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Abstract The success of machine learning in a broad range of applications has led
to an ever-growing demand for machine learning systems that can be used off the
shelf by non-experts. To be effective in practice, such systems need to automatically
choose a good algorithm and feature preprocessing steps for a new dataset at hand,
and also set their respective hyperparameters. Recent work has started to tackle this
automated machine learning (AutoML) problem with the help of efficient Bayesian
optimization methods. Building on this, we introduce a robust new AutoML system
based on the Python machine learning package scikit-learn (using 15 classifiers, 14
feature preprocessing methods, and 4 data preprocessing methods, giving rise to a
structured hypothesis space with 110 hyperparameters). This system, which we dub
Auto-sklearn, improves on existing AutoML methods by automatically taking into
account past performance on similar datasets, and by constructing ensembles from
the models evaluated during the optimization. Our system won six out of ten phases
of the first ChaLearn AutoML challenge, and our comprehensive analysis on over
100 diverse datasets shows that it substantially outperforms the previous state of
the art in AutoML. We also demonstrate the performance gains due to each of our
contributions and derive insights into the effectiveness of the individual components
of Auto-sklearn.

6.1 Introduction

Machine learning has recently made great strides in many application areas, fueling
a growing demand for machine learning systems that can be used effectively by
novices in machine learning. Correspondingly, a growing number of commercial
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enterprises aim to satisfy this demand (e.g., BigML.com, Wise.io, H2O.ai,
feedzai.com, RapidMiner.com, Prediction.io, DataRobot.com, Microsoft’s
Azure Machine Learning, Google’s Cloud Machine Learning Engine, and
Amazon Machine Learning). At its core, every effective machine learning service
needs to solve the fundamental problems of deciding which machine learning
algorithm to use on a given dataset, whether and how to preprocess its features, and
how to set all hyperparameters. This is the problem we address in this work.

More specifically, we investigate automated machine learning (AutoML), the
problem of automatically (without human input) producing test set predictions for
a new dataset within a fixed computational budget. Formally, this AutoML problem
can be stated as follows:

Definition 1 (AutoML problem) For i = 1, . . . , n + m, let xi denote a feature
vector and yi the corresponding target value. Given a training dataset Dtrain =
{(x1, y1), . . . , (xn, yn)} and the feature vectors xn+1, . . . , xn+m of a test dataset
Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)} drawn from the same underlying data
distribution, as well as a resource budget b and a loss metric L(·, ·), the AutoML
problem is to (automatically) produce accurate test set predictions ŷn+1, . . . , ŷn+m.
The loss of a solution ŷn+1, . . . , ŷn+m to the AutoML problem is given by
1
m

∑m
j=1 L(ŷn+j , yn+j ).

In practice, the budget b would comprise computational resources, such as
CPU and/or wallclock time and memory usage. This problem definition reflects
the setting of the first ChaLearn AutoML challenge [23] (also, see Chap. 10 for a
description and analysis of the first AutoML challenge). The AutoML system we
describe here won six out of ten phases of that challenge.

Here, we follow and extend the AutoML approach first introduced by Auto-
WEKA [42]. At its core, this approach combines a highly parametric machine
learning framework F with a Bayesian optimization [7, 40] method for instantiating
F well for a given dataset.

The contribution of this paper is to extend this AutoML approach in various
ways that considerably improve its efficiency and robustness, based on principles
that apply to a wide range of machine learning frameworks (such as those used
by the machine learning service providers mentioned above). First, following
successful previous work for low dimensional optimization problems [21, 22, 38],
we reason across datasets to identify instantiations of machine learning frameworks
that perform well on a new dataset and warmstart Bayesian optimization with
them (Sect. 6.3.1). Second, we automatically construct ensembles of the models
considered by Bayesian optimization (Sect. 6.3.2). Third, we carefully design a
highly parameterized machine learning framework from high-performing classifiers
and preprocessors implemented in the popular machine learning framework scikit-
learn [36] (Sect. 6.4). Finally, we perform an extensive empirical analysis using
a diverse collection of datasets to demonstrate that the resulting Auto-sklearn
system outperforms previous state-of-the-art AutoML methods (Sect. 6.5), to show
that each of our contributions leads to substantial performance improvements
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(Sect. 6.6), and to gain insights into the performance of the individual classifiers
and preprocessors used in Auto-sklearn (Sect. 6.7).

This chapter is an extended version of our 2015 paper introducing Auto-sklearn,
published in the proceedings of NeurIPS 2015 [20].

6.2 AutoML as a CASH Problem

We first review the formalization of AutoML as a Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH) problem used by Auto-WEKA’s
AutoML approach. Two important problems in AutoML are that (1) no single
machine learning method performs best on all datasets and (2) some machine learn-
ing methods (e.g., non-linear SVMs) crucially rely on hyperparameter optimization.
The latter problem has been successfully attacked using Bayesian optimization [7,
40], which nowadays forms a core component of many AutoML systems. The
former problem is intertwined with the latter since the rankings of algorithms
depend on whether their hyperparameters are tuned properly. Fortunately, the
two problems can efficiently be tackled as a single, structured, joint optimization
problem:

Definition 2 (CASH) Let A = {A(1), . . . , A(R)} be a set of algorithms, and let the
hyperparameters of each algorithm A(j) have domain �(j). Further, let Dtrain =
{(x1, y1), . . . , (xn, yn)} be a training set which is split into K cross-validation folds
{D(1)

valid, . . . ,D
(K)
valid} and {D(1)

train, . . . ,D
(K)
train} such that D

(i)
train = Dtrain\D(i)

valid

for i = 1, . . . ,K . Finally, let L(A
(j)
λ ,D

(i)
train,D

(i)
valid) denote the loss that algorithm

A(j) achieves on D
(i)
valid when trained on D

(i)
train with hyperparameters λ. Then, the

Combined Algorithm Selection and Hyperparameter optimization (CASH) problem
is to find the joint algorithm and hyperparameter setting that minimizes this loss:

A�,λ� ∈ argmin
A(j)∈A,λ∈�(j)

1

K

K∑
i=1

L(A
(j)

λ ,D
(i)
train,D

(i)
valid). (6.1)

This CASH problem was first tackled by Thornton et al. [42] in the Auto-
WEKA system using the machine learning framework WEKA [25] and tree-based
Bayesian optimization methods [5, 27]. In a nutshell, Bayesian optimization [7] fits a
probabilistic model to capture the relationship between hyperparameter settings and
their measured performance; it then uses this model to select the most promising
hyperparameter setting (trading off exploration of new parts of the space vs.
exploitation in known good regions), evaluates that hyperparameter setting, updates
the model with the result, and iterates. While Bayesian optimization based on
Gaussian process models (e.g., Snoek et al. [41]) performs best in low-dimensional
problems with numerical hyperparameters, tree-based models have been shown
to be more successful in high-dimensional, structured, and partly discrete prob-
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lems [15]—such as the CASH problem—and are also used in the AutoML system
HYPEROPT-SKLEARN [30]. Among the tree-based Bayesian optimization methods,
Thornton et al. [42] found the random-forest-based SMAC [27] to outperform
the tree Parzen estimator TPE [5], and we therefore use SMAC to solve the
CASH problem in this paper. Next to its use of random forests [6], SMAC’s main
distinguishing feature is that it allows fast cross-validation by evaluating one fold at
a time and discarding poorly-performing hyperparameter settings early.

6.3 New Methods for Increasing Efficiency and Robustness
of AutoML

We now discuss our two improvements of the AutoML approach. First, we include a
meta-learning step to warmstart the Bayesian optimization procedure, which results
in a considerable boost in efficiency. Second, we include an automated ensemble
construction step, allowing us to use all classifiers that were found by Bayesian
optimization.

Fig. 6.1 summarizes the overall AutoML workflow, including both of our
improvements. We note that we expect their effectiveness to be greater for flexible
ML frameworks that offer many degrees of freedom (e.g., many algorithms,
hyperparameters, and preprocessing methods).

6.3.1 Meta-learning for Finding Good Instantiations
of Machine Learning Frameworks

Domain experts derive knowledge from previous tasks: They learn about the per-
formance of machine learning algorithms. The area of meta-learning (see Chap. 2)
mimics this strategy by reasoning about the performance of learning algorithms
across datasets. In this work, we apply meta-learning to select instantiations of our
given machine learning framework that are likely to perform well on a new dataset.
More specifically, for a large number of datasets, we collect both performance data

AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b,L}

meta-
learning

data pre-
processor

feature
preprocessor classifier build

ensemble Ŷtest

Bayesian optimizer

Fig. 6.1 Our improved AutoML approach. We add two components to Bayesian hyperparameter
optimization of an ML framework: meta-learning for initializing the Bayesian optimizer and
automated ensemble construction from configurations evaluated during optimization
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and a set of meta-features, i.e., characteristics of the dataset that can be computed
efficiently and that help to determine which algorithm to use on a new dataset.

This meta-learning approach is complementary to Bayesian optimization for
optimizing an ML framework. Meta-learning can quickly suggest some instan-
tiations of the ML framework that are likely to perform quite well, but it is
unable to provide fine-grained information on performance. In contrast, Bayesian
optimization is slow to start for hyperparameter spaces as large as those of
entire ML frameworks, but can fine-tune performance over time. We exploit this
complementarity by selecting k configurations based on meta-learning and use their
result to seed Bayesian optimization. This approach of warmstarting optimization
by meta-learning has already been successfully applied before [21, 22, 38], but
never to an optimization problem as complex as that of searching the space of
instantiations of a full-fledged ML framework. Likewise, learning across datasets
has also been applied in collaborative Bayesian optimization methods [4, 45]; while
these approaches are promising, they are so far limited to very few meta-features and
cannot yet cope with the high-dimensional partially discrete configuration spaces
faced in AutoML.

More precisely, our meta-learning approach works as follows. In an offline phase,
for each machine learning dataset in a dataset repository (in our case 140 datasets
from the OpenML [43] repository), we evaluated a set of meta-features (described
below) and used Bayesian optimization to determine and store an instantiation of
the given ML framework with strong empirical performance for that dataset. (In
detail, we ran SMAC [27] for 24 h with 10-fold cross-validation on two thirds of
the data and stored the resulting ML framework instantiation which exhibited best
performance on the remaining third). Then, given a new dataset D, we compute its
meta-features, rank all datasets by their L1 distance to D in meta-feature space and
select the stored ML framework instantiations for the k = 25 nearest datasets for
evaluation before starting Bayesian optimization with their results.

To characterize datasets, we implemented a total of 38 meta-features from the
literature, including simple, information-theoretic and statistical meta-features [29,
33], such as statistics about the number of data points, features, and classes, as
well as data skewness, and the entropy of the targets. All meta-features are listed in
Table 1 of the original publication’s supplementary material [20]. Notably, we had
to exclude the prominent and effective category of landmarking meta-features [37]
(which measure the performance of simple base learners), because they were
computationally too expensive to be helpful in the online evaluation phase. We note
that this meta-learning approach draws its power from the availability of a repository
of datasets; due to recent initiatives, such as OpenML [43], we expect the number
of available datasets to grow ever larger over time, increasing the importance of
meta-learning.
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6.3.2 Automated Ensemble Construction of Models Evaluated
During Optimization

While Bayesian hyperparameter optimization is data-efficient in finding the best-
performing hyperparameter setting, we note that it is a very wasteful procedure
when the goal is simply to make good predictions: all the models it trains during
the course of the search are lost, usually including some that perform almost as
well as the best. Rather than discarding these models, we propose to store them
and to use an efficient post-processing method (which can be run in a second
process on-the-fly) to construct an ensemble out of them. This automatic ensemble
construction avoids to commit itself to a single hyperparameter setting and is
thus more robust (and less prone to overfitting) than using the point estimate that
standard hyperparameter optimization yields. To our best knowledge, we are the
first to make this simple observation, which can be applied to improve any Bayesian
hyperparameter optimization method.1

It is well known that ensembles often outperform individual models [24, 31], and
that effective ensembles can be created from a library of models [9, 10]. Ensembles
perform particularly well if the models they are based on (1) are individually strong
and (2) make uncorrelated errors [6]. Since this is much more likely when the
individual models are different in nature, ensemble building is particularly well
suited for combining strong instantiations of a flexible ML framework.

However, simply building a uniformly weighted ensemble of the models found
by Bayesian optimization does not work well. Rather, we found it crucial to adjust
these weights using the predictions of all individual models on a hold-out set. We
experimented with different approaches to optimize these weights: stacking [44],
gradient-free numerical optimization, and the method ensemble selection [10].
While we found both numerical optimization and stacking to overfit to the validation
set and to be computationally costly, ensemble selection was fast and robust. In
a nutshell, ensemble selection (introduced by Caruana et al. [10]) is a greedy
procedure that starts from an empty ensemble and then iteratively adds the model
that minimizes ensemble validation loss (with uniform weight, but allowing for
repetitions). We used this technique in all our experiments—building an ensemble
of size 50 using selection with replacement [10]. We calculated the ensemble loss
using the same validation set that we use for Bayesian optimization.

1Since the original publication [20] we have learned that Escalante et al. [16] and Bürger
and Pauli [8] applied ensembles as a post-processing step of an AutoML system to improve
generalization as well. However, both works combined the learned models with a pre-defined
strategy and did not adapt the ensemble construction based on the performance of the individual
models.
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6.4 A Practical Automated Machine Learning System

To design a robust AutoML system, as our underlying ML framework we chose
scikit-learn [36], one of the best known and most widely used machine learning
libraries. It offers a wide range of well established and efficiently-implemented ML
algorithms and is easy to use for both experts and beginners. Since our AutoML
system closely resembles Auto-WEKA, but—like HYPEROPT-SKLEARN—is based
on scikit-learn, we dub it Auto-sklearn.

Fig. 6.2 is an illustration Auto-sklearn’s machine learning pipeline and its com-
ponents. It comprises 15 classification algorithms, 14 preprocessing methods, and
4 data preprocessing methods. We parameterized each of them, which resulted in a
space of 110 hyperparameters. Most of these are conditional hyperparameters that
are only active if their respective component is selected. We note that SMAC [27]
can handle this conditionality natively.

All 15 classification algorithms in Auto-sklearn are listed in Table 6.1. They
fall into different categories, such as general linear models (2 algorithms), support
vector machines (2), discriminant analysis (2), nearest neighbors (1), naïve Bayes
(3), decision trees (1) and ensembles (4). In contrast to Auto-WEKA [42] (also,
see Chap. 4 for a description of Auto-WEKA), we focused our configuration space
on base classifiers and excluded meta-models and ensembles that are themselves
parameterized by one or more base classifiers. While such ensembles increased
Auto-WEKA’s number of hyperparameters by almost a factor of five (to 786),
Auto-sklearn “only” features 110 hyperparameters. We instead construct complex
ensembles using our post-hoc method from Sect. 6.3.2. Compared to Auto-WEKA,
this is much more data-efficient: in Auto-WEKA, evaluating the performance of
an ensemble with five components requires the construction and evaluation of five

Fig. 6.2 Structured configuration space. Squared boxes denote parent hyperparameters whereas
boxes with rounded edges are leaf hyperparameters. Grey colored boxes mark active hyperparame-
ters which form an example configuration and machine learning pipeline. Each pipeline comprises
one feature preprocessor, classifier and up to three data preprocessor methods plus respective
hyperparameters
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Table 6.1 Number of hyperparameters for each classifier (top) and feature preprocessing method
(bottom) for a binary classification dataset in dense representation. Tables for sparse binary
classification and sparse/dense multiclass classification datasets can be found in Section E of the
original publication’s supplementary material [20], Tables 2a, 3a, 4a, 2b, 3b and 4b. We distinguish
between categorical (cat) hyperparameters with discrete values and continuous (cont) numerical
hyperparameters. Numbers in brackets are conditional hyperparameters, which are only relevant
when another hyperparameter has a certain value

Type of Classifier #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (–) 3 (–)

Bernoulli naïve Bayes 2 1 (–) 1 (–)

Decision tree (DT) 4 1 (–) 3 (–)

Extremely randomized trees 5 2 (–) 3 (–)

Gaussian naïve Bayes – – –

Gradient boosting (GB) 6 – 6 (–)

k-nearest neighbors (kNN) 3 2 (–) 1 (–)

Linear discriminant analysis (LDA) 4 1 (–) 3 (1)

Linear SVM 4 2 (–) 2 (–)

Kernel SVM 7 2 (-) 5 (2)

Multinomial naïve Bayes 2 1 (–) 1 (–)

Passive aggressive 3 1 (–) 2 (–)

Quadratic discriminant analysis (QDA) 2 – 2 (–)

Random forest (RF) 5 2 (–) 3 (–)

Linear Classifier (SGD) 10 4 (–) 6 (3)

Preprocessing method #λ cat (cond) cont (cond)

Extremely randomized trees preprocessing 5 2 (–) 3 (–)

Fast ICA 4 3 (–) 1 (1)

Feature agglomeration 4 3 () 1 (–)

Kernel PCA 5 1 (–) 4 (3)

Rand. kitchen sinks 2 – 2 (–)

Linear SVM preprocessing 3 1 (–) 2 (–)

No preprocessing – – –

Nystroem sampler 5 1 (–) 4 (3)

Principal component analysis (PCA) 2 1 (–) 1 (–)

Polynomial 3 2 (–) 1 (–)

Random trees embed. 4 – 4 (–)

Select percentile 2 1 (–) 1 (–)

Select rates 3 2 (–) 1 (–)

One-hot encoding 2 1 (–) 1 (1)

Imputation 1 1 (–) –

Balancing 1 1 (–) –

Rescaling 1 1 (–) –
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models; in contrast, in Auto-sklearn, ensembles come largely for free, and it is pos-
sible to mix and match models evaluated at arbitrary times during the optimization.

The preprocessing methods for datasets in dense representation in Auto-sklearn
are listed in Table 6.1. They comprise data preprocessors (which change the
feature values and are always used when they apply) and feature preprocessors
(which change the actual set of features, and only one of which [or none] is
used). Data preprocessing includes rescaling of the inputs, imputation of missing
values, one-hot encoding and balancing of the target classes. The 14 possible
feature preprocessing methods can be categorized into feature selection (2), kernel
approximation (2), matrix decomposition (3), embeddings (1), feature clustering
(1), polynomial feature expansion (1) and methods that use a classifier for feature
selection (2). For example, L1-regularized linear SVMs fitted to the data can be used
for feature selection by eliminating features corresponding to zero-valued model
coefficients.

For detailed descriptions of the machine learning algorithms used in Auto-
sklearn we refer to Sect. A.1 and A.2 of the original paper’s supplementary
material [20], the scikit-learn documentation [36] and the references therein.

To make the most of our computational power and not get stuck in a very slow
run of a certain combination of preprocessing and machine learning algorithm,
we implemented several measures to prevent such long runs. First, we limited the
time for each evaluation of an instantiation of the ML framework. We also limited
the memory of such evaluations to prevent the operating system from swapping
or freezing. When an evaluation went over one of those limits, we automatically
terminated it and returned the worst possible score for the given evaluation
metric. For some of the models we employed an iterative training procedure; we
instrumented these to still return their current performance value when a limit was
reached before they were terminated. To further reduce the amount of overly long
runs, we forbade several combinations of preprocessors and classification methods:
in particular, kernel approximation was forbidden to be active in conjunction with
non-linear and tree-based methods as well as the KNN algorithm. (SMAC handles
such forbidden combinations natively.) For the same reason we also left out feature
learning algorithms, such as dictionary learning.

Another issue in hyperparameter optimization is overfitting and data resampling
since the training data of the AutoML system must be divided into a dataset
for training the ML pipeline (training set) and a dataset used to calculate the
loss function for Bayesian optimization (validation set). Here we had to trade off
between running a more robust cross-validation (which comes at little additional
overhead in SMAC) and evaluating models on all cross-validation folds to allow for
ensemble construction with these models. Thus, for the tasks with a rigid time limit
of 1 h in Sect. 6.6, we employed a simple train/test split. In contrast, we were able
to employ ten-fold crossvalidation in our 24 and 30 h runs in Sects. 6.5 and 6.7.

Finally, not every supervised learning task (for example classification with
multiple targets), can be solved by all of the algorithms available in Auto-sklearn.
Thus, given a new dataset, Auto-sklearn preselects the methods that are suitable for
the dataset’s properties. Since scikit-learn methods are restricted to numerical input
values, we always transformed data by applying a one-hot encoding to categorical
features. In order to keep the number of dummy features low, we configured a
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percentage threshold and a value occurring more rarely than this percentage was
transformed to a special other value [35].

6.5 Comparing Auto-sklearn to Auto-WEKA
and HYPEROPT-SKLEARN

As a baseline experiment, we compared the performance of vanilla Auto-sklearn
(without our improvements meta-learning and ensemble building) to Auto-WEKA
(see Chap. 4) and Hyperopt-Sklearn (see Chap. 5), reproducing the experimental
setup with the 21 datasets of the paper introducing Auto-WEKA [42] (see Table 4.1
in Chap. 4 for a description of the datasets). Following the original setup of the Auto-
WEKA paper, we used the same train/test splits of the datasets [1], a walltime limit
of 30 h, 10-fold cross validation (where the evaluation of each fold was allowed to
take 150 min), and 10 independent optimization runs with SMAC on each dataset.
As in Auto-WEKA, the evaluation is sped up by SMAC’s intensify procedure, which
only schedules runs on new cross validation folds if the configuration currently
being evaluated is likely to outperform the so far best performing configuration [27].
We did not modify HYPEROPT-SKLEARN which always uses a 80/20 train/test
split. All our experiments ran on Intel Xeon E5-2650 v2 eight-core processors with
2.60 GHz and 4 GiB of RAM. We allowed the machine learning framework to use
3 GiB and reserved the rest for SMAC. All experiments used Auto-WEKA 0.5 and
scikit-learn 0.16.1.

We present the results of this experiment in Table 6.2. Since our setup followed
exactly that of the original Auto-WEKA paper, as a sanity check we compared the
numbers we achieved for Auto-WEKA ourselves (first line in Fig. 6.2) to the ones
presented by the authors of Auto-WEKA (see Chap. 4) and found that overall the
results were reasonable. Furthermore, the table shows that Auto-sklearn performed
significantly better than Auto-WEKA in 6/21 cases, tied it in 12 cases, and lost
against it in 3. For the three datasets where Auto-WEKA performed best, we found
that in more than 50% of its runs the best classifier it chose is not implemented in
scikit-learn (trees with a pruning component). So far, HYPEROPT-SKLEARN is more
of a proof-of-concept—inviting the user to adapt the configuration space to her own
needs—than a full AutoML system. The current version crashes when presented
with sparse data and missing values. It also crashes on Cifar-10 due to a memory
limit which we set for all optimizers to enable a fair comparison. On the 16 datasets
on which it ran, it statistically tied the best competing AutoML system in 9 cases
and lost against it in 7.

6.6 Evaluation of the Proposed AutoML Improvements

In order to evaluate the robustness and general applicability of our proposed
AutoML system on a broad range of datasets, we gathered 140 binary and
multiclass classification datasets from the OpenML repository [43], only selecting
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Table 6.2 Test set classification error of Auto-WEKA (AW), vanilla Auto-sklearn (AS) and
HYPEROPT-SKLEARN (HS), as in the original evaluation of Auto-WEKA [42] (see also Sect. 4.5).
We show median percent test error rate across 100,000 bootstrap samples (based on 10 runs), each
sample simulating 4 parallel runs and always picking the best one according to cross-validation
performance. Bold numbers indicate the best result. Underlined results are not statistically
significantly different from the best according to a bootstrap test with p = 0.05
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AS 0.42 12.44 2.84 46.92 7.87 5.24 0.01 14.93 33.76 40.67

AW 0.31 18.21 2.84 60.34 8.09 5.24 0.01 14.13 33.36 37.75
HS 0.42 14.74 2.82 55.79 – 5.87 0.05 14.07 34.72 38.45

datasets with at least 1000 data points to allow robust performance evaluations.
These datasets cover a diverse range of applications, such as text classification,
digit and letter recognition, gene sequence and RNA classification, advertisement,
particle classification for telescope data, and cancer detection in tissue samples.
We list all datasets in Table 7 and 8 in the supplementary material of the original
publication [20] and provide their unique OpenML identifiers for reproducibility.
We randomly split each dataset into a two-thirds training and a one-thirds test set.
Auto-sklearn could only access the training set, and split this further into two thirds
for training and a one third holdout set for computing the validation loss for SMAC.
All in all, we used four-ninths of the data to train the machine learning models,
two-ninths to calculate their validation loss and the final three-ninths to report the
test performance of the different AutoML systems we compared. Since the class
distribution in many of these datasets is quite imbalanced we evaluated all AutoML
methods using a measure called balanced classification error rate (BER). We define
balanced error rate as the average of the proportion of wrong classifications in each
class. In comparison to standard classification error (the average overall error), this
measure (the average of the class-wise error) assigns equal weight to all classes. We
note that balanced error or accuracy measures are often used in machine learning
competitions, such as the AutoML challenge [23], which is described in Chap. 10.

We performed 10 runs of Auto-sklearn both with and without meta-learning
and with and without ensemble building on each of the datasets. To study their
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Fig. 6.3 Average rank of all four Auto-sklearn variants (ranked by balanced test error rate (BER))
across 140 datasets. Note that ranks are a relative measure of performance (here, the rank of all
methods has to add up to 10), and hence an improvement in BER of one method can worsen the
rank of another. (Top) Data plotted on a linear x scale. (Bottom) This is the same data as for
the upper plot, but on a log x scale. Due to the small additional overhead that meta-learning and
ensemble selection cause, vanilla Auto-sklearn is able to achieve the best rank within the first 10 s
as it produces predictions before the other Auto-sklearn variants finish training their first model.
After this, meta-learning quickly takes off

performance under rigid time constraints, and also due to computational resource
constraints, we limited the CPU time for each run to 1 h; we also limited the runtime
for evaluating a single model to a tenth of this (6 min).

To not evaluate performance on data sets already used for meta-learning, we
performed a leave-one-dataset-out validation: when evaluating on dataset D, we
only used meta-information from the 139 other datasets.

Fig. 6.3 shows the average ranks over time of the four Auto-sklearn versions we
tested. We observe that both of our new methods yielded substantial improvements
over vanilla Auto-sklearn. The most striking result is that meta-learning yielded
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drastic improvements starting with the first configuration it selected and lasting until
the end of the experiment. We note that the improvement was most pronounced in
the beginning and that over time, vanilla Auto-sklearn also found good solutions
without meta-learning, letting it catch up on some datasets (thus improving its
overall rank).

Moreover, both of our methods complement each other: our automated ensemble
construction improved both vanilla Auto-sklearn and Auto-sklearn with meta-
learning. Interestingly, the ensemble’s influence on the performance started earlier
for the meta-learning version. We believe that this is because meta-learning
produces better machine learning models earlier, which can be directly combined
into a strong ensemble; but when run longer, vanilla Auto-sklearn without meta-
learning also benefits from automated ensemble construction.

6.7 Detailed Analysis of Auto-sklearn Components

We now study Auto-sklearn’s individual classifiers and preprocessors, compared
to jointly optimizing all methods, in order to obtain insights into their peak
performance and robustness. Ideally, we would have liked to study all combinations
of a single classifier and a single preprocessor in isolation, but with 15 classifiers
and 14 preprocessors this was infeasible; rather, when studying the performance
of a single classifier, we still optimized over all preprocessors, and vice versa. To
obtain a more detailed analysis, we focused on a subset of datasets but extended the
configuration budget for optimizing all methods from one hour to one day and to two
days for Auto-sklearn. Specifically, we clustered our 140 datasets with g-means [26]
based on the dataset meta-features and used one dataset from each of the resulting
13 clusters. We give a basic description of the datasets in Table 6.3. In total, these
extensive experiments required 10.7 CPU years.

Table 6.4 compares the results of the various classification methods against
Auto-sklearn. Overall, as expected, random forests, extremely randomized trees,
AdaBoost, and gradient boosting, showed the most robust performance, and SVMs
showed strong peak performance for some datasets. Besides a variety of strong
classifiers, there are also several models which could not compete: The decision
tree, passive aggressive, kNN, Gaussian NB, LDA and QDA were statistically
significantly inferior to the best classifier on most datasets. Finally, the table
indicates that no single method was the best choice for all datasets. As shown in
the table and also visualized for two example datasets in Fig. 6.4, optimizing the
joint configuration space of Auto-sklearn led to the most robust performance. A
plot of ranks over time (Fig. 2 and 3 in the supplementary material of the original
publication [20]) quantifies this across all 13 datasets, showing that Auto-sklearn
starts with reasonable but not optimal performance and effectively searches its more
general configuration space to converge to the best overall performance over time.

Table 6.5 compares the results of the various preprocessors against Auto-sklearn.
As for the comparison of classifiers above, Auto-sklearn showed the most robust
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Table 6.3 Representative datasets for the 13 clusters obtained via g-means clustering of the 140
datasets’ meta-feature vectors

ID Name #Cont #Nom #Class Sparse
Missing
Values |Training| |Test|

38 Sick 7 22 2 – X 2527 1245

46 Splice 0 60 3 – – 2137 1053

179 Adult 2 12 2 – X 32,724 16,118

184 KROPT 0 6 18 – – 18,797 9259

554 MNIST 784 0 10 – – 46,900 23,100

772 Quake 3 0 2 – – 1459 719

917 fri_c1_1000_25
(binarized)

25 0 2 – – 670 330

1049 pc4 37 0 2 – – 976 482

1111 KDDCup09
Appetency

192 38 2 – X 33,500 16,500

1120 Magic Telescope 10 0 2 – – 12,743 6277

1128 OVA Breast 10935 0 2 – – 1035 510

293 Covertype
(binarized)

54 0 2 X – 389,278 191,734

389 fbis_wc 2000 0 17 X – 1651 812

performance: It performed best on three of the datasets and was not statistically
significantly worse than the best preprocessor on another 8 of 13.

6.8 Discussion and Conclusion

Having presented our experimental validation, we now conclude this chapter with a
brief discussion, a simple usage example of Auto-sklearn, a short review of recent
extensions, and concluding remarks.

6.8.1 Discussion

We demonstrated that our new AutoML system Auto-sklearn performs favorably
against the previous state of the art in AutoML, and that our meta-learning and
ensemble improvements for AutoML yield further efficiency and robustness. This
finding is backed by the fact that Auto-sklearn won three out of five auto-tracks,
including the final two, in ChaLearn’s first AutoML challenge. In this paper, we did
not evaluate the use of Auto-sklearn for interactive machine learning with an expert
in the loop and weeks of CPU power, but we note that mode has led to three first
places in the human (aka Final) track of the first ChaLearn AutoML challenge (in

http://www.openml.org/d/38
http://www.openml.org/d/46
http://www.openml.org/d/179
http://www.openml.org/d/184
http://www.openml.org/d/554
http://www.openml.org/d/772
http://www.openml.org/d/917
http://www.openml.org/d/1049
http://www.openml.org/d/1111
http://www.openml.org/d/1120
http://www.openml.org/d/1128
http://www.openml.org/d/293
http://www.openml.org/d/389
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Fig. 6.4 Performance of a subset of classifiers compared to Auto-sklearn over time. (Top) MNIST
(OpenML dataset ID 554). (Bottom) Promise pc4 (OpenML dataset ID 1049). We show median test
error rate and the fifth and 95th percentile over time for optimizing three classifiers separately with
optimizing the joint space. A plot with all classifiers can be found in Fig. 4 in the supplementary
material of the original publication [20]. While Auto-sklearn is inferior in the beginning, in the end
its performance is close to the best method

http://www.openml.org/d/554
http://www.openml.org/d/1049
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addition to the auto-tracks, in particular Table 10.5, phases Final 0–4). As such, we
believe that Auto-sklearn is a promising system for use by both machine learning
novices and experts.

Since the publication of the original NeurIPS paper [20], Auto-sklearn has
become a standard baseline for new approaches to automated machine learning,
such as FLASH [46], RECIPE [39], Hyperband [32], AutoPrognosis [3], ML-
PLAN [34], Auto-Stacker [11] and AlphaD3M [13].

6.8.2 Usage

One important outcome of the research on Auto-sklearn is the auto-sklearn Python
package. It is a drop-in replacement for any scikit-learn classifier or regressor,
similar to the classifier provided by HYPEROPT-SKLEARN [30] and can be used
as follows:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

Auto-sklearn can be used with any loss function and resampling strategy to
estimate the validation loss. Furthermore, it is possible to extend the classifiers
and preprocessors Auto-sklearn can choose from. Since the initial publication
we also added regression support to Auto-sklearn. We develop the package on
https://github.com/automl/auto-sklearn and it is available via the Python packaging
index pypi.org. We provide documentation on automl.github.io/auto-sklearn.

6.8.3 Extensions in PoSH Auto-sklearn

While Auto-sklearn as described in this chapter is limited to handling datasets of
relatively modest size, in the context of the most recent AutoML challenge (AutoML
2, run in 2018; see Chap. 10), we have extended it towards also handling large
datasets effectively. Auto-sklearn was able to handle datasets of several hundred
thousand datapoints by using a cluster of 25 CPUs for two days, but not within the
20 min time budget required by the AutoML 2 challenge. As described in detail in a
recent workshop paper [18], this implied opening up the methods considered to also
include extreme gradient boosting (in particular, XGBoost [12]), using the multi-
fidelity approach of successive halving [28] (also described in Chap. 1) to solve the
CASH problem, and changing our meta-learning approach. We now briefly describe
the resulting system, PoSH Auto-sklearn (short for Portfolio Successive Halving,
combined with Auto-sklearn), which obtained the best performance in the 2018
challenge.

https://github.com/automl/auto-sklearn
https://pypi.org
https://automl.github.io/auto-sklearn/stable/
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PoSH Auto-sklearn starts by running successive halving with a fixed portfolio
of 16 machine learning pipeline configurations, and if there is time left, it uses the
outcome of these runs to warmstart a combination of Bayesian optimization and
successive halving. The fixed portfolio of 16 pipelines was obtained by running
greedy submodular function maximization to select a strong set of complementary
configurations to optimize the performance obtained on a set of 421 datasets; the
candidate configurations configured for this optimization were the 421 configura-
tions found by running SMAC [27] on each of these 421 datasets.

The combination of Bayesian optimization and successive halving we used to
yield robust results within a short time window is an adaptation of the multi-
fidelity hyperparameter optimization method BOHB (Bayesian Optimization and
HyperBand) [17] discussed in Chap. 1. As budgets for this multifidelity approach,
we used the number of iterations for all iterative algorithms, except for the SVM,
where we used dataset size as a budget.

Another extension for large datasets that is currently ongoing is our work on
automated deep learning; this is discussed in the following chapter on Auto-Net.

6.8.4 Conclusion and Future Work

Following the AutoML approach taken by Auto-WEKA, we introduced Auto-
sklearn, which performs favorably against the previous state of the art in AutoML.
We also showed that our meta-learning and ensemble mechanisms improve its
efficiency and robustness further.

While Auto-sklearn handles the hyperparameter tuning for a user, Auto-sklearn
has hyperparameters on its own which influence its performance for a given time
budget, such as the time limits discussed in Sects. 6.5, 6.6, and 6.7, or the resampling
strategy used to calculate the loss function. We demonstrated in preliminary work
that the choice of the resampling strategy and the selection of timeouts can be cast
as a meta-learning problem itself [19], but we would like to extend this to other
possible design choices Auto-sklearn users face.

Since the time of writing the original paper, the field of meta-learning has
progressed a lot, giving access to multiple new methods to include meta information
into Bayesian optimization. We expect that using one of the newer methods
discussed in Chap. 2 could substantially improve the optimization procedure.

Finally, having a fully automated procedure that can test hundreds of hyperpa-
rameter configurations puts us at increased risk of overfitting to the validation set.
To avoid this overfitting, we would like to combine Auto-sklearn with one of the
techniques discussed in Chap. 1, techniques from differential privacy [14], or other
techniques yet to be developed.
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