
Chapter 4
Auto-WEKA: Automatic Model Selection
and Hyperparameter Optimization in
WEKA

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter,
and Kevin Leyton-Brown

Abstract Many different machine learning algorithms exist; taking into account
each algorithm’s hyperparameters, there is a staggeringly large number of possible
alternatives overall. We consider the problem of simultaneously selecting a learning
algorithm and setting its hyperparameters. We show that this problem can be
addressed by a fully automated approach, leveraging recent innovations in Bayesian
optimization. Specifically, we consider feature selection techniques and all machine
learning approaches implemented in WEKA’s standard distribution, spanning 2
ensemble methods, 10 meta-methods, 28 base learners, and hyperparameter settings
for each learner. On each of 21 popular datasets from the UCI repository, the
KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show performance
often much better than using standard selection and hyperparameter optimization
methods. We hope that our approach will help non-expert users to more effectively
identify machine learning algorithms and hyperparameter settings appropriate to
their applications, and hence to achieve improved performance.

4.1 Introduction

Increasingly, users of machine learning tools are non-experts who require off-the-
shelf solutions. The machine learning community has much aided such users by
making available a wide variety of sophisticated learning algorithms and feature

L. Kotthoff (�)
University of Wyoming, Laramie, WY, USA
e-mail: larsko@uwyo.edu

C. Thornton · K. Leyton-Brown
Department of Computer Science, University of British Columbia, Vancouver, BC, Canada

H. H. Hoos
Leiden Institute for Advanced Computer Science, Leiden University, Leiden, The Netherlands

F. Hutter
Department of Computer Science, University of Freiburg, Freiburg, Germany

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_4&domain=pdf
mailto:larsko@uwyo.edu
https://doi.org/10.1007/978-3-030-05318-5_4

82 L. Kotthoff et al.

selection methods through open source packages, such as WEKA [15] and mlr [7].
Such packages ask a user to make two kinds of choices: selecting a learning
algorithm and customizing it by setting hyperparameters (which also control feature
selection, if applicable). It can be challenging to make the right choice when faced
with these degrees of freedom, leaving many users to select algorithms based on
reputation or intuitive appeal, and/or to leave hyperparameters set to default values.
Of course, adopting this approach can yield performance far worse than that of the
best method and hyperparameter settings.

This suggests a natural challenge for machine learning: given a dataset, auto-
matically and simultaneously choosing a learning algorithm and setting its hyperpa-
rameters to optimize empirical performance. We dub this the combined algorithm
selection and hyperparameter optimization (CASH) problem; we formally define
it in Sect. 4.3. There has been considerable past work separately addressing model
selection, e.g., [1, 6, 8, 9, 11, 24, 25, 33], and hyperparameter optimization, e.g., [3–
5, 14, 23, 28, 30]. In contrast, despite its practical importance, we are surprised to
find only limited variants of the CASH problem in the literature; furthermore, these
consider a fixed and relatively small number of parameter configurations for each
algorithm, see e.g., [22].

A likely explanation is that it is very challenging to search the combined space of
learning algorithms and their hyperparameters: the response function is noisy and
the space is high dimensional, involves both categorical and continuous choices,
and contains hierarchical dependencies (e.g., , the hyperparameters of a learning
algorithm are only meaningful if that algorithm is chosen; the algorithm choices
in an ensemble method are only meaningful if that ensemble method is chosen;
etc). Another related line of work is on meta-learning procedures that exploit
characteristics of the dataset, such as the performance of so-called landmarking
algorithms, to predict which algorithm or hyperparameter configuration will per-
form well [2, 22, 26, 32]. While the CASH algorithms we study in this chapter
start from scratch for each new dataset, these meta-learning procedures exploit
information from previous datasets, which may not always be available.

In what follows, we demonstrate that CASH can be viewed as a single hierarchi-
cal hyperparameter optimization problem, in which even the choice of algorithm
itself is considered a hyperparameter. We also show that—based on this prob-
lem formulation—recent Bayesian optimization methods can obtain high quality
results in reasonable time and with minimal human effort. After discussing some
preliminaries (Sect. 4.2), we define the CASH problem and discuss methods for
tackling it (Sect. 4.3). We then define a concrete CASH problem encompassing a
wide range of learners and feature selectors in the open source package WEKA
(Sect. 4.4), and show that a search in the combined space of algorithms and
hyperparameters yields better-performing models than standard algorithm selection
and hyperparameter optimization methods (Sect. 4.5). More specifically, we show
that the recent Bayesian optimization procedures TPE [4] and SMAC [16] often find
combinations of algorithms and hyperparameters that outperform existing baseline
methods, especially on large datasets.

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 83

This chapter is based on two previous papers, published in the proceedings
of KDD 2013 [31] and in the journal of machine learning research (JMLR) in
2017 [20].

4.2 Preliminaries

We consider learning a function f : X 	→ Y , where Y is either finite (for
classification), or continuous (for regression). A learning algorithm A maps a set
{d1, . . . , dn} of training data points di = (xi , yi) ∈ X × Y to such a function,
which is often expressed via a vector of model parameters. Most learning algorithms
A further expose hyperparameters λ ∈ �, which change the way the learning
algorithm Aλ itself works. For example, hyperparameters are used to describe a
description-length penalty, the number of neurons in a hidden layer, the number of
data points that a leaf in a decision tree must contain to be eligible for splitting, etc.
These hyperparameters are typically optimized in an “outer loop” that evaluates the
performance of each hyperparameter configuration using cross-validation.

4.2.1 Model Selection

Given a set of learning algorithms A and a limited amount of training data D =
{(x1, y1), . . . , (xn, yn)}, the goal of model selection is to determine the algorithm
A∗ ∈ A with optimal generalization performance. Generalization performance
is estimated by splitting D into disjoint training and validation sets D(i)

train and

D(i)
valid, learning functions fi by applying A∗ to D(i)

train, and evaluating the predictive

performance of these functions on D(i)
valid. This allows for the model selection

problem to be written as:

A∗ ∈ argmin
A∈A

1

k

k∑
i=1

L(A,D(i)
train,D(i)

valid),

where L(A,D(i)
train,D(i)

valid) is the loss achieved by A when trained on D(i)
train and

evaluated on D(i)
valid.

We use k-fold cross-validation [19], which splits the training data into k equal-
sized partitions D(1)

valid, . . . ,D(k)
valid, and sets D(i)

train = D \ D(i)
valid for i = 1, . . . , k.1

1There are other ways of estimating generalization performance; e.g., we also experimented with
repeated random subsampling validation [19], and obtained similar results.

84 L. Kotthoff et al.

4.2.2 Hyperparameter Optimization

The problem of optimizing the hyperparameters λ ∈ � of a given learning algorithm
A is conceptually similar to that of model selection. Some key differences are
that hyperparameters are often continuous, that hyperparameter spaces are often
high dimensional, and that we can exploit correlation structure between different
hyperparameter settings λ1,λ2 ∈ �. Given n hyperparameters λ1, . . . , λn with
domains �1, . . . ,�n, the hyperparameter space � is a subset of the crossproduct of
these domains: � ⊂ �1 ×· · ·×�n. This subset is often strict, such as when certain
settings of one hyperparameter render other hyperparameters inactive. For example,
the parameters determining the specifics of the third layer of a deep belief network
are not relevant if the network depth is set to one or two. Likewise, the parameters of
a support vector machine’s polynomial kernel are not relevant if we use a different
kernel instead.

More formally, following [17], we say that a hyperparameter λi is conditional
on another hyperparameter λj , if λi is only active if hyperparameter λj takes values
from a given set Vi(j) � �j ; in this case we call λj a parent of λi . Conditional
hyperparameters can in turn be parents of other conditional hyperparameters, giving
rise to a tree-structured space [4] or, in some cases, a directed acyclic graph
(DAG) [17]. Given such a structured space �, the (hierarchical) hyperparameter
optimization problem can be written as:

λ∗ ∈ argmin
λ∈�

1

k

k∑
i=1

L(Aλ,D(i)
train,D(i)

valid).

4.3 Combined Algorithm Selection and Hyperparameter
Optimization (CASH)

Given a set of algorithms A = {A(1), . . . , A(k)} with associated hyperparameter
spaces �(1), . . . ,�(k), we define the combined algorithm selection and hyperpa-
rameter optimization problem (CASH) as computing

A∗
λ∗ ∈ argmin

A(j)∈A,λ∈�(j)

1

k

k∑
i=1

L(A
(j)

λ ,D(i)
train,D(i)

valid). (4.1)

We note that this problem can be reformulated as a single combined hierarchical
hyperparameter optimization problem with parameter space � = �(1) ∪ · · · ∪
�(k) ∪ {λr }, where λr is a new root-level hyperparameter that selects between
algorithms A(1), . . . , A(k). The root-level parameters of each subspace �(i) are
made conditional on λr being instantiated to Ai .

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 85

In principle, problem (4.1) can be tackled in various ways. A promising
approach is Bayesian Optimization [10], and in particular Sequential Model-Based
Optimization (SMBO) [16], a versatile stochastic optimization framework that can
work with both categorical and continuous hyperparameters, and that can exploit
hierarchical structure stemming from conditional parameters. SMBO (outlined in
Algorithm 1) first builds a model ML that captures the dependence of loss function
L on hyperparameter settings λ (line 1 in Algorithm 1). It then iterates the following
steps: useML to determine a promising candidate configuration of hyperparameters
λ to evaluate next (line 3); evaluate the loss c of λ (line 4); and update the model
ML with the new data point (λ, c) thus obtained (lines 5–6).

Algorithm 1 SMBO
1: initialise model ML; H ← ∅
2: while time budget for optimization has not been exhausted do
3: λ ← candidate configuration from ML

4: Compute c = L(Aλ,D(i)
train,D

(i)
valid)

5: H ← H ∪ {(λ, c)}
6: Update ML given H
7: end while
8: return λ from H with minimal c

In order to select its next hyperparameter configuration λ using model ML,
SMBO uses a so-called acquisition function aML : � 	→ R, which uses the
predictive distribution of model ML at arbitrary hyperparameter configurations λ ∈
� to quantify (in closed form) how useful knowledge about λ would be. SMBO then
simply maximizes this function over � to select the most useful configuration λ to
evaluate next. Several well-studied acquisition functions exist [18, 27, 29]; all aim to
automatically trade off exploitation (locally optimizing hyperparameters in regions
known to perform well) versus exploration (trying hyperparameters in a relatively
unexplored region of the space) in order to avoid premature convergence. In this
work, we maximized positive expected improvement (EI) attainable over an existing
given loss cmin [27]. Let c(λ) denote the loss of hyperparameter configuration λ.
Then, the positive improvement function over cmin is defined as

Icmin (λ) := max{cmin − c(λ), 0}.

Of course, we do not know c(λ). We can, however, compute its expectation with
respect to the current model ML:

EML [Icmin (λ)] =
∫ cmin

−∞
max{cmin − c, 0} · pML

(c | λ) dc. (4.2)

We briefly review the SMBO approach used in this chapter.

86 L. Kotthoff et al.

4.3.1 Sequential Model-Based Algorithm Configuration
(SMAC)

Sequential model-based algorithm configuration (SMAC) [16] supports a variety
of models p(c | λ) to capture the dependence of the loss function c on hyper-
parameters λ, including approximate Gaussian processes and random forests. In
this chapter we use random forest models, since they tend to perform well with
discrete and high-dimensional input data. SMAC handles conditional parameters by
instantiating inactive conditional parameters in λ to default values for model training
and prediction. This allows the individual decision trees to include splits of the kind
“is hyperparameter λi active?”, allowing them to focus on active hyperparameters.
While random forests are not usually treated as probabilistic models, SMAC obtains
a predictive mean μλ and variance σλ

2 of p(c | λ) as frequentist estimates over the
predictions of its individual trees for λ; it then models pML(c | λ) as a Gaussian
N (μλ, σλ

2).
SMAC uses the expected improvement criterion defined in Eq. 4.2, instantiating

cmin to the loss of the best hyperparameter configuration measured so far. Under
SMAC’s predictive distribution pML(c | λ) = N (μλ, σλ

2), this expectation is the
closed-form expression

EML [Icmin (λ)] = σλ · [u · �(u) + ϕ(u)],

where u = cmin−μλ

σλ
, and ϕ and � denote the probability density function and

cumulative distribution function of a standard normal distribution, respectively [18].
SMAC is designed for robust optimization under noisy function evaluations,

and as such implements special mechanisms to keep track of its best known
configuration and assure high confidence in its estimate of that configuration’s
performance. This robustness against noisy function evaluations can be exploited in
combined algorithm selection and hyperparameter optimization, since the function
to be optimized in Eq. (4.1) is a mean over a set of loss terms (each corresponding
to one pair of D(i)

train and D(i)
valid constructed from the training set). A key idea in

SMAC is to make progressively better estimates of this mean by evaluating these
terms one at a time, thus trading off accuracy and computational cost. In order for
a new configuration to become a new incumbent, it must outperform the previous
incumbent in every comparison made: considering only one fold, two folds, and
so on up to the total number of folds previously used to evaluate the incumbent.
Furthermore, every time the incumbent survives such a comparison, it is evaluated
on a new fold, up to the total number available, meaning that the number of folds
used to evaluate the incumbent grows over time. A poorly performing configuration
can thus be discarded after considering just a single fold.

Finally, SMAC also implements a diversification mechanism to achieve robust
performance even when its model is misled, and to explore new parts of the
space: every second configuration is selected at random. Because of the evaluation
procedure just described, this requires less overhead than one might imagine.

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 87

4.4 Auto-WEKA

To demonstrate the feasibility of an automatic approach to solving the CASH
problem, we built Auto-WEKA, which solves this problem for the learners and
feature selectors implemented in the WEKA machine learning package [15]. Note
that while we have focused on classification algorithms in WEKA, there is no
obstacle to extending our approach to other settings. Indeed, another successful
system that uses the same underlying technology is auto-sklearn [12].

Fig. 4.1 shows all supported learning algorithms and feature selectors with the
number of hyperparameters. algorithms. Meta-methods take a single base classifier
and its parameters as an input, and the ensemble methods can take any number of
base learners as input. We allowed the meta-methods to use any base learner with
any hyperparameter settings, and allowed the ensemble methods to use up to five

Base Learners
2teNseyaB

DecisionStump* 0

DecisionTable* 4

GaussianProcesses* 10

5*kBI

984J

4piRJ

3*ratSK

LinearRegression* 3

9TML

1citsigoL

4P5M

4seluR5M

MultilayerPerceptron* 8

2seyaBeviaN

NaiveBayesMultinomial 0

1RenO

4TRAP

RandomForest 7

RandomTree* 11

6*eerTPER

5*DGS

SimpleLinearRegression* 0

SimpleLogistic 5

11OMS

31*gerOMS

VotedPerceptron 3

0*RoreZ
Ensemble Methods

2gnikcatS 2etoV
Meta-Methods

5LWL
AdaBoostM1 6
AdditiveRegression 4
AttributeSelectedClassifier 2

4gniggaB

RandomCommittee 2

RandomSubSpace 3
Feature Selection Methods

2tsriFtseB GreedyStepwise 4

Fig. 4.1 Learners and methods supported by Auto-WEKA, along with number of hyperparameters
|�|. Every learner supports classification; starred learners also support regression

88 L. Kotthoff et al.

learners, again with any hyperparameter settings. Not all learners are applicable on
all datasets (e.g., due to a classifier’s inability to handle missing data). For a given
dataset, our Auto-WEKA implementation automatically only considers the subset of
applicable learners. Feature selection is run as a preprocessing phase before building
any model.

The algorithms in Fig. 4.1 have a wide variety of hyperparameters, which take
values from continuous intervals, from ranges of integers, and from other discrete
sets. We associated either a uniform or log uniform prior with each numerical
parameter, depending on its semantics. For example, we set a log uniform prior
for the ridge regression penalty, and a uniform prior for the maximum depth for
a tree in a random forest. Auto-WEKA works with continuous hyperparameter
values directly up to the precision of the machine. We emphasize that this combined
hyperparameter space is much larger than a simple union of the base learners’
hyperparameter spaces, since the ensemble methods allow up to 5 independent base
learners. The meta- and ensemble methods as well as the feature selection contribute
further to the total size of AutoWEKA’s hyperparameter space.

Auto-WEKA uses the SMAC optimizer described above to solve the CASH
problem and is available to the public through the WEKA package manager; the
source code can be found at https://github.com/automl/autoweka and the official
project website is at http://www.cs.ubc.ca/labs/beta/Projects/autoweka. For the
experiments described in this chapter, we used Auto-WEKA version 0.5. The results
the more recent versions achieve are similar; we did not replicate the full set of
experiments because of the large computational cost.

4.5 Experimental Evaluation

We evaluated Auto-WEKA on 21 prominent benchmark datasets (see Table 4.1):
15 sets from the UCI repository [13]; the ‘convex’, ‘MNIST basic’ and ‘rotated
MNIST with background images’ tasks used in [5]; the appentency task from the
KDD Cup ’09; and two versions of the CIFAR-10 image classification task [21]
(CIFAR-10-Small is a subset of CIFAR-10, where only the first 10,000 training data
points are used rather than the full 50,000.) Note that in the experimental evaluation,
we focus on classification. For datasets with a predefined training/test split, we used
that split. Otherwise, we randomly split the dataset into 70% training and 30% test
data. We withheld the test data from all optimization method; it was only used once
in an offline analysis stage to evaluate the models found by the various optimization
methods.

For each dataset, we ran Auto-WEKA with each hyperparameter optimization
algorithm with a total time budget of 30 h. For each method, we performed 25
runs of this process with different random seeds and then—in order to simulate
parallelization on a typical workstation—used bootstrap sampling to repeatedly
select four random runs and report the performance of the one with best cross-
validation performance.

https://github.com/automl/autoweka
http://www.cs.ubc.ca/labs/beta/Projects/autoweka

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 89

Table 4.1 Datasets used; Num. Discr.. and Num. Cont. refer to the number of discrete and
continuous attributes of elements in the dataset, respectively

Num Num Num Num Num
Name Discr. Cont. classes training test

Dexter 20,000 0 2 420 180

GermanCredit 13 7 2 700 300

Dorothea 100,000 0 2 805 345

Yeast 0 8 10 1,038 446

Amazon 10,000 0 49 1,050 450

Secom 0 591 2 1,096 471

Semeion 256 0 10 1,115 478

Car 6 0 4 1,209 519

Madelon 500 0 2 1,820 780

KR-vs-KP 37 0 2 2,237 959

Abalone 1 7 28 2,923 1,254

Wine Quality 0 11 11 3,425 1,469

Waveform 0 40 3 3,500 1,500

Gisette 5,000 0 2 4,900 2,100

Convex 0 784 2 8,000 50,000

CIFAR-10-Small 3,072 0 10 10,000 10,000

MNIST Basic 0 784 10 12,000 50,000

Rot. MNIST + BI 0 784 10 12,000 50,000

Shuttle 9 0 7 43,500 14,500

KDD09-Appentency 190 40 2 35,000 15,000

CIFAR-10 3,072 0 10 50,000 10,000

In early experiments, we observed a few cases in which Auto-WEKA’s SMBO
method picked hyperparameters that had excellent training performance, but turned
out to generalize poorly. To enable Auto-WEKA to detect such overfitting, we
partitioned its training set into two subsets: 70% for use inside the SMBO method,
and 30% of validation data that we only used after the SMBO method finished.

4.5.1 Baseline Methods

Auto-WEKA aims to aid non-expert users of machine learning techniques. A natural
approach that such a user might take is to perform 10-fold cross validation on the
training set for each technique with unmodified hyperparameters, and select the
classifier with the smallest average misclassification error across folds. We will refer
to this method applied to our set of WEKA learners as Ex-Def ; it is the best choice
that can be made for WEKA with default hyperparameters.

90 L. Kotthoff et al.

For each dataset, the second and third columns in Table 4.2 present the best
and worst “oracle performance” of the default learners when prepared given all the
training data and evaluated on the test set. We observe that the gap between the best
and worst learner was huge, e.g., misclassification rates of 4.93% vs. 99.24% on the
Dorothea dataset. This suggests that some form of algorithm selection is essential
for achieving good performance.

A stronger baseline we will use is an approach that in addition to selecting
the learner, also sets its hyperparameters optimally from a predefined set. More
precisely, this baseline performs an exhaustive search over a grid of hyperparameter
settings for each of the base learners, discretizing numeric parameters into three
points. We refer to this baseline as grid search and note that—as an optimization
approach in the joint space of algorithms and hyperparameter settings—it is a simple
CASH algorithm. However, it is quite expensive, requiring more than 10,000 CPU
hours on each of Gisette, Convex, MNIST, Rot MNIST + BI, and both CIFAR
variants, rendering it infeasible to use in most practical applications. (In contrast,
we gave Auto-WEKA only 120 CPU hours.)

Table 4.2 (columns four and five) shows the best and worst “oracle performance”
on the test set across the classifiers evaluated by grid search. Comparing these
performances to the default performance obtained using Ex-Def, we note that in
most cases, even WEKA’s best default algorithm could be improved by selecting
better hyperparameter settings, sometimes rather substantially: e.g., , in the CIFAR-
10 small task, grid search offered a 13% reduction in error over Ex-Def.

It has been demonstrated in previous work that, holding the overall time budget
constant, grid search is outperformed by random search over the hyperparameter
space [5]. Our final baseline, random search, implements such a method, picking
algorithms and hyperparameters sampled at random, and computes their perfor-
mance on the 10 cross-validation folds until it exhausts its time budget. For each
dataset, we first used 750 CPU hours to compute the cross-validation performance
of randomly sampled combinations of algorithms and hyperparameters. We then
simulated runs of random search by sampling combinations without replacement
from these results that consumed 120 CPU hours and returning the sampled
combination with the best performance.

4.5.2 Results for Cross-Validation Performance

The middle portion of Table 4.2 reports our main results. First, we note that grid
search over the hyperparameters of all base-classifiers yielded better results than
Ex-Def in 17/21 cases, which underlines the importance of not only choosing the
right algorithm but of also setting its hyperparameters well.

However, we note that we gave grid search a very large time budget (often
in excess 10,000 CPU hours for each dataset, in total more than 10 CPU years),
meaning that it would often be infeasible to use in practice.

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 91

T
ab

le
4.

2
Pe

rf
or

m
an

ce
on

bo
th

10
-f

ol
d

cr
os

s-
va

li
da

ti
on

an
d

te
st

da
ta

.
E

x-
D

ef
an

d
G

ri
d

Se
ar

ch
ar

e
de

te
rm

in
is

ti
c.

R
an

do
m

se
ar

ch
ha

d
a

ti
m

e
bu

dg
et

of
12

0
C

PU
ho

ur
s.

Fo
r

A
ut

o-
W

E
K

A
,w

e
pe

rf
or

m
ed

25
ru

ns
of

30
h

ea
ch

.W
e

re
po

rt
re

su
lt

s
as

m
ea

n
lo

ss
ac

ro
ss

10
0,

00
0

bo
ot

st
ra

p
sa

m
pl

es
si

m
ul

at
in

g
4

pa
ra

ll
el

ru
ns

.
W

e
de

te
rm

in
ed

te
st

lo
ss

(m
is

cl
as

si
fic

at
io

n
ra

te
)

by
tr

ai
ni

ng
th

e
se

le
ct

ed
m

od
el

/h
yp

er
pa

ra
m

et
er

s
on

th
e

en
ti

re
70

%
tr

ai
ni

ng
da

ta
an

d
co

m
pu

ti
ng

ac
cu

ra
cy

on
th

e
pr

ev
io

us
ly

un
us

ed
30

%
te

st
da

ta
.B

ol
d

fa
ce

in
di

ca
te

s
th

e
lo

w
es

te
rr

or
w

it
hi

n
a

bl
oc

k
of

co
m

pa
ra

bl
e

m
et

ho
ds

th
at

w
as

st
at

is
ti

ca
ll

y
si

gn
ifi

ca
nt

O
ra

cl
e

Pe
rf

.(
%

)
10

-F
ol

d
C

.V
.p

er
fo

rm
an

ce
(%

)
Te

st
pe

rf
or

m
an

ce
(%

)

E
x-

D
ef

G
ri

d
se

ar
ch

D
at

as
et

B
es

t
W

or
st

B
es

t
W

or
st

E
x-

D
ef

G
ri

d
se

ar
ch

R
an

d.
se

ar
ch

A
ut

o-
W

E
K

A
E

x-
D

ef
G

ri
d

se
ar

ch
R

an
d.

se
ar

ch
A

ut
o-

W
E

K
A

D
ex

te
r

7.
78

52
.7

8
3.

89
63

.3
3

10
.2

0
5.

07
10

.6
0

5.
66

8.
89

5.
00

9.
18

7.
49

G
er

m
an

C
re

di
t

26
.0

0
38

.0
0

25
.0

0
68

.0
0

22
.4

5
20

.2
0

20
.1

5
17

.8
7

27
.3

3
26

.6
7

29
.0

3
28

.2
4

D
or

ot
he

a
4.

93
99

.2
4

4.
64

99
.2

4
6.

03
6.

73
8.

11
5.

62
6.

96
5.

80
5.

22
6.

21

Y
ea

st
40

.0
0

68
.9

9
36

.8
5

69
.8

9
39

.4
3

39
.7

1
38

.7
4

35
.5

1
40

.4
5

42
.4

7
43

.1
5

40
.6

7

A
m

az
on

28
.4

4
99

.3
3

17
.5

6
99

.3
3

43
.9

4
36

.8
8

59
.8

5
47

.3
4

28
.4

4
20

.0
0

41
.1

1
33

.9
9

Se
co

m
7.

87
14

.2
6

7.
66

92
.1

3
6.

25
6.

12
5.

24
5.

24
8.

09
8.

09
8.

03
8.

01

Se
m

ei
on

8.
18

92
.4

5
5.

24
92

.4
5

6.
52

4.
86

6.
06

4.
78

8.
18

6.
29

6.
10

5.
08

C
ar

0.
77

29
.1

5
0.

00
46

.1
4

2.
71

0.
83

0.
53

0.
61

0.
77

0.
97

0.
01

0.
40

M
ad

el
on

17
.0

5
50

.2
6

17
.0

5
62

.6
9

25
.9

8
26

.4
6

27
.9

5
20

.7
0

21
.3

8
21

.1
5

24
.2

9
21

.1
2

K
R

-v
s-

K
P

0.
31

48
.9

6
0.

21
51

.0
4

0.
89

0.
64

0.
63

0.
30

0.
31

1.
15

0.
58

0.
31

A
ba

lo
ne

73
.1

8
84

.0
4

72
.1

5
92

.9
0

73
.3

3
72

.1
5

72
.0

3
71

.7
1

73
.1

8
73

.4
2

74
.8

8
73

.5
1

W
in

e
Q

ua
li

ty
36

.3
5

60
.9

9
32

.8
8

99
.3

9
38

.9
4

35
.2

3
35

.3
6

34
.6

5
37

.5
1

34
.0

6
34

.4
1

33
.9

5

W
av

ef
or

m
14

.2
7

68
.8

0
13

.4
7

68
.8

0
12

.7
3

12
.4

5
12

.4
3

11
.9

2
14

.4
0

14
.6

6
14

.2
7

14
.4

2

G
is

et
te

2.
52

50
.9

1
1.

81
51

.2
3

3.
62

2.
59

4.
84

2.
43

2.
81

2.
40

4.
62

2.
24

C
on

ve
x

25
.9

6
50

.0
0

19
.9

4
71

.4
9

28
.6

8
22

.3
6

33
.3

1
25

.9
3

25
.9

6
23

.4
5

31
.2

0
23

.1
7

C
IF

A
R

-1
0-

Sm
al

l
65

.9
1

90
.0

0
52

.1
6

90
.3

6
66

.5
9

53
.6

4
67

.3
3

58
.8

4
65

.9
1

56
.9

4
66

.1
2

56
.8

7

M
N

IS
T

B
as

ic
5.

19
88

.7
5

2.
58

88
.7

5
5.

12
2.

51
5.

05
3.

75
5.

19
2.

64
5.

05
3.

64

R
ot

.M
N

IS
T

+
B

I
63

.1
4

88
.8

8
55

.3
4

93
.0

1
66

.1
5

56
.0

1
68

.6
2

57
.8

6
63

.1
4

57
.5

9
66

.4
0

57
.0

4

Sh
ut

tl
e

0.
01

38
20

.8
41

4
0.

00
69

89
.8

20
7

0.
03

28
0.

03
61

0.
03

45
0.

02
24

0.
01

38
0.

04
14

0.
01

57
0.

01
30

K
D

D
09

-A
pp

en
te

nc
y

1.
74

00
6.

97
33

1.
63

32
54

.2
40

0
1.

87
76

1.
87

35
1.

75
10

1.
70

38
1.

74
05

1.
74

00
1.

74
00

1.
73

58

C
IF

A
R

-1
0

64
.2

7
90

.0
0

55
.2

7
90

.0
0

65
.5

4
54

.0
4

69
.4

6
62

.3
6

64
.2

7
63

.1
3

69
.7

2
61

.1
5

92 L. Kotthoff et al.

In contrast, we gave each of the other methods only 4×30 CPU hours per dataset;
nevertheless, they still yielded substantially better performance than grid search,
outperforming it in 14/21 cases. Random search outperforms grid search in 9/21
cases, highlighting that even exhaustive grid search with a large time budget is not
always the right thing to do. We note that sometimes Auto-WEKA’s performance
improvements over the baselines were substantial, with relative reductions of the
cross-validation loss (in this case the misclassification rate) exceeding 10% in 6/21
cases.

4.5.3 Results for Test Performance

The results just shown demonstrate that Auto-WEKA is effective at optimizing its
given objective function; however, this is not sufficient to allow us to conclude that
it fits models that generalize well. As the number of hyperparameters of a machine
learning algorithm grows, so does its potential for overfitting. The use of cross-
validation substantially increases Auto-WEKA’s robustness against overfitting, but
since its hyperparameter space is much larger than that of standard classification
algorithms, it is important to carefully study whether (and to what extent) overfitting
poses a problem.

To evaluate generalization, we determined a combination of algorithm and
hyperparameter settings Aλ by running Auto-WEKA as before (cross-validating
on the training set), trained Aλ on the entire training set, and then evaluated the
resulting model on the test set. The right portion of Table 4.2 reports the test
performance obtained with all methods.

Broadly speaking, similar trends held as for cross-validation performance: Auto-
WEKA outperforms the baselines, with grid search and random search performing
better than Ex-Def. However, the performance differences were less pronounced:
grid search only yields better results than Ex-Def in 15/21 cases, and random
search in turn outperforms grid search in 7/21 cases. Auto-WEKA outperforms
the baselines in 15/21 cases. Notably, on 12 of the 13 largest datasets, Auto-
WEKA outperforms our baselines; we attribute this to the fact that the risk of
overfitting decreases with dataset size. Sometimes, Auto-WEKA’s performance
improvements over the other methods were substantial, with relative reductions of
the test misclassification rate exceeding 16% in 3/21 cases.

As mentioned earlier, Auto-WEKA only used 70% of its training set during
the optimization of cross-validation performance, reserving the remaining 30%
for assessing the risk of overfitting. At any point in time, Auto-WEKA’s SMBO
method keeps track of its incumbent (the hyperparameter configuration with the
lowest cross-validation misclassification rate seen so far). After its SMBO procedure
has finished, Auto-WEKA extracts a trajectory of these incumbents from it and
computes their generalization performance on the withheld 30% validation data.

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 93

It then computes the Spearman rank coefficient between the sequence of training
performances (evaluated by the SMBO method through cross-validation) and this
generalization performance.

4.6 Conclusion

In this work, we have shown that the daunting problem of combined algorithm
selection and hyperparameter optimization (CASH) can be solved by a practical,
fully automated tool. This is made possible by recent Bayesian optimization tech-
niques that iteratively build models of the algorithm/hyperparameter landscape and
leverage these models to identify new points in the space that deserve investigation.

We built a tool, Auto-WEKA, that draws on the full range of learning algorithms
in WEKA and makes it easy for non-experts to build high-quality classifiers for
given application scenarios. An extensive empirical comparison on 21 prominent
datasets showed that Auto-WEKA often outperformed standard algorithm selection
and hyperparameter optimization methods, especially on large datasets.

4.6.1 Community Adoption

Auto-WEKA was the first method to use Bayesian optimization to automatically
instantiate a highly parametric machine learning framework at the push of a
button. Since its initial release, it has been adopted by many users in industry and
academia; the 2.0 line, which integrates with the WEKA package manager, has been
downloaded more than 30,000 times, averaging more than 550 downloads a week.
It is under active development, with new features added recently and in the pipeline.

Bibliography

1. Adankon, M., Cheriet, M.: Model selection for the LS-SVM. application to handwriting
recognition. Pattern Recognition 42(12), 3264–3270 (2009)

2. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In:
Proc. of ICML-13 (2013)

3. Bengio, Y.: Gradient-based optimization of hyperparameters. Neural Computation 12(8),
1889–1900 (2000)

4. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-Parameter Optimization.
In: Proc. of NIPS-11 (2011)

5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR 13, 281–305
(2012)

6. Biem, A.: A model selection criterion for classification: Application to HMM topology
optimization. In: Proc. of ICDAR-03. pp. 104–108. IEEE (2003)

94 L. Kotthoff et al.

7. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones,
Z.M.: mlr: Machine Learning in R. Journal of Machine Learning Research 17(170), 1–5 (2016),
http://jmlr.org/papers/v17/15-066.html

8. Bozdogan, H.: Model selection and Akaike’s information criterion (AIC): The general theory
and its analytical extensions. Psychometrika 52(3), 345–370 (1987)

9. Brazdil, P., Soares, C., Da Costa, J.: Ranking learning algorithms: Using IBL and meta-learning
on accuracy and time results. Machine Learning 50(3), 251–277 (2003)

10. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
Tech. Rep. UBC TR-2009-23 and arXiv:1012.2599v1, Department of Computer Science,
University of British Columbia (2009)

11. Chapelle, O., Vapnik, V., Bengio, Y.: Model selection for small sample regression. Machine
Learning (2001)

12. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2962–
2970. Curran Associates, Inc. (2015), http://papers.nips.cc/paper/5872-efficient-and-robust-
automated-machine-learning.pdf

13. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/
ml, uRL: http://archive.ics.uci.edu/ml. University of California, Irvine, School of Information
and Computer Sciences

14. Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel LS-SVMs hyper-parameter selection
based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

16. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Proc. of LION-5. pp. 507–523 (2011)

17. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm
configuration framework. JAIR 36(1), 267–306 (2009)

18. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black box
functions. Journal of Global Optimization 13, 455–492 (1998)

19. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proc. of IJCAI-95. pp. 1137–1145 (1995)

20. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-WEKA 2.0:
Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine
Learning Research 18(25), 1–5 (2017), http://jmlr.org/papers/v18/16-261.html

21. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto (2009)

22. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active testing. In:
Proc. of MLDM-12. pp. 117–131 (2012)

23. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated
race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Uni-
versité Libre de Bruxelles, Belgium (2011), http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-
004.pdf

24. Maron, O., Moore, A.: Hoeffding races: Accelerating model selection search for classification
and function approximation. In: Proc. of NIPS-94. pp. 59–66 (1994)

25. McQuarrie, A., Tsai, C.: Regression and time series model selection. World Scientific (1998)
26. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various

learning algorithms. In: Proc. of ICML-00. pp. 743–750 (2000)
27. Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrained optimization

of computer models. In: Flournoy, N., Rosenberger, W., Wong, W. (eds.) New Developments
and Applications in Experimental Design, vol. 34, pp. 11–25. Institute of Mathematical
Statistics, Hayward, California (1998)

http://jmlr.org/papers/v17/15-066.html
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v18/16-261.html
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

4 Auto-WEKA: Automatic Model Selection and Hyperparameter. . . 95

28. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning
algorithms. In: Proc. of NIPS-12 (2012)

29. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit
setting: No regret and experimental design. In: Proc. of ICML-10. pp. 1015–1022 (2010)

30. Strijov, V., Weber, G.: Nonlinear regression model generation using hyperparameter optimiza-
tion. Computers & Mathematics with Applications 60(4), 981–988 (2010)

31. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In: KDD (2013)

32. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2),
77–95 (Oct 2002)

33. Zhao, P., Yu, B.: On model selection consistency of lasso. JMLR 7, 2541–2563 (Dec 2006)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

