, and noise is
some random noise drawn from an unknown distribution, then the difficulty of the
learning problem can be separated in two aspects:

1. Intrinsic difficulty, linked to the amount of noise or the signal to noise ratio.
Given an infinite amount of data and an unbiased learning machine F̂ capable
of identifying F , the prediction performances cannot exceed a given maximum
value, corresponding to F̂ = F .

2. Modeling difficulty, linked to the bias and variance of estimators F̂ , in
connection with the limited amount of training data and limited computational
resources, and the possibly large number or parameters and hyper-parameters to
estimate.

Evaluating the intrinsic difficulty is impossible unless we know F . Our best
approximation of F is the winners’ solution. We use therefore the winners’
performance as an estimator of the best achievable performance. This estimator
may have both bias and variance: it is possibly biased because the winners may be
under-fitting training data; it may have variance because of the limited amount of

10Independently and Identically Distributed samples.
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test data. Under-fitting is difficult to test. Its symptoms may be that the variance or
the entropy of the predictions is less than those of the target values.

Evaluating the modeling difficulty is also impossible unless we know F and
the model class. In the absence of knowledge on the model class, data scientists
often use generic predictive models, agnostic with respect to the data generating
process. Such models range from very basic models that are highly biased towards
“simplicity” and smoothness of predictions (e.g., regularized linear models) to
highly versatile unbiased models that can learn any function given enough data
(e.g., ensembles of decision trees). To indirectly assess modeling difficulty, we
resorted to use the difference in performance between the method of the challenge
winner and that of (a) the best of four “untuned” basic models (taken from classical
techniques provided in the scikit-learn library [55] with default hyper-parameters)
or (b) Selective Naive Bayes (SNB) [12, 13], a highly regularized model (biased
towards simplicity), providing a very robust and simple baseline.

Figs. 10.5 and 10.6 give representations of our estimates of intrinsic and
modeling difficulties for the 2015/2016 challenge datasets. It can be seen that
the datasets of round 0 were among the easiest (except perhaps NEWSGROUP).
Those were relatively small (and well-known) datasets. Surprisingly, the datasets
of round 3 were also rather easy, despite the fact that most participants failed on
them when they were introduced (largely because of memory limitations: scikit-
learn algorithms were not optimized for sparse datasets and it was not possible to fit
in memory the data matrix converted to a dense matrix). Two datasets have a small
intrinsic difficulty but a large modeling difficulty: MADELINE and DILBERT.
MADELINE is an artificial dataset that is very non-linear (clusters or 2 classes
positioned on the vertices of a hyper-cube in a 5 dimensional space) and therefore
very difficult for Naïve Bayes. DILBERT is an image recognition dataset with
images of objects rotated in all sorts of positions, also very difficult for Naïve Bayes.
The datasets of the last 2 phases seem to have a large intrinsic difficulty compared
to the modeling difficulty. But this can be deceiving because the datasets are new to
the machine learning community and the performances of the winners may still be
far from the best attainable performance.

We attempted to predict the intrinsic difficulty (as measured by the winners’
performance) from the set of meta features used by AAD Freiburg for meta-
learning [25], which are part of OpenML [67], using a Random Forest classifier
and ranked the meta features in order of importance (most selected by RF). The list
of meta features is provided in the online appendix. The three meta-features that
predict dataset difficulty best (Fig. 10.7) are:

• LandmarkDecisionTree: performance of a decision tree classifier.
• Landmark1NN: performance of a nearest neighbor classifier.
• SkewnessMin: min over skewness of all features. Skewness measures the

symmetry of a distribution. A positive skewness value means that there is more
weight in the left tail of the distribution.
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10.5.4 Hyper-parameter Optimization

Many participants used the scikit-learn (sklearn) package, including the winning
group AAD Freiburg, which produced the auto-sklearn software. We used the
auto-sklearn API to conduct post-challenge systematic studies of the effectiveness
of hyper-parameter optimization. We compared the performances obtained with
default hyper-parameter settings in scikit-learn and with hyper-parameters opti-
mized with auto-sklearn,11 both within the time budgets as imposed during the
challenge, for four “representative” basic methods: k-nearest neighbors (KNN),
naive Bayes (NB), Random Forest (RF), and a linear model trained with stochastic
gradient descent (SGD-linear12). The results are shown in Fig. 10.8. We see that
hyper-parameter optimization usually improves performance, but not always. The
advantage of hyper-parameter tuning comes mostly from its flexibility of switching
the optimization metric to the one imposed by the task and from finding hyper-
parameters that work well given the current dataset and metric. However, in some
cases it was not possible to perform hyper-parameter optimization within the time
budget due to the data set size (score ≤ 0). Thus, there remains future work on how

Fig. 10.8 Hyper-parameter tuning (2015/2016 challenge data). We compare the performances
obtained with default hyper-parameters and those with hyper-parameters optimized with auto-
sklearn, within the same time budgets as given during the challenge. The performances of
predictors which failed to return results in the allotted time are replaced by zero. Note that returning
a prediction of chance level also resulted in a score of zero

11We use sklearn 0.16.1 and auto-sklearn 0.4.0 to mimic the challenge environment.
12We set the loss of SGD to be ‘log’ in scikit-learn for these experiments.
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to perform thorough hyper-parameter tuning given rigid time constraints and huge
datasets (Fig. 10.8).

We also compared the performances obtained with different scoring metrics
(Fig. 10.9). Basic methods do not give a choice of metrics to be optimized, but auto-
sklearn post-fitted the metrics of the challenge tasks. Consequently, when “common
metrics” (BAC and R2) are used, the method of the challenge winners, which is not
optimized for BAC/R2, does not usually outperform basic methods. Conversely,
when the metrics of the challenge are used, there is often a clear gap between the
basic methods and the winners, but not always (RF-auto usually shows a comparable
performance, sometimes even outperforms the winners).

10.5.5 Meta-learning

One question is whether meta-learning [14] is possible, that is learning to predict
whether a given classifier will perform well on future datasets (without actually
training it), based on its past performances on other datasets. We investigated
whether it is possible to predict which basic method will perform best based on the
meta-learning features of auto-sklearn (see the online appendix). We removed the
“Landmark” features from the set of meta features because those are performances
of basic predictors (albeit rather poor ones with many missing values), which would
lead to a form of “data leakage”.

We used four basic predictors:

Fig. 10.9 Comparison of metrics (2015/2016 challenge). (a) We used the metrics of the
challenge. (b) We used the normalized balanced accuracy for all classification problems and the R2

metric for regression problems. By comparing the two figures, we can see that the winner remains
top-ranking in most cases, regardless of the metric. There is no basic method that dominates all
others. Although RF-auto (Random Forest with optimized HP) is very strong, it is sometimes
outperformed by other methods. Plain linear model SGD-def sometimes wins when common
metrics are used, but the winners perform better with the metrics of the challenge. Overall, the
technique of the winners proved to be effective
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Fig. 10.10 Linear discriminant analysis. (a) Dataset scatter plot in principal axes. We have
trained a LDA using X = meta features, except landmarks; y = which model won of four basic
models (NB, SGD-linear, KNN, RF). The performance of the basic models is measured using
the common metrics. The models were trained with default hyper-parameters. In the space of
the two first LDA components, each point represents one dataset. The colors denote the winning
basic models. The opacity reflects the scores of the corresponding winning model (more opaque is
better). (b) Meta feature importances computed as scaling factors of each LDA component
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• NB: Naive Bayes
• SGD-linear: Linear model (trained with stochastic gradient descent)
• KNN: K-nearest neighbors
• RF: Random Forest

We used the implementation of the scikit-learn library with default hyper-parameter
settings. In Fig. 10.10, we show the two first Linear Discriminant Analysis (LDA)
components, when training an LDA classifier on the meta-features to predict which
basic classifier will perform best. The methods separate into three distinct clusters,
one of them grouping the non-linear methods that are poorly separated (KNN and
RF) and the two others being NB and linear-SGD.

The features that are most predictive all have to do with “ClassProbability”
and “PercentageOfMissingValues”, indicating that the class imbalance and/or large
number of classes (in a multi-class problem) and the percentage of missing values
might be important, but there is a high chance of overfitting as indicated by an
unstable ranking of the best features under resampling of the training data.

10.5.6 Methods Used in the Challenges

A brief description of methods used in both challenges is provided in the online
appendix, together with the results of a survey on methods that we conducted after
the challenges. In light of the overview of Sect. 10.2 and the results presented in
the previous section, we may wonder whether a dominant methodology for solving
the AutoML problem has emerged and whether particular technical solutions were
widely adopted. In this section we call “model space” the set of all models under
consideration. We call “basic models” (also called elsewhere “simple models”,
“individual models”, “base learners”) the member of a library of models from which
our hyper-models of model ensembles are built.

Ensembling: dealing with over-fitting and any-time learning Ensembling is the
big AutoML challenge series winner since it is used by over 80% of the participants
and by all the top-ranking ones. While a few years ago the hottest issue in model
selection and hyper-parameter optimization was over-fitting, in present days the
problem seems to have been largely avoided by using ensembling techniques. In
the 2015/2016 challenge, we varied the ratio of number of training examples over
number of variables (P tr/N) by several orders of magnitude. Five datasets had
a ratio P tr/N lower than one (dorothea, newsgroup, grigoris, wallis, and flora),
which is a case lending itself particularly to over-fitting. Although P tr/N is the
most predictive variable of the median performance of the participants, there is no
indication that the datasets with P tr/N < 1 were particularly difficult for the partic-
ipants (Fig. 10.5). Ensembles of predictors have the additional benefit of addressing
in a simple way the “any-time learning” problem by growing progressively a bigger
ensemble of predictors, improving performance over time. All trained predictors are
usually incorporated in the ensemble. For instance, if cross-validation is used, the
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predictors of all folds are directly incorporated in the ensemble, which saves the
computational time of retraining a single model on the best HP selected and may
yield more robust solutions (though slightly more biased due to the smaller sample
size). The approaches differ in the way they weigh the contributions of the various
predictors. Some methods use the same weight for all predictors (this is the case
of bagging methods such as Random Forest and of Bayesian methods that sample
predictors according to their posterior probability in model space). Some methods
assess the weights of the predictors as part of learning (this is the case of boosting
methods, for instance). One simple and effective method to create ensembles of
heterogeneous models was proposed by [16]. It was used successfully in several
past challenges, e.g., [52] and is the method implemented by the aad_f reibug

team, one of the strongest participants in both challenges [25]. The method consists
in cycling several times over all trained model and incorporating in the ensemble
at each cycle the model which most improves the performance of the ensemble.
Models vote with weight 1, but they can be incorporated multiple times, which
de facto results in weighting them. This method permits to recompute very fast the
weights of the models if cross-validated predictions are saved. Moreover, the method
allows optimizing the ensemble for any metric by post-fitting the predictions of the
ensemble to the desired metric (an aspect which was important in this challenge).

Model evaluation: cross-validation or simple validation Evaluating the pre-
dictive accuracy of models is a critical and necessary building block of any
model selection of ensembling method. Model selection criteria computed from
the predictive accuracy of basic models evaluated from training data, by training
a single time on all the training data (possibly at the expense of minor additional
calculations), such as performance bounds, were not used at all, as was already the
case in previous challenges we organized [35]. Cross-validation was widely used,
particularly K-fold cross-validation. However, basic models were often “cheaply”
evaluated on just one fold to allow quickly discarding non-promising areas of model
space. This is a technique used more and more frequently to help speed up search.
Another speed-up strategy is to train on a subset of the training examples and
monitor the learning curve. The “freeze-thaw” strategy [64] halts training of models
that do not look promising on the basis of the learning curve, but may restart training
them at a later point. This was used, e.g., by [48] in the 2015/2016 challenge.

Model space: Homogeneous vs. heterogeneous An unsettled question is whether
one should search a large or small model space. The challenge did not allow us
to give a definite answer to this question. Most participants opted for searching a
relatively large model space, including a wide variety of models found in the scikit-
learn library. Yet, one of the strongest entrants (the Intel team) submitted results
simply obtained with a boosted decision tree (i.e., consisting of a homogeneous set
of weak learners/basic models). Clearly, it suffices to use just one machine learning
approach that is a universal approximator to be able to learn anything, given enough
training data. So why include several? It is a question of rate of convergence: how
fast we climb the learning curve. Including stronger basic models is one way to
climb the learning curve faster. Our post-challenge experiments (Fig. 10.9) reveal
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that the scikit-learn version of Random Forest (an ensemble of homogeneous basic
models—decision trees) does not usually perform as well as the winners’ version,
hinting that there is a lot of know-how in the Intel solution, which is also based on
ensembles of decision tree, that is not captured by a basic ensemble of decision trees
such as RF. We hope that more principled research will be conducted on this topic
in the future.

Search strategies: Filter, wrapper, and embedded methods With the availability
of powerful machine learning toolkits like scikit-learn (on which the starting kit
was based), the temptation is great to implement all-wrapper methods to solve
the CASH (or “full model selection”) problem. Indeed, most participants went that
route. Although a number of ways of optimizing hyper-parameters with embedded
methods for several basic classifiers have been published [35], they each require
changing the implementation of the basic methods, which is time-consuming and
error-prone compared to using already debugged and well-optimized library version
of the methods. Hence practitioners are reluctant to invest development time in
the implementation of embedded methods. A notable exception is the software of
marc.boulle, which offers a self-contained hyper-parameter free solution based on
Naive Bayes, which includes re-coding of variables (grouping or discretization) and
variable selection. See the online appendix.

Multi-level optimization Another interesting issue is whether multiple levels of
hyper-parameters should be considered for reasons of computational effectiveness
or overfitting avoidance. In the Bayesian setting, for instance, it is quite feasible
to consider a hierarchy of parameters/hyper-parameters and several levels of
priors/hyper-priors. However, it seems that for practical computational reasons,
in the AutoML challenges, the participants use a shallow organization of hyper-
parameter space and avoid nested cross-validation loops.

Time management: Exploration vs. exploitation tradeoff With a tight time
budget, efficient search strategies must be put into place to monitor the explo-
ration/exploitation tradeoff. To compare strategies, we show in the online appendix
learning curves for two top ranking participants who adopted very different
methods: Abhishek and aad_freiburg. The former uses heuristic methods based on
prior human experience while the latter initializes search with models predicted
to be best suited by meta-learning, then performs Bayesian optimization of hyper-
parameters. Abhishek seems to often start with a better solution but explores less
effectively. In contrast, aad_freiburg starts lower but often ends up with a better
solution. Some elements of randomness in the search are useful to arrive at better
solutions.

Preprocessing and feature selection The datasets had intrinsic difficulties that
could be in part addressed by preprocessing or special modifications of algorithms:
sparsity, missing values, categorical variables, and irrelevant variables. Yet it
appears that among the top-ranking participants, preprocessing has not been a
focus of attention. They relied on the simple heuristics provided in the starting kit:
replacing missing values by the median and adding a missingness indicator variable,
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one-hot-encoding of categorical variables. Simple normalizations were used. The
irrelevant variables were ignored by 2/3 of the participants and no use of feature
selection was made by top-ranking participants. The methods used that involve
ensembling seem to be intrinsically robust against irrelevant variables. More details
from the fact sheets are found in the online appendix.

Unsupervised learning Despite the recent regain of interest in unsupervised
learning spurred by the Deep Learning community, in the AutoML challenge series,
unsupervised learning is not widely used, except for the use of classical space
dimensionality reduction techniques such as ICA and PCA. See the online appendix
for more details.

Transfer learning and meta learning To our knowledge, only aad_freiburg relied
on meta-learning to initialize their hyper-parameter search. To that end, they used
datasets of OpenML.13 The number of datasets released and the diversity of tasks
did not allow the participants to perform effective transfer learning or meta learning.

Deep learning The type of computations resources available in AutoML phases
ruled out the use of Deep Learning, except in the GPU track. However, even in
that track, the Deep Learning methods did not come out ahead. One exception is
aad_freiburg, who used Deep Learning in Tweakathon rounds three and four and
found it to be helpful for the datasets Alexis, Tania and Yolanda.

Task and metric optimization There were four types of tasks (regression, binary
classification, multi-class classification, and multi-label classification) and six
scoring metrics (R2, ABS, BAC, AUC, F1, and PAC). Moreover, class balance and
number of classes varied a lot for classification problems. Moderate effort has been
put into designing methods optimizing specific metrics. Rather, generic methods
were used and the outputs post-fitted to the target metrics by cross-validation or
through the ensembling method.

Engineering One of the big lessons of the AutoML challenge series is that most
methods fail to return results in all cases, not a “good” result, but “any” reasonable
result. Reasons for failure include “out of time” and “out of memory” or various
other failures (e.g., numerical instabilities). We are still very far from having “basic
models” that run on all datasets. One of the strengths of auto-sklearn is to ignore
those models that fail and generally find at least one that returns a result.

Parallelism The computers made available had several cores, so in principle, the
participants could make use of parallelism. One common strategy was just to
rely on numerical libraries that internally use such parallelism automatically. The
aad_freiburg team used the different cores to launch in parallel model search for
different datasets (since each round included five datasets). These different uses of
computational resources are visible in the learning curves (see the online appendix).

13https://www.openml.org/

https://www.openml.org/
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10.6 Discussion

We briefly summarize the main questions we asked ourselves and the main
findings:

1. Was the provided time budget sufficient to complete the tasks of the
challenge? We drew learning curves as a function of time for the winning
solution of aad_f reiburg (auto-sklearn, see the online appendix). This revealed
that for most datasets, performances still improved well beyond the time limit
imposed by the organizers. Although for about half the datasets the improvement
is modest (no more that 20% of the score obtained at the end of the imposed
time limit), for some datasets the improvement was very large (more than 2× the
original score). The improvements are usually gradual, but sudden performance
improvements occur. For instance, for Wallis, the score doubled suddenly at 3×
the time limit imposed in the challenge. As also noted by the authors of the auto-
sklearn package [25], it has a slow start but in the long run gets performances
close to the best method.

2. Are there tasks that were significantly more difficult than others for the
participants? Yes, there was a very wide range of difficulties for the tasks
as revealed by the dispersion of the participants in terms of average (median)
and variability (third quartile) of their scores. Madeline, a synthetic dataset
featuring a very non-linear task, was very difficult for many participants. Other
difficulties that caused failures to return a solution included large memory
requirements (particularly for methods that attempted to convert sparse matrices
to full matrices), and short time budgets for datasets with large number of training
examples and/or features or with many classes or labels.

3. Are there meta-features of datasets and methods providing useful insight to
recommend certain methods for certain types of datasets? The aad_freiburg
team used a subset of 53 meta-features (a superset of the simple statistics
provided with the challenge datasets) to measure similarity between datasets.
This allowed them to conduct hyper-parameter search more effectively by
initializing the search with settings identical to those selected for similar datasets
previously processed (a form of meta-learning). Our own analysis revealed
that it is very difficult to predict the predictors’ performances from the meta-
features, but it is possible to predict relatively accurately which “basic method”
will perform best. With LDA, we could visualize how datasets recoup in two
dimensions and show a clean separation between datasets “preferring” Naive
Bayes, linear SGD, or KNN, or RF. This deserves further investigation.

4. Does hyper-parameter optimization really improve performance over using
default values? The comparison we conducted reveals that optimizing hyper-
parameters rather than choosing default values for a set of four basic predictive
models (K-nearest neighbors, Random Forests, linear SGD, and Naive Bayes) is
generally beneficial. In the majority of cases (but not always), hyper-parameter
optimization (hyper-opt) results in better performances than default values.



10 Analysis of the AutoML Challenge Series 2015–2018 213

Hyper-opt sometimes fails because of time or memory limitations, which gives
room for improvement.

5. How do winner’s solutions compare with basic scikit-learn models? They
compare favorably. For example, the results of basic models whose parameters
have been optimized do not yield generally as good results as running auto-
sklearn. However, a basic model with default HP sometimes outperforms this
same model tuned by auto-sklearn.

10.7 Conclusion

We have analyzed the results of several rounds of AutoML challenges.
Our design of the first AutoML challenge (2015/2016) was satisfactory in many

respects. In particular, we attracted a large number of participants (over 600),
attained results that are statistically significant, and advanced the state of the art
to automate machine learning. Publicly available libraries have emerged as a result
of this endeavor, including auto-sklearn.

In particular, we designed a benchmark with a large number of diverse datasets,
with large enough test sets to separate top-ranking participants. It is difficult
to anticipate the size of the test sets needed, because the error bars depend on
the performances attained by the participants, so we are pleased that we made
reasonable guesses. Our simple rule-of-thumb “N = 50/E” where N is the number of
test samples and E the error rate of the smallest class seems to be widely applicable.
We made sure that the datasets were neither too easy nor too hard. This is important
to be able to separate participants. To quantify this, we introduced the notion of
“intrinsic difficulty” and “modeling difficulty”. Intrinsic difficulty can be quantified
by the performance of the best method (as a surrogate for the best attainable
performance, i.e., the Bayes rate for classification problems). Modeling difficulty
can be quantified by the spread in performance between methods. Our best problems
have relatively low “intrinsic difficulty” and high “modeling difficulty”. However,
the diversity of the 30 datasets of our first 2015/2016 challenge is both a feature and
a curse: it allows us to test the robustness of software across a variety of situations,
but it makes meta-learning very difficult, if not impossible. Consequently, external
meta-learning data must be used if meta-learning is to be explored. This was the
strategy adopted by the AAD Freiburg team, which used the OpenML data for meta
training. Likewise, we attached different metrics to each dataset. This contributed
to making the tasks more realistic and more difficult, but also made meta-learning
harder. In the second 2018 challenge, we diminished the variety of datasets and used
a single metric.

With respect to task design, we learned that the devil is in the details. The
challenge participants solve exactly the task proposed to the point that their solution
may not be adaptable to seemingly similar scenarios. In the case of the AutoML
challenge, we pondered whether the metric of the challenge should be the area under
the learning curve or one point on the learning curve (the performance obtained after
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a fixed maximum computational time elapsed). We ended up favoring the second
solution for practical reasons. Examining after the challenge the learning curves
of some participants, it is quite clear that the two problems are radically different,
particularly with respect to strategies mitigating “exploration” and “exploitation”.
This prompted us to think about the differences between “fixed time” learning (the
participants know in advance the time limit and are judged only on the solution
delivered at the end of that time) and “any time learning” (the participants can
be stopped at any time and asked to return a solution). Both scenarios are useful:
the first one is practical when models must be delivered continuously at a rapid
pace, e.g. for marketing applications; the second one is practical in environments
when computational resources are unreliable and interruption may be expected (e.g.
people working remotely via an unreliable connection). This will influence the
design of future challenges.

The two versions of AutoML challenge we have run differ in the difficulty of
transfer learning. In the 2015/2016 challenge, round 0 introduced a sample of all
types of data and difficulties (types of targets, sparse data or not, missing data or
not, categorical variables of not, more examples than features or not). Then each
round ramped up difficulty. The datasets of round 0 were relatively easy. Then at
each round, the code of the participants was blind-tested on data that were one
notch harder than in the previous round. Hence transfer was quite hard. In the 2018
challenge, we had 2 phases, each with 5 datasets of similar difficulty and the datasets
of the first phase were each matched with one corresponding dataset on a similar
task. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods, we provided code that ended
up being the basis of the solution of the majority of participants (with notable
exceptions from industry such as Intel and Orange who used their own “in
house” packages). Thus, we can question whether the software provided biased the
approaches taken. Indeed, all participants used some form of ensemble learning,
similarly to the strategy used in the starting kit. However, it can be argued that this
is a “natural” strategy for this problem. But, in general, the question of providing
enough starting material to the participants without biasing the challenge in a
particular direction remains a delicate issue.

From the point of view of challenge protocol design, we learned that it is
difficult to keep teams focused for an extended period of time and go through
many challenge phases. We attained a large number of participants (over 600) over
the whole course of the AutoML challenge, which lasted over a year (2015/2016)
and was punctuated by several events (such as hackathons). However, it may be
preferable to organize yearly events punctuated by workshops. This is a natural way
of balancing competition and cooperation since workshops are a place of exchange.
Participants are naturally rewarded by the recognition they gain via the system of
scientific publications. As a confirmation of this conjecture, the second instance
of the AutoML challenge (2017/2018) lasting only 4 months attracted nearly 300
participants.

One important novelty of our challenge design was code submission. Having
the code of the participants executed on the same platform under rigorously similar
conditions is a great step towards fairness and reproducibility, as well as ensuring the
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viability of solution from the computational point of view. We required the winners
to release their code under an open source licence to win their prizes. This was
good enough an incentive to obtain several software publications as the “product”
of the challenges we organized. In our second challenge (AutoML 2018), we used
Docker. Distributing Docker images makes it possible for anyone downloading
the code of the participants to easily reproduce the results without stumbling over
installation problems due to inconsistencies in computer environments and libraries.
Still the hardware may be different and we find that, in post-challenge evaluations,
changing computers may yield significant differences in results. Hopefully, with the
proliferation of affordable cloud computing, this will become less of an issue.

The AutoML challenge series is only beginning. Several new avenues are under
study. For instance, we are preparing the NIPS 2018 Life Long Machine Learning
challenge in which participants will be exposed to data whose distribution slowly
drifts over time. We are also looking at a challenge of automated machine learning
where we will focus on transfer from similar domains.

Acknowledgements Microsoft supported the organization of this challenge and donated the
prizes and cloud computing time on Azure. This project received additional support from the
Laboratoire d’Informatique Fondamentale (LIF, UMR CNRS 7279) of the University of Aix
Marseille, France, via the LabeX Archimede program, the Laboratoire de Recheche en Informa-
tique of Paris Sud University, and INRIA-Saclay as part of the TIMCO project, as well as the
support from the Paris-Saclay Center for Data Science (CDS). Additional computer resources were
provided generously by J. Buhmann, ETH Zürich. This work has been partially supported by the
Spanish project TIN2016-74946-P (MINECO/FEDER, UE) and CERCA Programme/Generalitat
de Catalunya. The datasets released were selected among 72 datasets that were donated (or
formatted using data publicly available) by the co-authors and by: Y. Aphinyanaphongs, O.
Chapelle, Z. Iftikhar Malhi, V. Lemaire, C.-J. Lin, M. Madani, G. Stolovitzky, H.-J. Thiesen, and
I. Tsamardinos. Many people provided feedback to early designs of the protocol and/or tested
the challenge platform, including: K. Bennett, C. Capponi, G. Cawley, R. Caruana, G. Dror, T.
K. Ho, B. Kégl, H. Larochelle, V. Lemaire, C.-J. Lin, V. Ponce López, N. Macia, S. Mercer, F.
Popescu, D. Silver, S. Treguer, and I. Tsamardinos. The software developers who contributed to the
implementation of the Codalab platform and the sample code include E. Camichael, I. Chaabane,
I. Judson, C. Poulain, P. Liang, A. Pesah, L. Romaszko, X. Baro Solé, E. Watson, F. Zhingri,
M. Zyskowski. Some initial analyses of the challenge results were performed by I. Chaabane,
J. Lloyd, N. Macia, and A. Thakur were incorporated in this paper. Katharina Eggensperger,
Syed Mohsin Ali and Matthias Feurer helped with the organization of the Beat AutoSKLearn
challenge. Matthias Feurer also contributed to the simulations of running auto-sklearn on 2015–
2016 challenge datasets.

Bibliography

1. Alamdari, A.R.S.A., Guyon, I.: Quick start guide for CLOP. Tech. rep., Graz University of
Technology and Clopinet (May 2006)

2. Andrieu, C., Freitas, N.D., Doucet, A.: Sequential MCMC for Bayesian model selection. In:
IEEE Signal Processing Workshop on Higher-Order Statistics. pp. 130–134 (1999)

3. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: Deep evolutionary network
structured representation. arXiv preprint arXiv:1801.01563 (2018)



216 I. Guyon et al.

4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

5. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: 30th
International Conference on Machine Learning. vol. 28, pp. 199–207. JMLR Workshop and
Conference Proceedings (May 2013)

6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828 (2013)

7. Bennett, K.P., Kunapuli, G., Jing Hu, J.S.P.: Bilevel optimization and machine learning. In:
Computational Intelligence: Research Frontiers, Lecture Notes in Computer Science, vol.
5050, pp. 25–47. Springer (2008)

8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine
Learning Research 13(Feb), 281–305 (2012)

9. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter opti-
mization in hundreds of dimensions for vision architectures. In: 30th International Conference
on Machine Learning. vol. 28, pp. 115–123 (2013)

10. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimiza-
tion. In: Advances in Neural Information Processing Systems. pp. 2546–2554 (2011)

11. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.
Artificial Intelligence 97(1–2), 273–324 (December 1997)

12. Boullé, M.: Compression-based averaging of selective naive bayes classifiers. Journal of
Machine Learning Research 8, 1659–1685 (2007), http://dl.acm.org/citation.cfm?id=1314554

13. Boullé, M.: A parameter-free classification method for large scale learning. Journal of Machine
Learning Research 10, 1367–1385 (2009), https://doi.org/10.1145/1577069.1755829

14. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to data mining.
Springer Science & Business Media (2008)

15. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
16. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of

models. In: 21st International Conference on Machine Learning. pp. 18–. ACM (2004)
17. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via Bayesian

regularisation of the hyper-parameters. Journal of Machine Learning Research 8, 841–861
(April 2007)

18. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel programming. Annals of
Operations Research 153, 235–256 (2007)

19. Dempe, S.: Foundations of bilevel programming. Kluwer Academic Publishers (2002)
20. Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning

algorithms. Neural Computation 10(7), 1895–1923 (1998)
21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, 2nd edn. (2001)
22. Efron, B.: Estimating the error rate of a prediction rule: Improvement on cross-validation.

Journal of the American Statistical Association 78(382), 316–331 (1983)
23. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:

Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In:
NIPS workshop on Bayesian Optimization in Theory and Practice (2013)

24. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. Journal of Machine
Learning Research 10, 405–440 (2009)

25. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Proceedings of the Neural Information Processing
Systems, pp. 2962–2970 (2015), https://github.com/automl/auto-sklearn

26. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Methods for
improving bayesian optimization for automl. In: Proceedings of the International Conference
on Machine Learning 2015, Workshop on Automatic Machine Learning (2015)

27. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter optimization via
meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 1128–
1135 (2015)

http://dl.acm.org/citation.cfm?id=1314554
https://doi.org/10.1145/1577069.1755829
https://github.com/automl/auto-sklearn


10 Analysis of the AutoML Challenge Series 2015–2018 217

28. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Practical automated
machine learning for the automl challenge 2018. In: International Workshop on Automatic
Machine Learning at ICML (2018), https://sites.google.com/site/automl2018icml/

29. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The Annals of
Statistics 29(5), 1189–1232 (2001)

30. Ghahramani, Z.: Unsupervised learning. In: Advanced Lectures on Machine Learning. Lecture
Notes in Computer Science, vol. 3176, pp. 72–112. Springer Berlin Heidelberg (2004)

31. Guyon, I.: Challenges in Machine Learning book series. Microtome (2011–2016), http://www.
mtome.com/Publications/CiML/ciml.html

32. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,
B., Saeed, M., Statnikov, A., Viegas, E.: AutoML challenge 2015: Design and first results.
In: Proc. of AutoML 2015@ICML (2015), https://drive.google.com/file/d/0BzRGLkqgrI-
qWkpzcGw4bFpBMUk/view

33. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,
B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015 ChaLearn AutoML challenge. In:
International Joint Conference on Neural Networks (2015), http://www.causality.inf.ethz.ch/
AutoML/automl_ijcnn15.pdf

34. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R.,
Macía, N., Ray, B., Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., Vie-
gas, E.: A brief review of the ChaLearn AutoML challenge. In: Proc. of AutoML
2016@ICML (2016), https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=
Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4

35. Guyon, I., Alamdari, A.R.S.A., Dror, G., Buhmann, J.: Performance prediction challenge. In:
the International Joint Conference on Neural Networks. pp. 1649–1656 (2006)

36. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Ray, B., Saeed, M.,
Statnikov, A., Viegas, E.: Automl challenge 2015: Design and first results (2015)

37. Guyon, I., Cawley, G., Dror, G.: Hands-On Pattern Recognition: Challenges in Machine
Learning, Volume 1. Microtome Publishing, USA (2011)

38. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature extraction, foundations and
applications. Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer (2006)

39. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support
vector machine. Journal of Machine Learning Research 5, 1391–1415 (2004)

40. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: Data mining,
inference, and prediction. Springer, 2nd edn. (2001)

41. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Proceedings of the conference on Learning and Intelligent
OptimizatioN (LION 5) (2011)

42. Ioannidis, J.P.A.: Why most published research findings are false. PLoS Medicine 2(8), e124
(August 2005)

43. Jordan, M.I.: On statistics, computation and scalability. Bernoulli 19(4), 1378–1390 (Septem-
ber 2013)

44. Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based adaptation
of hyperparameters in SVM models. In: Advances in Neural Information Processing Systems
(2007)

45. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian hyperparameter
optimization on large datasets. In: Electronic Journal of Statistics. vol. 11 (2017)

46. Kohavi, R., John, G.H.: Wrappers for feature selection. Artificial Intelligence 97(1–2), 273–
324 (December 1997)

47. Langford, J.: Clever methods of overfitting (2005), blog post at http://hunch.net/?p=22

https://sites.google.com/site/automl2018icml/
http://www.mtome.com/Publications/CiML/ciml.html
http://www.mtome.com/Publications/CiML/ciml.html
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
http://hunch.net/?p=22


218 I. Guyon et al.

48. Lloyd, J.: Freeze Thaw Ensemble Construction. https://github.com/jamesrobertlloyd/automl-
phase-2 (2016)

49. Momma, M., Bennett, K.P.: A pattern search method for model selection of support vector
regression. In: In Proceedings of the SIAM International Conference on Data Mining. SIAM
(2002)

50. Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM. Machine Learning
85(1–2), 175–208 (October 2011)

51. Moore, G.M., Bergeron, C., Bennett, K.P.: Nonsmooth bilevel programming for hyperparam-
eter selection. In: IEEE International Conference on Data Mining Workshops. pp. 374–381
(2009)

52. Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y., Melville, P., Wang,
D., Xiao, J., Hu, J., Singh, M., et al.: Winning the kdd cup orange challenge with ensemble
selection. In: Proceedings of the 2009 International Conference on KDD-Cup 2009-Volume 7.
pp. 23–34. JMLR. org (2009)

53. Opper, M., Winther, O.: Gaussian processes and SVM: Mean field results and leave-one-out,
pp. 43–65. MIT (10 2000), massachusetts Institute of Technology Press (MIT Press) Available
on Google Books

54. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 659–677 (2007)

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

56. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

57. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q., Kurakin, A.: Large-scale
evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)

58. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook.
Springer (2011)

59. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press (2001)

60. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems 25, pp. 2951–2959 (2012)

61. Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of random forests and
support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1)
(2008)

62. Sun, Q., Pfahringer, B., Mayo, M.: Full model selection in the space of data mining operators.
In: Genetic and Evolutionary Computation Conference. pp. 1503–1504 (2012)

63. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in Neural
Information Processing Systems 26. pp. 2004–2012 (2013)

64. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896 (2014)

65. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Automated selection and
hyper-parameter optimization of classification algorithms. CoRR abs/1208.3719 (2012)

66. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined selection and
hyperparameter optimization of classification algorithms. In: 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 847–855. ACM (2013)

67. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

https://github.com/jamesrobertlloyd/automl-phase-2
https://github.com/jamesrobertlloyd/automl-phase-2


10 Analysis of the AutoML Challenge Series 2015–2018 219

68. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural
computation 12(9), 2013–2036 (2000)

69. Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: Spider (2007), http://mloss.org/software/view/29/
70. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://mloss.org/software/view/29/
http://creativecommons.org/licenses/by/4.0/

	Foreword
	Preface
	Acknowledgments

	Contents
	Part I  AutoML Methods
	1 Hyperparameter Optimization
	1.1 Introduction
	1.2 Problem Statement
	1.2.1 Alternatives to Optimization: Ensembling and Marginalization
	1.2.2 Optimizing for Multiple Objectives

	1.3 Blackbox Hyperparameter Optimization
	1.3.1 Model-Free Blackbox Optimization Methods
	1.3.2 Bayesian Optimization
	1.3.2.1 Bayesian Optimization in a Nutshell
	1.3.2.2 Surrogate Models
	1.3.2.3 Configuration Space Description
	1.3.2.4 Constrained Bayesian Optimization


	1.4 Multi-fidelity Optimization
	1.4.1 Learning Curve-Based Prediction for Early Stopping
	1.4.2 Bandit-Based Algorithm Selection Methods
	1.4.3 Adaptive Choices of Fidelities

	1.5 Applications to AutoML
	1.6 Open Problems and Future Research Directions
	1.6.1 Benchmarks and Comparability
	1.6.2 Gradient-Based Optimization
	1.6.3 Scalability
	1.6.4 Overfitting and Generalization
	1.6.5 Arbitrary-Size Pipeline Construction

	Bibliography

	2 Meta-Learning
	2.1 Introduction
	2.2 Learning from Model Evaluations
	2.2.1 Task-Independent Recommendations
	2.2.2 Configuration Space Design
	2.2.3 Configuration Transfer
	2.2.3.1 Relative Landmarks
	2.2.3.2 Surrogate Models
	2.2.3.3 Warm-Started Multi-task Learning
	2.2.3.4 Other Techniques

	2.2.4 Learning Curves

	2.3 Learning from Task Properties
	2.3.1 Meta-Features
	2.3.2 Learning Meta-Features
	2.3.3 Warm-Starting Optimization from Similar Tasks
	2.3.4 Meta-Models
	2.3.4.1 Ranking
	2.3.4.2 Performance Prediction

	2.3.5 Pipeline Synthesis
	2.3.6 To Tune or Not to Tune?

	2.4 Learning from Prior Models
	2.4.1 Transfer Learning
	2.4.2 Meta-Learning in Neural Networks
	2.4.3 Few-Shot Learning
	2.4.4 Beyond Supervised Learning

	2.5 Conclusion
	Bibliography

	3 Neural Architecture Search
	3.1 Introduction
	3.2 Search Space
	3.3 Search Strategy
	3.4 Performance Estimation Strategy
	3.5 Future Directions
	Bibliography


	Part II  AutoML Systems
	4 Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Model Selection
	4.2.2 Hyperparameter Optimization

	4.3 CASH
	4.3.1 Sequential Model-Based Algorithm Configuration (SMAC)

	4.4 Auto-WEKA
	4.5 Experimental Evaluation
	4.5.1 Baseline Methods
	4.5.2 Results for Cross-Validation Performance
	4.5.3 Results for Test Performance

	4.6 Conclusion
	4.6.1 Community Adoption

	Bibliography

	5 Hyperopt-Sklearn
	5.1 Introduction
	5.2 Background: Hyperopt for Optimization
	5.3 Scikit-Learn Model Selection as a Search Problem
	5.4 Example Usage
	5.5 Experiments
	5.6 Discussion and Future Work
	5.7 Conclusions
	Bibliography

	6 Auto-sklearn: Efficient and Robust Automated MachineLearning
	6.1 Introduction
	6.2 AutoML as a CASH Problem
	6.3 New Methods for Increasing Efficiency and Robustness of AutoML
	6.3.1 Meta-learning for Finding Good Instantiations of Machine Learning Frameworks
	6.3.2 Automated Ensemble Construction of Models Evaluated During Optimization

	6.4 A Practical Automated Machine Learning System
	6.5 Comparing Auto-sklearn to Auto-WEKA and Hyperopt-Sklearn
	6.6 Evaluation of the Proposed AutoML Improvements
	6.7 Detailed Analysis of Auto-sklearn Components
	6.8 Discussion and Conclusion
	6.8.1 Discussion
	6.8.2 Usage
	6.8.3 Extensions in PoSH Auto-sklearn
	6.8.4 Conclusion and Future Work

	Bibliography

	7 Towards Automatically-Tuned Deep Neural Networks
	7.1 Introduction
	7.2 Auto-Net 1.0
	7.3 Auto-Net 2.0
	7.4 Experiments
	7.4.1 Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn
	7.4.2 Results for AutoML Competition Datasets
	7.4.3 Comparing AutoNet 1.0 and 2.0

	7.5 Conclusion
	Bibliography

	8 TPOT: A Tree-Based Pipeline Optimization Toolfor Automating Machine Learning
	8.1 Introduction
	8.2 Methods
	8.2.1 Machine Learning Pipeline Operators
	8.2.2 Constructing Tree-Based Pipelines
	8.2.3 Optimizing Tree-Based Pipelines
	8.2.4 Benchmark Data

	8.3 Results
	8.4 Conclusions and Future Work
	Bibliography

	9 The Automatic Statistician
	9.1 Introduction
	9.2 Basic Anatomy of an Automatic Statistician
	9.2.1 Related Work

	9.3 An Automatic Statistician for Time Series Data
	9.3.1 The Grammar over Kernels
	9.3.2 The Search and Evaluation Procedure
	9.3.3 Generating Descriptions in Natural Language
	9.3.4 Comparison with Humans

	9.4 Other Automatic Statistician Systems
	9.4.1 Core Components
	9.4.2 Design Challenges
	9.4.2.1 User Interaction
	9.4.2.2 Missing and Messy Data
	9.4.2.3 Resource Allocation


	9.5 Conclusion
	Bibliography


	Part III AutoML Challenges
	10 Analysis of the AutoML Challenge Series 2015–2018
	10.1 Introduction
	10.2 Problem Formalization and Overview
	10.2.1 Scope of the Problem
	10.2.2 Full Model Selection
	10.2.3 Optimization of Hyper-parameters
	10.2.4 Strategies of Model Search

	10.3 Data
	10.4 Challenge Protocol
	10.4.1 Time Budget and Computational Resources
	10.4.2 Scoring Metrics
	10.4.3 Rounds and Phases in the 2015/2016 Challenge
	10.4.4 Phases in the 2018 Challenge

	10.5 Results
	10.5.1 Scores Obtained in the 2015/2016 Challenge
	10.5.2 Scores Obtained in the 2018 Challenge
	10.5.3 Difficulty of Datasets/Tasks
	10.5.4 Hyper-parameter Optimization
	10.5.5 Meta-learning
	10.5.6 Methods Used in the Challenges

	10.6 Discussion
	10.7 Conclusion
	Bibliography



