
Chapter 9
The Automatic Statistician

Christian Steinruecken, Emma Smith, David Janz, James Lloyd,
and Zoubin Ghahramani

Abstract The Automatic Statistician project aims to automate data science, pro-
ducing predictions and human-readable reports from raw datasets with minimal
human intervention. Alongside basic graphs and statistics, the generated reports
contain a curation of high-level insights about the dataset that are obtained from
(1) an automated construction of models for the dataset, (2) a comparison of these
models, and (3) a software component that turns these results into natural language
descriptions. This chapter describes the common architecture of such Automatic
Statistician systems, and discusses some of the design decisions and technical
challenges.

9.1 Introduction

Machine Learning (ML) and data science are closely related fields of research, that
are focused on the development of algorithms for automated learning from data.
These algorithms also underpin many of the recent advances in artificial intelligence
(AI), which have had a tremendous impact in industry, ushering in a new golden age
of AI. However, many of the current approaches to machine learning, data science,
and AI, suffer from a set of important but related limitations.

Firstly, many of the approaches used are complicated black-boxes that are
difficult to interpret, understand, debug, and trust. This lack of interpretability
hampers the deployment of ML systems. For example, consider the major legal,
technical and ethical consequences of using an uninterpretable black-box system
that arrives at a prediction or decision related to a medical condition, a criminal
justice setting, or in a self-driving car. The realisation that black-box ML methods
are severely limited in such settings has led to major efforts to develop “explainable
AI”, and systems that offer interpretability, trust, and transparency.
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Secondly, the development of ML systems has turned into a cottage industry
where ML experts tackle problems by hand-designing solutions that often reflect
a set of ad-hoc manual decisions, or the preferences and biases of the expert. It is
ironic that machine learning, a field dedicated to building systems that automatically
learn from data, is so dependent on human experts and manual tuning of models
and learning algorithms. Manual search over possible models and methods can
result in solutions that are sub-optimal across any number of metrics. Moreover,
the tremendous imbalance between the supply of experts and the demand for data
science and ML solutions is likely resulting in many missed opportunities for
applications that could have a major benefit for society.

The vision of the Automatic Statistician is to automate many aspects of data
analysis, model discovery, and explanation. In a sense, the goal is to develop
an AI for data science – a system that can reason about patterns in data and
explain them to the user. Ideally, given some raw data, such a system should be
able to:

• automate the process of feature selection and transformation,
• deal with the messiness of real data, including missing values, outliers, and

different types and encodings of variables,
• search over a large space of models so as to automatically discover a good model

that captures any reliable patterns in the data,
• find such a model while avoiding both overfitting and underfitting,
• explain the patterns that have been found to the user, ideally by having a

conversation with the user about the data, and
• do all of this in a manner that is efficient and robust with respect to

constraints on compute time, memory, amount of data, and other relevant
resources.

While this agenda is obviously a very ambitious one, the work to date on the
Automatic Statistician project has made progress on many of the above desiderata.
In particular, the ability to discover plausible models from data and to explain these
discoveries in plain English, is one of the distinguishing features of the Automatic
Statistician [18]. Such a feature could be useful to almost any field or endeavour that
is reliant on extracting knowledge from data.

In contrast to much of the machine learning literature that has been focused on
extracting increasing performance improvements on pattern recognition problems
(using techniques such as kernel methods, random forests, or deep learning), the
Automatic Statistician needs to build models that are composed of interpretable
components, and to have a principled way of representing uncertainty about model
structures given data. It also needs to be able to give reasonable answers not just for
big data sets, but also for small ones.
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Fig. 9.1 A simplified flow diagram outlining the operation of a report-writing Automatic Statisti-
cian. Models for the data are automatically constructed (from the open-ended language of models),
and evaluated on the data. This evaluation is done in a way that allows models to be compared to
each other. The best models are then inspected to produce a report. Each model can be used to
make extrapolations or predictions from the data, and the construction blue-print of the model can
be turned into a human-readable description. For some models, it is also possible to generate model
criticism, and report on where the modelling assumptions do not match the data well

9.2 Basic Anatomy of an Automatic Statistician

At the heart of the Automatic Statistician is the idea that a good solution to the
above challenges can be obtained by working in the framework of model-based
machine learning [2, 9]. In model-based ML, the basic idea is that probabilistic
models are explanations for patterns in data, and that the probabilistic framework (or
Bayesian Occam’s razor) can be used to discover models that avoid both overfitting
and underfitting [21]. Bayesian approaches provide an elegant way of trading off
the complexity of the model and the complexity of the data, and probabilistic
models are compositional and interpretable as described previously. Moreover,
the model-based philosophy maintains that tasks such as data pre-processing and
transformation are all parts of the model and should ideally all be conducted at
once [35].

An Automatic Statistician contains the following key ingredients:

1. An open-ended language of models – expressive enough to capture real-world
phenomena, and to allow applying the techniques used by human statisticians
and data scientists.

2. A search procedure to efficiently explore the language of models.
3. A principled method of evaluating models, trading off complexity, fit to data,

and resource usage.
4. A procedure to automatically explain the models, making the assumptions of

the models explicit in a way that is simultaneously accurate and intelligible to
non-experts.

Fig. 9.1 shows a high-level overview of how these components could be used to
produce a basic version of a report-writing Automatic Statistician.

As will be discussed later in this chapter, it is possible to build Automatic
Statistician systems that exchange ingredient (4) for procedures that produce other
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desirable outputs, for example raw predictions or decisions. In such cases, the
language, search, and evaluation components may be modified appropriately to
prioritise the chosen objective.

9.2.1 Related Work

Important earlier work includes statistical expert systems [11, 37], and equation
learning [26, 27]. The Robot Scientist [16] integrates machine learning and scientific
discovery in a closed loop with an experimental platform in microbiology to
automate the design and execution of new experiments. Auto-WEKA [17, 33] and
Auto-sklearn [6] are projects that automate learning classifiers, making heavy use
of Bayesian optimisation techniques. Efforts to automate the application of machine
learning methods to data have recently gained momentum, and may ultimately result
in practical AI systems for data science.

9.3 An Automatic Statistician for Time Series Data

Automatic Statistician systems can be defined for a variety of different objectives,
and can be based on different underlying model families. We’ll start by describing
one such system, and discuss the wider taxonomy later, with notes on common
design elements and general architecture.

An early Automatic Statistician for one-dimensional regression tasks was
described by Lloyd et al. [18]. Their system, called Automatic Bayesian Covariance
Discovery (ABCD), uses an open-ended language of Gaussian process models
through a compositional grammar over kernels. A Gaussian process (GP) defines a
distribution over functions, and the parameters of the GP – its mean and its kernel –
determine the properties of the functions [25]. There is a broad choice of available
kernels that induce function distributions with particular properties; for example
distributions over functions that are linear, polynomial, periodic, or uncorrelated
noise. A pictorial overview of this system is shown in Fig. 9.2.

9.3.1 The Grammar over Kernels

As mentioned above, a grammar over GP kernels makes it possible to represent
many interesting properties of functions, and gives a systematic way of constructing
distributions over such functions. This grammar over kernels is compositional: it
comprises a set of fixed base kernels, and kernel operators that make it possible to
compose new kernels from existing ones. This grammar was carefully chosen to be
interpretable: each expression in the grammar defines a kernel that can be described
with a simple but descriptive set of words in human language.
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Fig. 9.2 A flow diagram describing a report-writing Automatic Statistician for time-series data.
(a) The input to the system is data, in this case represented as time series. (b) The system searches
over a grammar of models to discover a good interpretation of the data, using Bayesian inference
to score models. (c) Components of the model discovered are translated into English phrases. (d)
The end result is a report with text, figures and tables, describing in detail what has been inferred
about the data, including a section on model checking and criticism [8, 20]

The base kernels in the grammar are: C (constant), LIN (linear), SE (squared
exponential), PER (periodic), and WN (white noise). The kernel operators are: +
(addition), × (multiplication), and CP (a change point operator), defined as follows:

(k1 + k2)(x, x ′) = k1(x, x ′) + k2(x, x ′)

(k1 × k2)(x, x ′) = k1(x, x ′) × k2(x, x ′)

CP (k1, k2) (x, x ′) = k1(x, x ′) σ (x) σ (x ′) + k2(x, x ′) (1 − σ(x)) (1 − σ(x ′))

where σ(x) = 1
2

(
1 + tanh l−x

s

)
is a sigmoidal function, and l and s are parameters

of the change point. The base kernels can be arbitrarily combined using the above
operators to produce new kernels.

The infinite space of kernels defined by this grammar allows a large class of
interesting distributions over functions to be searched, evaluated, and described in
an automated way. This type of grammar was first described in [10] for matrix
factorization problems, and then refined in [5] and [18] for GP models.

9.3.2 The Search and Evaluation Procedure

ABCD performs a greedy search over the space of models (as defined by the
grammar). The kernel parameters of each proposed model are optimised by a
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conjugate-gradient method; the model with optimised parameters is then evaluated
using the Bayesian Information Criterion [29]:

BIC (M) = −2 log p (D | M) + |M| log N (9.1)

where M is the optimised model, p (D | M) is the marginal likelihood of
the model integrating out the latent GP function, |M| is the number of
kernel parameters in M , and N is the size of the dataset. The Bayesian
Information Criterion trades off model complexity and fit to the data, and
approximates the full marginal likelihood (which integrates out latent functions and
hyperparameters).

The best-scoring model in each round is used to construct new proposed models,
either by: (1) expanding the kernel with production rules from the grammar, such
as introducing a sum, product, or change point; or (2) mutating the kernel by
swapping out a base kernel for a different one. The new set of proposed kernels
is then evaluated in the next round. It is possible with the above rules that a kernel
expression gets proposed several times, but a well-implemented system will keep
records and only ever evaluate each expression once. The search and evaluation
procedure stops either when the score of all newly proposed models is worse than
the best model from the previous round, or when a pre-defined search depth is
exceeded.

This greedy search procedure is not guaranteed to find the best model in the
language for any given dataset: a better model might be hiding in one of the
subtrees that weren’t expanded out. Finding the globally best model isn’t usually
essential, as long as a good interpretable models is found in a reasonable amount
of time. There are other ways of conducting the search and evaluation of models.
For example, Malkomes et al. [22] describe a kernel search procedure based on
Bayesian optimisation. Janz et al. [14] implemented a kernel search method using
particle filtering and Hamiltonian Monte Carlo.

9.3.3 Generating Descriptions in Natural Language

When the search procedure terminates, it produces a list of kernel expressions
and their scores on the dataset. The expression with the best score is then used
to generate a natural-language description. To convert a kernel to a description
in natural language, the kernel is first converted to a canonical form, using the
following process:

1. Nested sums and products are flattened into a sum of products form.
2. Some products of kernels can be simplified into base kernels with modified

parameters, for example: SE × SE → SE∗, C × k → k∗ for any k, and
WN × k → WN∗ for any k ∈ {C, SE, WN, PER}.
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After applying these rules, the kernel expression is a sum of product terms, where
each product term has the following canonical form:

k ×
∏
m

LIN(m) ×
∏
n

σ (n) (9.2)

where σ (x, x ′) = σ(x) σ (x ′) is a product of two sigmoid functions, and k has one
of the following forms: 1, WN, C, SE,

∏
j PER(j), or SE ×∏

j PER(j). The notation∏
j k(j) stands for products of kernels, each with separate parameters.
In this canonical form, the kernel is a sum of products, and the number of terms in

the sum is described first: “The structure search algorithm has identified N additive
components in the data.” This sentence is then followed by a description of each
additive component (i.e. each product in the sum), using the following algorithm:

1. Choose one of the kernels in the product to be the noun descriptor. A heuristic
recommended by Lloyd et al. [18] is to pick according to the following
preference: PER > {C, SE, WN} >

∏
j LIN(j) >

∏
j σ (j), where PER is the most

preferred.
2. Convert the chosen kernel type to a string using this table:

WN “uncorrelated noise” SE “smooth function”

PER “periodic function” LIN “linear function”

C “constant”
∏

j LIN(j) “polynomial”

3. The other kernels in the product are converted to post-modifier expressions that
are appended to the noun descriptor. The post modifiers are converted using this
table:

SE “whose shape changes smoothly”

PER “modulated by a periodic function”

LIN “with linearly varying amplitude”∏
j LIN(j) “with polynomially varying amplitude”∏
j σ (j) “which applies from / until [changepoint]”

4. Further refinements to the description are possible, including insights from
kernel parameters, or extra information calculated from the data. Some of these
refinements are described in [18].

More details on the translation of kernel expressions to natural language can be
found in [18] and [19]. An example extract from a generated report is shown in
Fig. 9.3.
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This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Fig. 9.3 Extract from an automatically generated report that describes the model components
discovered by ABCD. This part of the report isolates and describes the approximately 11-year
sunspot cycle, also noting its disappearance during the sixteenth century, a time period known as
the Maunder minimum. (This figure is reproduced from [18])

9.3.4 Comparison with Humans

An interesting question to consider is to what extent predictions made by an
Automated Statistician (such as the ABCD algorithm) are human-like, and how they
compare to predictions made with other methods that are also based on Gaussian
processes. To answer that question, Schulz et al. [28] presented participants with the
task of extrapolating from a given set of data, and choosing a preferred extrapolation
from a given set. The results were encouraging for composite kernel search in two
ways: Firstly, the participants preferred the extrapolations made by ABCD over
those made with Spectral Kernels [36], and over those made with a simple RBF
(radial basis function) kernel. Secondly, when human participants were asked to
extrapolate the data themselves, their predictions were most similar to those given
by ABCD’s composite search procedure.

One of the design goals of a report-writing Automatic Statistician is the ability
to explain its findings in terms that are understandable by humans. The system
described earlier restricts itself to a space of models that can be explained in human
language using simple terms, even though this design choice may come at the
cost of predictive accuracy. In general, it is not straight-forward to measure the
interpretability of machine learning systems; one possible framework is suggested
by Doshi-Velez and Kim [4]. We note in passing that not all machine learning
systems require such functionality. For example, when the results of a system have
little impact on society, especially in terms of social norms and interactions, it is
acceptable to optimise for performance or accuracy instead (e.g. recognising post
codes for automatic mail sorting).
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9.4 Other Automatic Statistician Systems

The ability to generate human-readable reports is perhaps one of the distinguishing
features of Automatic Statistician systems. But, as mentioned earlier, software of
this nature can serve other purposes as well. For example, users might be interested
in raw predictions from the data (with or without explanations), or they might want
the system to make data-driven decisions directly on their behalf.

Also, it is possible to build Automatic Statistician systems for model families
that are different from Gaussian processes or grammars. For example, we built
Automated Statistician systems for regression [5, 18], classification [12, 23],
univariate and multivariate data; systems based on various different model classes,
and systems with and without intelligent resource control. This section discusses
some of the design elements that are shared across many Automatic Statistician
systems.

9.4.1 Core Components

One of the key tasks that an Automatic Statistician has to perform is to select,
evaluate, and compare models. These types of task can be run concurrently, but they
have interdependencies. For example, the evaluation of one set of models might
influence the selection of the next set of models.

Most generally, the selection strategy component in our system is responsible
for choosing models to evaluate: it might choose from a fixed or open-ended family
of models, or it might generate and refine models based on the evaluation and
comparison of previously chosen models. Sometimes, the types of the variables
in the dataset (whether inferred from the data or annotated by the user) influence
which models might be chosen by the selection strategy. For example, one might
want to distinguish continuous and discrete data, and to use different treatments for
categorical and ordinal data.

The model evaluation task trains a given model on part of the user-supplied
dataset, and then produces a score by testing the model on held-out data. Some
models do not require a separate training phase and can produce a log-likelihood for
the entire dataset directly. Model evaluation is probably one of the most important
tasks to parallelise: at any given time, multiple selected models can be evaluated
simultaneously, on multiple CPUs or even multiple computers.

The report curator component is the piece of software that decides which results
to include in the final report. For example, it might include sections that describe the
best fitting models, along with extrapolations, graphs, or data tables. Depending on
the evaluation results, the report curator might choose to include additional material,
such as data falsification/model criticism sections, recommendations, or a summary.
In some systems the deliverable might be something other than a report, such as raw
predictions, parameter settings, or model source code.
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In interactive systems, a data loading stage provides an instant summary about
the uploaded dataset, and allows the user to correct any assumptions about the
format of the data. The user can make type annotations, remove columns from the
dataset, choose an output variable (e.g. for classification), and specify the analyses
that should be run.

9.4.2 Design Challenges

9.4.2.1 User Interaction

While the aim of an Automatic Statistician is to automate all aspects of data
handling (from low-level tasks such as formatting and clean-up, to high-level tasks
such as model construction, evaluation, and criticism), it is also useful to give
users the option to interact with the system and influence the choices it makes. For
example, users might want to specify which parts or which aspects of the data they
are interested in, and which parts can be ignored. Some users might want to choose
the family of models that the system will consider in the model construction or
evaluation phase. Finally, the system may want to engage in a dialogue with the
user to explore or explain what it found in the data. Such interactivity needs to be
supported by the underlying system.

9.4.2.2 Missing and Messy Data

A common problem with real-world datasets is that they may have missing or
corrupt entries, unit or formatting inconsistencies, or other kinds of defects. These
kinds of defects may require some pre-processing of the data, and while many
decisions could be made automatically, some might benefit from interaction with
the user. Good models can handle missing data directly, and as long as the missing
data is detected correctly by the data loading stage, everything should be fine.
But there are some data models that cannot handle missing data natively. In such
cases, it might be useful to perform data imputation to feed these models a version
of the dataset that has the missing values filled in. This imputation task itself is
performed by a model that is trained on the data. Examples of such techniques
include e.g. MissForest [31], MissPaLasso [30], mice [3], KNNimpute [34], and
Bayesian approaches [1, 7].

9.4.2.3 Resource Allocation

Another important aspect of an Automatic Statistician is resource usage. For
example, a user might only have a limited number of CPU cores available, or
might be interested to get the best possible report within a fixed time limit,
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e.g. before a given deadline. To make good model selection and evaluation choices,
an intelligent system might take into account such resource constraints. The ability
to do so will affect the overall usability of the system.

Even when there are no direct constraints on computation time, CPU cores, or
memory usage, an intelligent system might benefit from allocating resources to
models whose evaluation is promising for the chosen deliverable. Such functionality
can be implemented for models that support some form of gradual evaluation, for
example by training incrementally on increasingly large subsets of the dataset. One
of our systems used a variant of Freeze-thaw Bayesian optimisation [32] for this
purpose.

9.5 Conclusion

Our society has entered an era of abundant data. Analysis and exploration of the
data is essential for harnessing the benefits of this growing resource. Unfortunately,
the growth of data currently outpaces our ability to analyse it, especially because
this task still largely rests on human experts. But many aspects of machine learning
and data analysis can be automated, and one guiding principle in pursuit of this goal
is to “apply machine learning to itself”.

The Automatic Statistician project aims to automate data science by taking care
of all aspects of data analysis, from data pre-processing, modelling and evaluation,
to the generation of useful and transparent results. All these tasks should be
performed in a way that requires little user expertise, minimises the amount of user
interaction, and makes intelligent and controlled use of computational resources.

While this aim is ambitious, and a lot of the work still needs to happen,
encouraging progress has been made towards the creation of such automated
systems. Multiple Automatic Statistician systems have been built, each with slight
differences in purpose and underlying technology, but they all share the same
intent and much of the same design philosophy. We hope that the creation of such
instruments will bring the ability to gain insights from data to a larger group of
people, and help empower society to make great use of our data resources.
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