
6th ICML Workshop on Automated Machine Learning (2019)

An Open Source AutoML Benchmark

Pieter Gijsbers1* p.gijsbers@tue.nl

Erin LeDell2* erin@h2o.ai

Janek Thomas3* janek.thomas@stat.uni-muenchen.de

Sébastien Poirier2* sebastien@h2o.ai

Bernd Bischl3 bernd.bischl@stat.uni-muenchen.de

Joaquin Vanschoren1 j.vanschoren@tue.nl
* The four authors contributed equally to the paper.
1 Eindhoven University of Technology, Netherlands
2 H2O.ai, United States
3 Ludwig-Maximilians-University Munich, Germany

Abstract

In recent years, an active field of research has developed around automated machine learning
(AutoML). Unfortunately, comparing different AutoML systems is hard and often done
incorrectly. We introduce an open, ongoing, and extensible benchmark framework which
follows best practices and avoids common mistakes. The framework is open-source, uses
public datasets and has a website with up-to-date results. We use the framework to conduct
a thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.

1. Introduction

Designing and tuning machine learning systems is a labor and time intensive task which
requires extensive expertise. The field of automated machine learning (AutoML) is focused
on automating this task. AutoML tools allow novice users to create useful machine learning
models, while experts can use them to free up valuable time for other tasks. In recent years,
many approaches have been developed for building and optimizing model learning pipelines,
or building and optimizing deep neural networks. This paper focuses on the former.

The Need for Standardized Benchmarks

There is no universally best AutoML approach. Hence, we need comparisons to help prac-
titioners select the right tools, and provide objective feedback to the research community.
Unfortunately, many current comparisons are lacking in several ways. The selection of
datasets is often too limited in scope, typically reusing the same (mostly small) datasets
used in comparisons many years ago (Thornton et al., 2013). This increases the possibility
of overfitting on a specific set of datasets, creates a bias towards older datasets rather than
current challenges, and may fail to show individual tool’s strengths or weaknesses. Authors
may even knowingly or unknowingly select datasets on which current systems perform well.
Finally, ‘rival’ methods may not have been run correctly, for instance by misunderstanding
memory management and/or using insufficient compute resources (Balaji and Allen, 2018).

c©2019 P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl and J. Vanschoren.



Gijsbers, LeDell, Thomas, Poirier, Bischl and Vanschoren

Tool Back-end Optimization Meta-learning Post-processing

Auto-WEKA WEKA Bayesian - -
auto-sklearn scikit-learn Bayesian warm-start ensemble selection
TPOT scikit-learn Genetic Programming - -
H2O AutoML H2O Random Search - stacked ensembles

Table 1: Simplified comparison of a selection of AutoML tools.

A New Hope

In this work, we present an open, extensible and ongoing AutoML benchmark to address
these problems. The benchmark is completely open source1, and allows anyone to extend it
by adding or updating AutoML systems through pull requests. Finally, it is ongoing because
we will update it with new benchmark datasets, run the experiments again when AutoML
tools have substantial version updates. The benchmark is accompanied by a website which
will show the latest results and other information.2

2. Related Literature

AutoML methods differ in their optimization method (e.g. Bayesian Optimization or Ge-
netic Programming), the pipelines they generate (e.g. with or without fixed structure), the
library of algorithms they select from, whether they use meta-learning to learn from runs
on prior datasets, or whether they perform post-processing (e.g. ensemble construction).

Table 1 shows a simplified comparison of the AutoML tools compared in this paper.
The first prominent AutoML tool was Auto-WEKA (Thornton et al., 2013), which used
Bayesian optimization to select and tune the algorithms in a machine learning pipeline
based on WEKA (Hall et al., 2009). auto-sklearn (Feurer et al., 2015) did the same using
scikit-learn (Pedregosa et al., 2011) and added meta-learning to warm-start the search with
the best pipelines on similar datasets, as well as ensemble construction. TPOT (Olson
et al., 2016) optimizes scikit-learn pipelines via genetic programming, starting with simple
ones and evolving them over generations. Finally, H2O AutoML (H2O.ai, 2017) optimizes
H2O components by stacking the best solutions found by a random search.

Notable omissions from this list include autoxgboost (Thomas et al., 2018), which lever-
ages Bayesian optimization to optimize gradient boosting models, OBOE (Yang et al.,
2018), which uses low-rank approximation to predict the best pipelines, ML-Plan (Mohr
et al., 2018), which optimizes WEKA-based pipelines using hierarchical planning, and Hy-
perband (Li et al., 2016), a bandit-based approach which aggressively selects configurations
based on performance on subsamples of data. We do plan to include these in the next
version of the benchmark. In some cases, we ran into technical issues and we are in contact
with the authors to resolve them. There are also several AutoML systems which were sadly
not yet open sourced at the time of writing, yet we hope that their authors will add them
to the benchmark in the near future.

1. https://github.com/openml/automlbenchmark/

2. https://openml.github.io/automlbenchmark/

2

https://github.com/openml/automlbenchmark/
https://openml.github.io/automlbenchmark/


AutoML Benchmark

Prior efforts to create systematic AutoML benchmarks were sadly obfuscated by mem-
ory management and evaluation setup issues and lack strong baselines to interpret the
results (Balaji and Allen, 2018). We instead opted to build an open-source framework in
dialogue with the AutoML framework developers to ensure the tools were properly used.
While we evaluate on fewer datasets, they are about 15 times larger on average. We followed
best practices on how to construct and run good machine learning benchmarks (Bischl et al.,
2017a) and general-purpose algorithm configuration libraries (Bischl et al., 2017b), but also
extend them since evaluating AutoML systems comes with specific challenges.

3. Benchmark Design

Each benchmark task consists of a dataset, a metric to optimize, and specific resources to
use. We will briefly explain our choice for each. More details are available on the website.

Datasets We selected 39 classification datasets from previous AutoML papers (Thornton
et al., 2013), competitions (Isabelle et al., 2016), and machine learning benchmarks (Bischl
et al., 2017a)3, according to a predefined list of criteria.4 To study the differences between
AutoML systems, the datasets vary in the number of samples and features by orders of
magnitude, and vary in the occurrence of numeric features, categorical features and missing
values. We excluded datasets which were too easily solved with AutoML or did not represent
typical AutoML scenario’s (e.g. artificial datasets). The current list of datasets is available
on OpenML (Vanschoren et al., 2014).5 In line with our goal to regularly update the
benchmark and avoid overfitting on one static set, we set aside some datasets for inclusion
in the near future. We would also like to include even bigger datasets in subsequent versions,
as well as regression datasets, currently omitted because of computational constraints.

Performance metrics The benchmark can be run with a wide range of measures at
the user’s discretion. For the results in this paper, area under the receiver operator curve
(AUROC) is used for binary classification problems and log loss is used for multi-class
classification problems6, mainly because these are insightful, commonly used and supported
by most AutoML tools. It is imperative that AutoML system optimize for the same metric
they are evaluated on. The measures are estimated with ten-fold cross-validation.

Hardware choice and resource specifications To improve reproducibility and exten-
sibilily, we opted to use standard m5.2xlarge instances available on Amazon Web Services
(AWS).7 These represent commodity level hardware which also keep the cost of running
the benchmark down. It is not required to run the benchmark on AWS however, as the
benchmark can also be run locally directly on the machine or from a docker container.

Frameworks and their configuration We required all AutoML tools to be open source.
We selected the current set of tools based on popularity, ease of use and variety of underlying
techniques. We do plan to include more tools in future work and encourage all developers

3. OpenML CC-18: https://openml.github.io/OpenML/benchmark

4. For more details, see: https://openml.github.io/automlbenchmark/benchmark_datasets.html

5. Study for this benchmark: https://www.openml.org/s/218

6. We use the implementations provided by scikit-learn 0.20
7. 32 GB memory, 8 vCPUs (Intel Xeon Platinum 8000 series Skylake-SP processor with a sustained all

core Turbo CPU clock speed of up to 3.1 GHz). https://aws.amazon.com/ec2/instance-types/m5/

3

https://openml.github.io/OpenML/benchmark
https://openml.github.io/automlbenchmark/benchmark_datasets.html
https://www.openml.org/s/218
https://aws.amazon.com/ec2/instance-types/m5/


Gijsbers, LeDell, Thomas, Poirier, Bischl and Vanschoren

to add their AutoML tool to the benchmark framework. Baseline methods include a con-
stant predictor, which always predicts the class prior, an untuned Random Forest8, and a
tuned Random Forest for which up to eleven unique values of max features are evaluated
with cross-validation (as time permits), and evaluated by refitting the final model with the
optimal max features values.

The AutoML tools were all used with their default hyperparameter values and search
spaces, since most users will use them in this way. The exception are hyperparameters
which specified available resources, which were fixed to a specific number of cores, memory
and total runtime. This was done to allow a more practical comparison, and because it
is practically impossible to homogenize the search spaces for each tool. It is important to
realize that no two tools share the exact same search space or optimization method, so from
this benchmark no conclusions can be drawn about those.

Open-source, extensible framework structure. In developing the benchmark frame-
work, we made sure that it is easily extensible with new frameworks or datasets. New
AutoML tools can be easily wrapped and included: each of the current tools required less
than 100 lines of wrapper code. Adding a dataset that is hosted on OpenML only takes 3
lines of code. New additions are not evaluated automatically.

Meta-learning AutoML frameworks may use meta-learning to learn about good config-
urations across datasets. An AutoML framework which used datasets of the benchmark in
its meta-learning process will have an unfair advantage on them. We did not decide how
to resolve this issue, and leave it as future work.9 From our selection of frameworks, only
auto-sklearn uses meta-learning, and we indicate affected datasets in the results.

4. Results

We ran two benchmarks, using a time budget of 1 and 4 hours per fold respectively, for a total
of around 8000 hours of computation time. The 4h ‘raw’ results are visualized in Figure 1.
Those results are very similar to the 1h ones, bringing only slight score improvements
for some frameworks, especially TPOT. Auto-WEKA is showing signs of overfitting when
running longer, especially on multi-class problems. There is no AutoML system which
consistently outperforms all others. On some datasets, the performance differences can be
significant, but on others the AutoML methods are only marginally better than a Random
Forest. The variance of the per-fold scores can be quite large. On the ‘dionis‘ and ‘helena‘
datasets, all frameworks perform worse than a Random Forest. Both have more more
than 100, quite unbalanced classes, which seems to be a weak spot for current AutoML
techniques, at least under log loss.

Because the scores vary across tasks, we also normalized them such that the constant
predictor is 0 and the tuned random forest is 1. Shown in Table 2, these scores reflect
the relative improvement over our strongest baseline, with a score greater than one being
better than the strongest baseline. Generally, these scores are very similar across methods,
all being relatively close to the tuned random forest baseline. None of the AutoML systems
outperforms an untuned random forest across all problems, though in most cases they are

8. Unless specified otherwise, Random Forests were built with 2000 estimators and scikit-learn 0.20 defaults.
9. Take a look or join the discussion at https://github.com/openml/automlbenchmark/issues/18

4

https://github.com/openml/automlbenchmark/issues/18


AutoML Benchmark

better than a tuned random forest. Auto-WEKA has the poorest performance out of the
tested AutoML packages under the tested conditions. Note that these results were obtained
using a rather generous time budget. We hope to add anytime performance evaluation
curves in the future, but this is not yet supported by many of the AutoML tools.

Finally, we can observe that on some datasets, some AutoML tools perform significantly
better or worse than others. At the moment, we can’t draw clear conclusions about which
data properties explain this behavior beyond what we observed above. We aim to study
this further by including more datasets.

Figure 1: Scores obtained on each dataset by each framework on each of ten folds. On the
left are binary classification problems with their AUROC scores, on the right are
multi-class classification problems with logloss. Opaque diamonds represent the
average score across all folds.

5



Gijsbers, LeDell, Thomas, Poirier, Bischl and Vanschoren

Framework: auto-sklearn Auto-WEKA H2O AutoML RandomForest TPOT
Binary tasks:

adult 1.045 1.000 1.049 1.000 1.048
airlines 1.403 1.016 1.435 0.997 1.343
albert 1.009 1.115 1.001 0.981

amazon employee... 0.972* 0.886 1.048 1.003 1.012
apsfailure 1.000 0.985 1.001 1.000 1.001
australian 1.010 1.015 0.909 1.010 1.011
bank-marketing 1.012 0.950 1.015 1.000 1.008
blood-transfusion 1.495 1.379 1.532 0.985 1.149
christine 1.072 0.998 1.048 0.988 1.029

credit-g 0.970* 0.829 0.991 1.004 0.924
guiellermo 1.004 0.934 1.024 0.999 0.878

higgs 1.018* 0.845 1.041 0.999 1.005
jasmine 0.987 0.939 1.001 0.998 1.004

kc1 0.999* 0.934 0.992 0.987 1.013

kddcup09 appetency 1.181* 1.043 1.176 1.016 1.134

kr-vs-kp 1.000* 0.959 1.000 0.999 0.999
miniboone 1.008 0.957 1.010 0.999 1.001
nomao 1.002 0.973 1.002 1.000 1.001
numerai28.6 1.679 1.544 1.730 1.042 1.428

phoneme 0.993* 0.998 1.005 1.000 1.015
riccardo 1.000 0.996 1.000 0.999 0.992
sylvine 1.013 0.985 1.011 0.999 1.023

Multi-class tasks:

car 1.030 0.906 1.060 0.878 1.060
cnae-9 1.069 0.541 1.076 0.999 1.057
connect-4 1.184 -1.565 1.409 0.954 1.276
covertype 0.976 -0.361 0.856 0.944 0.933
dilbert 1.182 0.459 1.205 0.979 1.111
dionis 0.580 0.590 1.002
fabert 1.026 -5.235 1.049 1.004 1.005
fashion-mnist 0.995 0.717 1.052 0.993 0.841
helena 0.660 -18.420 1.905 0.970 1.676
jannis 1.083 -1.989 1.065 0.973 0.987
jungle chess... 1.299 -3.309 1.235 0.933 1.459

mfeat-factors 1.059* 0.789 1.053 0.992 1.018
robert -0.001 1.545 1.000 0.640
segment 1.004 0.808 1.012 0.992 1.008
shuttle 1.000 0.979 1.000 1.000 1.000
vehicle 1.102 -4.630 1.166 0.986 1.099
volkert 1.002 -5.585 1.111 0.954 0.945

Table 2: Performance of AutoML frameworks, scaled between a constant class prior predic-
tor (=0) and a tuned random forest (= 1). Missing values mean that no results
were returned in time. *: the task was also included in meta-learning models.

5. Conclusion

We presented a novel benchmark for AutoML frameworks which is open-source, extensible
both in terms of AutoML frameworks and tasks, and ongoing, publishing all the latest results
online. Current results already highlight several avenues for further AutoML research. On
some datasets, none of the frameworks outperforms a Random Forest within 4 hours, and
high-dimensional or highly multi-class problems are often challenging. In future work, we
will include more frameworks and tasks, especially larger datasets and regression tasks.

6



AutoML Benchmark

Acknowledgements

Pieter Gijsbers would like to acknowledge funding by the Data Driven Discovery of Models
(D3M) program run by DARPA and the Air Force Research Laboratory.

References

A. Balaji and A. Allen. Benchmarking automatic machine learning frameworks. CoRR,
abs/1808.06492, 2018. URL http://arxiv.org/abs/1808.06492.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R.G. Mantovani, J.N. van Rijn,
and J. Vanschoren. Openml benchmarking suites. arXiv preprint arXiv:1708.03731,
2017a.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Frechtte, H. Hoos, F. Hut-
ter, K. Leyton-Brown, K. Tierney, and J. Vanschoren. Aslib: A benchmark library for
algorithm selection. arXiv preprint arXiv:1708.03731, 2017b.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In Advances in Neural Information Processing
Systems, pages 2962–2970, 2015.

H2O.ai. H2O AutoML, August 2017. URL http://docs.h2o.ai/h2o/latest-stable/

h2o-docs/automl.html. H2O version 3.14.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka
data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.
ISSN 1931-0145. doi: 10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/

1656274.1656278.

G. Isabelle, C. Imad, H.J. Escalante, S. Escalera, D. Jajetic, J.R. Lloyd, N. Maci, B. Ray,
l. Romaszko, M. Sebag, A. Statnikov, S. Treguer, and E. Viegas. A brief review of the
chalearn automl challenge: Any-time any-dataset learning without human intervention.
In Proceedings of the Workshop on Automatic Machine Learning, volume 64 of Proceedings
of Machine Learning Research, pages 21–30, New York, New York, USA, 24 Jun 2016.
PMLR. URL http://proceedings.mlr.press/v64/guyon_review_2016.html.

L. Li, K.G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Efficient hyperpa-
rameter optimization and infinitely many armed bandits. CoRR, abs/1603.06560, 2016.
URL http://arxiv.org/abs/1603.06560.

F. Mohr, M. Wever, and E. Hüllermeier. Ml-plan: Automated machine learning via hier-
archical planning. Machine Learning, 107(8):1495–1515, Sep 2018. ISSN 1573-0565. doi:
10.1007/s10994-018-5735-z. URL https://doi.org/10.1007/s10994-018-5735-z.

R.S. Olson, R.J. Urbanowicz, P.C. Andrews, N.A. Lavender, L.C. Kidd, and J.H. Moore.
Applications of Evolutionary Computation: 19th European Conference, EvoApplications

7

http://arxiv.org/abs/1808.06492
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://proceedings.mlr.press/v64/guyon_review_2016.html
http://arxiv.org/abs/1603.06560
https://doi.org/10.1007/s10994-018-5735-z


Gijsbers, LeDell, Thomas, Poirier, Bischl and Vanschoren

2016, Porto, Portugal, March 30 – April 1, 2016, Proceedings, Part I, chapter Automat-
ing Biomedical Data Science Through Tree-Based Pipeline Optimization, pages 123–
137. Springer International Publishing, 2016. ISBN 978-3-319-31204-0. doi: 10.1007/
978-3-319-31204-0 9. URL http://dx.doi.org/10.1007/978-3-319-31204-0_9.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

J. Thomas, S. Coors, and B. Bischl. Automatic gradient boosting. In International Work-
shop on Automatic Machine Learning at ICML, 2018.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In Proc. of KDD-
2013, pages 847–855, 2013.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explor. Newsl., 15(2):49–60, 2014.

C. Yang, Y. Akimoto, D.W. Kim, and M. Udell. OBOE: collaborative filtering for automl
initialization. CoRR, abs/1808.03233, 2018. URL http://arxiv.org/abs/1808.03233.

8

http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://arxiv.org/abs/1808.03233

	Introduction
	Related Literature 
	Benchmark Design 
	Results 
	Conclusion

