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Abstract

We propose probabilistic models that can extrapolate learning curves of iterative machine
learning algorithms, such as stochastic gradient descent for training deep networks, based
on training data with variable-length learning curves. We study instantiations of this
framework based on random forests and Bayesian recurrent neural networks. Our exper-
iments show that these models yield better predictions than state-of-the-art models from
the hyperparameter optimization literature when extrapolating the performance of neural
networks trained with different hyperparameter settings.

1. Introduction

The efficient optimization of machine learning hyperparameters is one of the most basic yet
most important tasks in automated machine learning (AutoML, Hutter et al. (2018)). E.g.,
hyperparameter optimization has already achieved remarkable improvements of the state-of-
the-art in different applications, such as natural language processing (Melis et al., 2018) or
AlphaGO (Chen et al., 2018). A wide range of hyperparameter optimization methods exists
(see, e.g., Feurer and Hutter (2018) for an overview), and since the objective function of
interest (e.g., cross-validation error) is typically expensive, the most efficient methods tend
to leverage cheap-to-evaluate proxies (so-called fidelities) (Swersky et al., 2014; Domhan
et al., 2015; Baker et al., 2017; Kandasamy et al., 2017; Klein et al., 2017a,b; Li et al., 2017;
Falkner et al., 2018).

A frequently used fidelity for iterative machine learning algorithms is the performance
over time or iterations, the so-called learning curve: the early performance of a network
architecture or hyperparameter configuration is typically quite indicative of its final per-
formance when trained to convergence. Some approaches model these learning curves to
decide whether to stop or continue the evaluation of a hyperparameter configuration (Swer-
sky et al., 2014; Domhan et al., 2015; Baker et al., 2017; Klein et al., 2017b; Li et al., 2017;
Falkner et al., 2018), while others actively choose a budget before evaluating in order to
maximize the information gained per time spent (Klein et al., 2017a; Kandasamy et al.,
2017).
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Another key difference between previous methods lies in what the model predicts based
on what information. Several approaches (Swersky et al., 2014; Kandasamy et al., 2017;
Klein et al., 2017b,a) build a global model capable of predicting the performance at any
fidelity based on the hyperparameter configuration alone. Others (Baker et al., 2017; Falkner
et al., 2018) only train models that predict the learning curve for a fixed set of fidelities, and
a third group (Li et al., 2017; Domhan et al., 2015) only operates on single learning curves
and extrapolates them without taking the hyperparameter configuration into account.

A final notable distinction are the assumptions going into the model. Many existing
methods use hand-designed basis functions describing common characteristics of learning
curves (Domhan et al., 2015; Klein et al., 2017a,b; Swersky et al., 2014), while others (Baker
et al., 2017; Kandasamy et al., 2017; Li et al., 2017; Falkner et al., 2018) make no or very
weak assumptions about the shape of the learning curves, but rely more heavily on observed
training data.

Surprisingly, none of the existing methods truly takes into account the sequential nature
of learning curves by using a sequence model that can be rolled out for an arbitrary number
of time steps. In this paper, we fill this gap; our contributions are as follows:

• We introduce the first sequence models for learning curve prediction. We provide
instantiations based on random forests and Bayesian neural networks that also take
hyperparameter configurations into account.

• These sequence models are the first that can cheaply generate extrapolations of par-
tially observed learning curves with similar characteristics to those in the training
data.

• In preliminary experiments, we show that these models are not only more flexible and
accurate than previous learning curve models, but also allow to efficiently transfer
knowledge to new tasks with the same input domain.

2. Probabilistic Prediction of Learning Curves

Previous work (Swersky et al., 2014; Klein et al., 2017b) casts the prediction ỹt ∈ R of
the performance yt ∈ R of a hyperparameter configuration θ ∈ Θ at a time step t ∈ R
as a mapping ỹt = g(xt;ω) with xt = [θ>, t]> and ω being the collection of the model
parameters.

Instead, we treat learning curves as sequential time series and predict the value at the
current time step based on the values observed at previous time steps. More formally, we

keep the same mapping ỹt = g(xt;ω) but augment the input xt =
[
θ>, yt−K−1, . . . , yt−1

]>
by the past K observed points yt−K−1, . . . , yt−1. We assume that the unknown true objec-
tive function f(θ, t) is only observable with noise yt = f(θ, t) + ε, with ε ∼ N (0, σ2). To
predict for an unseen data point x?

t during inference time, we approximate the predictive
distribution by a Gaussian:

p(y?t | x?
t ,D) ≈ N

(
µ(y?t | x?

t ,D), σ2(y?t | x?
t ,D)

)
(1)

where D = {x(0),y(0), . . .x(N−1),y(N−1)} is the training dataset that consists of N learning
curves with potentially varying lengths, together with their corresponding hyperparameter
configuration vectors. We now describe how to predict µ(y?t | x?

t ,D) and σ2(y?t | x?
t ,D) in
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Equation 1 using two different probabilistic regression models: random forests (RFs) and
variational recurrent neural networks (VRNNs).

2.1 Random Forests

First, we consider random forests (Breimann, 2001) because of their conceptual simplicity
and practical robustness against their own hyperparameters. Following Hutter et al. (2014),
given a forest with B trees, each tree i stores the empirical mean µ̃i and variance σ̃2i and, for
a test point x?

t , the forest returns a Gaussian predictive distribution N (µ̃(y?t | x?
t ,D), σ̃2(y?t |

x?
t ,D)) where µ̃(y?t | x?

t ,D) = 1/B
∑

i µ̃i is the mean of the individual tree predictions and
σ̃2(y?t | x∗t ,D) = 1/B ·

∑
i σ̃

2
i + 1/B ·

∑
i[µ̃i − µ̃(y?t | x∗t ,D)]2 is computed based on the law

of total variance. At inference time, this model requires access to the first K points of
an unseen learning curve, but can then extend these to arbitrary length, which we call
a roll out. For a single roll out, we sample y∗K+1 from the predictive distribution defined
above. This process can then be consecutively applied until a whole sequence [ỹrK+1, . . . , ỹ

r
T ]

is generated up to some time step T . By averaging over R independent roll outs, we
approximate Equation 1 by a Gaussian with mean µ(y?t | x?

t ,D) = 1
R

∑R
r=1 ỹ

r
t and variance

σ2(y?t | x?
t ,D) = 1

R

∑R
r=1(ỹ

r
t − µ(y?t | x?

t ,D))2.

2.2 Variational Recurrent Neural Networks (VRNNs)

yθ

h1

[h1 � z1,y]

r1

θ

h2

[h2 � z2, h̃1]

r2

h3

ỹ

Figure 1: VRNN model.

Due to their success for time series prediction (e.g. Rangapu-
ram et al. (2018)), we also consider recurrent neural networks in
form of long short-term memory (LSTM) cells (Hochreiter and
Schmidhuber, 1997). To obtain uncertainty estimates, we use
variational dropout (Gal and Ghahramani, 2016a,b) to allow for
a Bayesian treatment of the weights. Given a hyperparameter
configuration θ, a dropout rate d ∈ (0, 1), and the previous ob-
served point in the learning curve yt−1, we predict the next step
by:

ỹt = h3 (r2 (h2 � z2, r1 (h1 � z1, yt−1))) ,

where

h1 = h1(θ) h2 = h2(θ)

z1 ∼ Bernoulli(1− d) z2 ∼ Bernoulli(1− d)

and � denotes the element-wise product, ri(·) are LSTM blocks
and hi(·) feedforward neural networks. See Figure 1 and Sec-
tion A in the Appendix for a graphical representation of our model, where we used h̃1 to
indicate the output of r1. As described above for the random forest, to predict for an unob-
served point in a learning curve y?t at any time step t, we first perform R rollouts by keeping
dropout active and feed the prediction of our model back to itself. The final prediction is
then the mean and variance of the rollouts (MC dropout). Note that, compared to the
random forest, we set K = 1 and implicitly accumulate memory of the previous observed
points in the hidden state of the LSTMs. By introducing a dummy value y0 = 0, we do not
even require to observe any points of the learning curve at test time.
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Figure 2: Qualitative assessment of the test roll-out performances of VRNN for different
numbers of observed epochs (black vertical line) on the MNIST benchmark. Different colors
stand for different configurations. The shaded area corresponds to 1σ.
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(b) 8 observed epochs
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(c) 16 observed epochs
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(d) 32 observed epochs

Figure 3: Qualitative comparison of the test predictions of VRNN and LCNet models
for different numbers of observed epochs (the black vertical line) for one learning curve
randomly sampled from the MNIST dataset. The shaded area corresponds to 1σ.

3. Experiments

In this section, we first empirically evaluate the performances of our probabilistic mod-
els, dubbed VRNN and RF, and compare them against other non roll-out state-of-the-art
probabilistic regression models for learning curve prediction. Afterwards, we present some
preliminary results that show the potential of our model to predict learning curves from un-
seen datasets, and that hint towards possible meta-learning and transfer-learning extensions
of this work.

3.1 Learning Curve Prediction

To test the predictive strength of our learning curve model, we generated four different
sets of learning curves of a feed forward neural network as training data. For each dataset,
we sampled 5000 hyperparameter configurations randomly from the configuration space
described in Table 1 in Section B in the Appendix and trained each configuration for 50
epochs with Adam (Kingma and Welling, 2014) on the datasets MNIST (LeCun et al.,
2001), Adult (Kohavi, 1996), Higgs (Baldi et al., 2014) and Vehicle (Siebert, 1987) collected
from OpenML (Vanschoren et al., 2014). The same learning curve datasets were also used
in (Falkner et al., 2018). For our experiments we used 25% of each dataset as test data,
and trained each method on the remaining part with full-length learning curves. Due to
space constraints, we only show experiments on the MNIST benchmark (see the Appendix
for the experiments with the other datasets).

As baselines, we consider LCNet (Klein et al., 2017b), a random forest baseline (RF-
B) as described by Klein et al. (2017b) and the last seen value (LSV) heuristic, that,
despite its simplicity, is successfully used in Hyperband (Li et al., 2017). Note that, LSV
does not provide uncertainty estimates, therefore we used it only to compare against mean
predictions. While we found the random forest based methods to be robust against their own
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Figure 4: Assessment of the test predictive quality of the different models at target epoch 40
on the MNIST benchmark for different numbers of observed points from the learning curves.
Note that RF-B and LCNet are not capable of adapting their predictions online without
retraining, hence their constant error across epochs. Note that LSV does not provide a
predictive variance.

hyperparameters, we used BOHB (Falkner et al., 2018) to optimize the hyperparameters of
our model and LCNet on the MNIST dataset and then used the best found configuration
for all experiments (see Section C in the Appendix for more details).

Even though LCNet and RF-B allow to predict for completely unobserved curves, only
our models are able to correct their test predictions on the fly without the need for retraining
after observing initial points from the true learning curve. This property, illustrated in
Figures 2, 3 and 4, (see Section E in the Appendix for additional Figures), is fundamental for
multi-fidelity hyperparameter optimization methods, such as Hyperband (Li et al., 2017) or
BOHB (Falkner et al., 2018), where learning curves of different configurations are extended
to different budgets. In particular, in Figures 3 and 4, the test performances of different
methods for different numbers of observed points at test time are shown. All the models
were trained on the MNIST benchmark for full-length learning curves. The roll-out methods
take as input also the extra information provided at test time from the partially observed
learning curves. Therefore their predictions do not remain unchanged, as those produced
by LCNet and RF-B models, but improve with increasing number of observed epochs.

This flexibility comes together with a higher quality of predictions, as shown in Figures 3
and 5 (see also the Tables in Section D of the Appendix). In addition, another benefit
compared to the LCNet model is that our model does not rely on prior user knowledge of
the learning curves shape through the use of the parametric basis functions.

As shown in Figure 4, the performance of roll-out models based on random forests
degrades significantly with the reduction of the input size (see also Figures 12–19, 21 and 22
in Appendix E). This is due to their intrinsic inability of modeling sequence-type data, such
as learning curves. Therefore, this class of methods might require an input size whose cost
could realistically be non-negligible for scenarios such as learning curves generated by the
training of state-of-the-art deep neural networks.

3.2 Predictions for Unseen Datasets

We now conduct preliminary experiments to study the performances of our roll-out models
on unseen datasets, by training them on the MNIST benchmark and using these trained
models to extrapolate partial learning curves on other datasets without retraining. Even
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Figure 5: Qualitative assessment at different target epochs on the MNIST benchmark of the
test roll-out performances of VRNN with 4 observed epochs and LCNet. Each plot shows
on the horizontal axis the true values and on the vertical axis the predicted values. Each
point is colored based on its log-likelihood value.
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Figure 6: Qualitative assessment of VRNN predictions on the Vehicle benchmark when
trained on MNIST for different numbers of observed epochs (black vertical line).

though the same configuration potentially leads to vastly different performances across
different datasets (as also observed in our benchmarks), Figure 6 suggests that the VRNN
model can adjust its predictions on the fly by starting its roll-outs with the initial learning
curves observed on the new dataset. Based on these results (see also Figures 26–33 in
Appendix E), we believe that our model is very promising for a variety of meta-learning
and transfer-learning extensions.

4. Conclusion and Possible Use Cases of our Roll-Out Models

We proposed new roll-out models for the learning curve prediction task, based on random
forests and variational recurrent neural networks. These models offer more flexibility and
better performances than previous state-of-the-art learning curve prediction methods from
the literature. In addition, they show to be capable of adapting their predictions to unseen
datasets. We now list some of the possible future extensions of this work in AutoML tasks:

• Explicit dataset meta-features can be integrated and/or a latent task embedding learnt
in order to enable direct learning across datasets.
• Our model could be used to warmstart bandit-based hyperparameter optimizers, such

as Hyperband and BOHB, and replace the individual models learnt by BOHB for each
fidelity.
• Our model could also be used to directly make decisions about which learning curves

to extend, akin to Freeze-Thaw Bayesian optimization (Swersky et al., 2014).
• High-quality and flexible uncertainty estimates of time-series predictions are impor-

tant in scenarios based on the exploitation-exploration paradigm. This makes our
model attractive also for reinforcement-learning applications.

Due to this breadth of possible use cases, we expect our model to be useful in developing
different types of new AutoML systems. To facilitate this, we make open-source code
available for our model and experiments at https://github.com/gmatilde/vdrnn.
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Appendix A. Details about the models

yθ

h1

[h1 � z1,y]

r1

θ

h2

[h2 � z2, h̃1]

r2

h3

ỹ

Figure 7: Folded schematic of the VRNN model for learning curve prediction. h1, h2 and
h3 are feedforward neural networks, r1 and r2 are LSTM blocks and h̃1 is the output of
r1. Given the learning curve ỹ(i) = (y0, . . . , yT ), in the graph ỹ = (ỹ1, . . . , ỹT ) is the
vector of the predicted values, y = (y0, y1 . . . , yT−1) is the input at training time and
y = (y0, . . . ỹM−1, ỹM , . . . , ỹT−1) is the input at evaluation time and where M is the number
of observed points, z1 and z2 are dropout masks sampled from a Bernoulli distribution
and are kept fixed across time steps, and θ is the configuration vector, which is fed into
a feedforward neural network and then used to initialize the hidden states of the LSTM
blocks. The bold arrows indicate the recurrence.
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Appendix B. Datasets

Table 1 reports the hyperparameters of the benchmarks from which the learning curves
datasets described in Section 3.1 are generated.

Hyperparameter Name Range Log-Scale

initial learning rate [10−6, 10−2] X
batch size [16, 256] X
average units per layer [24, 28] X
final learning rate fraction [10−4, 100] X
shape parameter 1 [0, 1] X
dropout 0 [0.0, 0.5] −
dropout 1 [0.0, 0.5] −
number of layers [1, 5] −

Table 1
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Appendix C. Hyperparameter optimization

In order to select the architecture for our model and the hyperparameters that control the
training procedure (see Table 3 for a list of the hyperparameters), we used BOHB (Falkner
et al., 2018) as hyperparameter optimizer on the MNIST learning curves benchmark and the
set-up described in Table 2. The configuration returned as incumbent was then used in all
the VRNN experiments and showed good performances across all the considered datasets.
The selected configuration is reported in Table 4.

In order to optimize the LCNet’s hyperparameters, we also run BOHB with the same
set-up (see Table 2) on MNIST learning curves benchmark. Since numerical instability
problems were occurring during the training procedure when the incumbent configuration
returned by BOHB was applied, for the experiments with this model we then used the
default configuration, which appeared to be more robust (Table 5 reports a list of the
hyperparameters of LCNet together with their default values).

As optimizers we used SGD with momentum and adaptive SGHMC for the VRNN
and LCNet experiments, respectively. Regarding the experiments with the VRNN model,
in order to speed up the training procedure, we also used a curriculum learning based
technique (Bengio et al., 2019) and linearly increased the length of the input sequence during
training, starting from a selected number of initial observed epochs (this hyperparameter,
dubbed “initial observed epochs”, was also optimized with BOHB and the selected value is
reported in Table 4).

Hyperparameter Name Value

η 2
number of iterations 1000
min time budget (min) 2
max time budget (min) 10

Table 2: Set-up of BOHB optimizer used to optimize VRNN and LCNet’s hyperparameters.

Hyperparameter Name Range Log-Scale Type

initial learning rate [10−5, 10−1] X FLOAT
momentum [0, 0.99] − FLOAT
final learning fraction [10−4, 100] X FLOAT
batch size [4, 128] X INTEGER
initial observed epochs [5, 50] X INTEGER
number of stacked LSTMs [1, 2] − INTEGER
number of layers for final MLP [1, 2] − INTEGER
number of layers for config. MLP [1, 2] − INTEGER
number of units for LSTM [22, 27] X INTEGER
number of units for final MLP [22, 27] X INTEGER
number of units for config. MLP [22, 27] X INTEGER
learning rate scheduler [cos, exp, const] − CATEGORICAL

Table 3: Hyperparameter configuration space of the VRNN model described in Section 2.2.

11



Gargiani and Klein and Falkner and Hutter

Hyperparameter Name Selected Value

initial learning rate 0.027
final learning fraction 0.0008
batch size 22
initial observed epochs 5
number of stacked LSTMs 2
number of layers for final MLP 1
number of layers for config. MLP 1
number of units for LSTM 6
number of units for final MLP 103
number of units for config. MLP 115
learning rate scheduler cos

Table 4: Incumbent hyperparameter configuration selected by BOHB optimizer.

Hyperparameter Name Range Log-Scale Type Default

learning rate [10−5, 10−1] X FLOAT 0.001
momentum [0, 0.99] − FLOAT 0.05
batch size [4, 128] X INTEGER 40

Table 5: Hyperparameter configuration space of LCNet.

Appendix D. Tables with Mean Squared Error and Median
Log-Likelihood

Tables 6–9 report for each method the achieved mean squared error and median log-
likelihood averaged over all the epochs on the four considered datasets for different numbers
of observed epochs at test time, respectively. The same metrics but across different epochs
are also plotted in Figures 24 and 25. We observe that our VRNN model and RF 4 con-
sistently yield to better predictions. VRNN* and RF* 4 are used in the Tables to denote
respectively VRNN and RF 4 models trained on the MNIST benchmark and then used to
evaluate on the other unseen datasets.
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epochs 4 mnist higgs adult vehicle

Methods mse ll mse ll mse ll mse ll

VRNN 3e−3±0.01 2.2± 1.1 6e−4± 0.0 2.75± 1.8 1e−3±0.01 2.57± 0.9 1e−3± 0.0 2.9± 1.3

RF 1 0.03± 0.07 0.89± 927 5e−4± 0.0 2.9± 5.5 1e−3±0.01 3.7± 8.6 2e−3±0.01 3.4± 16

RF 4 0.02± 0.01 2.7± 4.5 2e−4± 0.0 3.2± 0.9 3e−4±0.00 3.8± 1.12 4e−4± 0.0 3.9± 1.12

LSV 0.02± 0.03 −− 1e−3± 0.0 −− 3e−3±0.01 −− 4e−3±0.01 −−

RF-B 0.01± 0.05 0.01± 1.0 5e−4± 0.0 1.6± 0.4 2e−3±0.01 1.6± 1.1 1e−3± 0.0 1.3± 0.9

LCNet 0.02± 0.04 1.03± 1.0 3e−3± 0.0 1.21± 0.16 0.01± 0.02 1.12± 0.74 5e−3±0.01 1.41± 0.6

VRNN* 3e−3±0.01 2.2± 1.1 0.01± 0.01 −2.7± 3.4 3e−3± 0.0 0.86± 1.94 3e−3± 0.0 1.16± 2.3

RF* 4 0.02± 0.01 2.7± 4.5 1e−3± 0.0 2.16± 1.37 1e−3± 0.0 2.15± 1.3 1e−3± 0.0 2.37± 1.15

Table 6: Average total mean squared error and median log-likelihood achieved by the
different models for 4 observed epochs at evaluation time.

epochs 8 mnist higgs adult vehicle

Methods mse ll mse ll mse ll mse ll

VRNN 2e−3±0.01 2.53± 2.1 2e−4± 0.0 3± 1.5 5e−4± 0.0 2.9± 0.8 5e−4± 0.0 3.25± 1.1

RF 1 0.02± 0.06 0.68± 243 4e−4± 0.0 3.2± 5.5 1e−3±0.01 3.9± 8.6 1e−3±0.01 3.7± 13.5

RF 4 1e−3±0.05 2.88± 3.9 2e−4± 0.0 3.32± 0.73 2e−4± 0.0 3.94± 1.1 3e−4±0.10 3.96± 1.1

LSV 5e−3± 0.1 −− 5e−4± 0.0 −− 8e−4±0.01 −− 1e−3± 0.0 −−

RF-B 0.01± 0.05 0.01± 1.0 5e−4± 0.0 1.6± 0.4 2e−3±0.01 1.6± 1.1 1e−3± 0.0 1.3± 0.9

LCNet 0.02± 0.04 1.03± 1.0 3e−3± 0.0 1.21± 0.16 0.01± 0.02 1.12± 0.74 5e−3±0.01 1.41± 0.6

VRNN* 2e−3±0.01 2.53± 2.1 3e−3± 0.0 −0.78±2.4 1e−3± 0.0 1.75± 1.34 1e−3± 0.0 2.3± 2.1

RF* 4 1e−3±0.05 2.88± 3.9 1e−3± 0.0 2.5± 0.6 7e−3± 0.0 2.52± 1.0 1e−3± 0.0 2.65± 1.26

Table 7: Average total mean squared error and median log-likelihood achieved by the
different models for 8 observed epochs at evaluation time.
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epochs 16 mnist higgs adult vehicle

Methods mse ll mse ll mse ll mse ll

VRNN 5e−4± 0.0 3± 1.1 7e−5± 0.0 3.3± 0.9 2e−4± 0.0 3.38± 0.7 2e−4± 0.0 3.7± 1.3

RF 1 0.02± 0.04 1.13± 89.6 3e−4± 0.0 3.48± 2.9 1e−3± 0.0 4.1± 5.6 1e−3± 0.0 3.99± 7.8

RF 4 2e−4± 0.0 3.64± 1.2 6e−5± 0.0 3.81± 0.7 9e−5± 0.0 4.4± 0.8 2e−4± 0.0 4.47± 1.0

LSV 8e−4± 0.0 −− 1e−4± 0.0 −− 1e−4± 0.0 −− 3e−4± 0.0 −−

RF-B 0.01± 0.05 0.01± 1.0 5e−4± 0.0 1.6± 0.4 2e−3±0.01 1.6± 1.1 1e−3± 0.0 1.3± 0.9

LCNet 0.02± 0.04 1.03± 1.0 3e−3± 0.0 1.21± 0.16 0.01± 0.02 1.12± 0.74 5e−3±0.01 1.41± 0.6

VRNN* 5e−4± 0.0 3± 1.1 2e−3± 0.0 1e−3±2.35 7e−4± 0.0 2.35± 1.41 1e−3± 0.0 2.89± 2.1

RF* 4 2e−4± 0.0 3.64± 1.2 1e−3± 0.0 3.1± 0.6 3e−4± 0.0 3.2± 0.5 3e−4± 0.0 3.4± 1.2

Table 8: Average total mean squared error and median log-likelihood achieved by the
different models for 16 observed epochs at evaluation time.

epochs 32 mnist higgs adult vehicle

Methods mse ll mse ll mse ll mse ll

VRNN 1e−4± 0.0 3.7± 1.2 2e−5± 0.0 3.81± 1.5 6e−5± 0.0 4.04± 0.8 4e−5± 0.0 4.49± 1.6

RF 1 5e−3±0.01 2.62± 3.7 1e−4± 0.0 3.97± 0.9 3e−4± 0.0 4.43± 1.8 4e−4± 0.0 4.64± 2.5

RF 4 4e−5± 0.0 4.31± 0.8 2e−5± 0.0 4.31± 0.3 3e−5± 0.0 4.8± 0.6 4e−5± 0.0 5.0± 1.3

LSV 3e−5± 0.0 −− 7e−6± 0.0 −− 8e−6± 0.0 −− 9e−6± 0.0 −−

RF-B 0.01± 0.05 0.01± 1.0 5e−4± 0.0 1.6± 0.4 2e−3±0.01 1.6± 1.1 1e−3± 0.0 1.3± 0.9

LCNet 0.02± 0.04 1.03± 1.0 3e−3± 0.0 1.21± 0.16 0.01± 0.02 1.12± 0.74 5e−3±0.01 1.41± 0.6

VRNN* 1e−4± 0.0 3.7± 1.2 1e−3± 0.0 0.54± 2.4 4e−4± 0.0 3.123±1.63 5e−4± 0.0 3.75± 2.9

RF* 4 4e−5± 0.0 4.31± 0.8 1e−4± 0.0 3.8± 0.3 7e−5± 0.0 4.03± 0.36 6e−5± 0.0 4.25± 0.6

Table 9: Average total mean squared error and median log-likelihood achieved by the
different models for 32 observed epochs at evaluation time.
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Appendix E. Additional Plots

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

mnist

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
higgs

0 10 20 30 40 50
epochs

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

vehicle

0 10 20 30 40 50
epochs

0.00

0.25

0.50

0.75

1.00
adult

Figure 8: Qualitative assessment of the test roll-out performances of VRNN for 4 observed
epochs (the black vertical line). Different colors of learning curves stand for different con-
figurations, while the black dashed lines represent the true learning curves.
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Figure 9: Qualitative assessment of the test roll-out performances of VRNN for 8 observed
epochs (the black vertical line). Different colors of learning curves stand for different con-
figurations, while the black dashed lines represent the true learning curves.
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Figure 10: Qualitative assessment of the test roll-out performances of VRNN for 16 ob-
served epochs (the black vertical line). Different colors of learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 11: Qualitative assessment of the test roll-out performances of VRNN for 32 ob-
served epochs (the black vertical line). Different colors of learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 12: Qualitative assessment of the test roll-out performances of RF 4 for 4 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 13: Qualitative assessment of the test roll-out performances of RF 4 for 8 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 14: Qualitative assessment of the test roll-out performances of RF 4 for 16 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 15: Qualitative assessment of the test roll-out performances of RF 4 for 32 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 16: Qualitative assessment of the test roll-out performances of RF 1 for 4 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 17: Qualitative assessment of the test roll-out performances of RF 1 for 8 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 18: Qualitative assessment of the test roll-out performances of RF 1 for 16 observed
epochs (the black vertical line). Different colors of the learning curves stand for different
configurations, while the black dashed lines represent the true learning curves.
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Figure 19: Qualitative assessment of the test roll-out performances of RF 1 for 32 epochs
(the black vertical line). Different colors of the learning curves stand for different configu-
rations, while the black dashed lines represent the true learning curves.
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Figure 20: Qualitative assessment at different target epochs of the test roll-out performances
of VRNN with 4 observed epochs on the four different datasets. Each plot shows on the
horizontal axis the true values and on the vertical axis the predicted values. Each point is
colored based on its log-likelihood value.

21



Gargiani and Klein and Falkner and Hutter

0

0.25

0.5

0.75

1 epoch 10 epoch 20

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 epoch 30

0 0.25 0.5 0.75 1

epoch 40

50

40

30

20

10

0

true values

pr
ed

ic
te

d 
va

lu
es

mnist

0

0.25

0.5

0.75

1 epoch 10 epoch 20

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 epoch 30

0 0.25 0.5 0.75 1

epoch 40

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

true values

pr
ed

ic
te

d 
va

lu
es

higgs

0

0.25

0.5

0.75

1 epoch 10 epoch 20

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 epoch 30

0 0.25 0.5 0.75 1

epoch 40

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

true values

pr
ed

ic
te

d 
va

lu
es

vehicle

0

0.25

0.5

0.75

1 epoch 10 epoch 20

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 epoch 30

0 0.25 0.5 0.75 1

epoch 40

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

true values

pr
ed

ic
te

d 
va

lu
es

adult

Figure 21: Qualitative assessment at different target epochs of the test roll-out performances
of RF 4 with 4 observed epochs on the four different datasets. Each plot shows on the
horizontal axis the true values and on the vertical axis the predicted values. Each point is
colored based on its log-likelihood value.
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Figure 22: Qualitative assessment at different target epochs of the test roll-out performances
of RF 1 with 4 observed epochs on the four different datasets. Each plot shows on the
horizontal axis the true values and on the vertical axis the predicted values. Each point is
colored based on its log-likelihood value.
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(a) VRNN.
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Figure 23: Predictions of roll-out models for the case of a very bumpy learning curve from
the Higgs benchmark.
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Figure 24: The panels show how the mean squared error at different target epochs (y-axis)
varies with the number of observed points from the true learning curve at evaluation time
(x-axis) for different methods on the four considered benchmarks.
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Figure 25: The panels show how the median log-likelihood at different target epochs (y-axis)
varies with the number of observed points from the true learning curve at evaluation time
(x-axis) for different methods on the four considered benchmarks.
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Figure 26: Qualitative assessment of RF 4 predictions on the Vehicle benchmark when
trained on MNIST for different numbers of observed epochs at test time (the black vertical
line).
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Figure 27: Qualitative assessment of VRNN predictions on the Adult benchmark when
trained on MNIST for different numbers of observed epochs at test time (the black vertical
line).
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Figure 28: Qualitative assessment of RF 4 predictions on the Adult benchmark when trained
on MNIST for different numbers of observed epochs at test time (the black vertical line).
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Figure 29: Qualitative assessment of VRNN predictions on the Higgs benchmark when
trained on MNIST for different numbers of observed epochs at test time (the black vertical
line).
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Figure 30: Qualitative assessment of RF 4 predictions on the Higgs benchmark when trained
on MNIST for different numbers of observed epochs at test time (the black vertical line).
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Figure 31: The panels show on the horizontal axis the true values and on the vertical axis the
predicted values on Vehicle benchmark for VRNN (left) and RF 4 (right) when trained on MNIST.
Each point is colored based on its log-likelihood value.
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Figure 32: The panels show on the horizontal axis the true values and on the vertical axis the
predicted values on the Adult benchmark for VRNN with 4 observed points (left) and RF 4 (right)
when trained on MNIST. Each point is colored based on its log-likelihood value.
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Figure 33: The panels show on the horizontal axis the true values and on the vertical axis the
predicted values on the Higgs benchmark for VRNN with 4 observed points (left) and RF 4 (right)
when trained on MNIST. Each point is colored based on its log-likelihood value.
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