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Abstract

AutoML aims at automating the process of designing good machine learning pipelines.
Currently, existing AutoML systems are mostly designed for single batch learning. However,
in many real-world applications, the data may arrive continuously in sequential batches,
even possibly with concept drift. This lifelong machine learning scenario raises a new
challenge for AutoML, as most existing AutoML systems cannot effectively evolve over
time and adapt to concept drift. In this paper, we propose a novel AutoML system named
as Auto-Lifelong for the lifelong machine learning scenario. Using boosting tree as the base
model, our system won the second place in the NeurIPS 2018 AutoML Challenge.

1. Introduction

Despite that machine learning has achieved great successes in recent years, it still relies
heavily on human experts to preprocess data, extract features, choose learning algorithms,
and design neural architectures or set hyperparameters. The whole process is quite complex
and thus usually very laborious. AutoML aims to reduce the demand for human efforts in
designing machine learning pipelines by automating the process.

Existing AutoML systems, such as Auto-Sklearn (Feurer et al., 2015) and TPOT (Olson
et al., 2016), are mainly designed for single batch learning, i.e. an AutoML system only
yields one model trained on a single batch of data. However, in many real-world applications,
such as recommendation, online advertising, and fraud detection, the data usually arrives
continuously in successive batches and its distribution may even change dynamically over
time, which is known as suffering concept drift (Gama et al., 2014). This lifelong machine
learning scenario (Chen and Liu, 2016) raises a new challenge for AutoML, as most existing
AutoML systems cannot evolve over time to effectively utilize the latest information and
handle concept drift.

In this paper, to tackle this challenge, we propose a novel AutoML system termed as
Auto-Lifelong for lifelong machine learning. Our system can learn continuously, accumulate
the knowledge learned in the past, and adapt to concept drift, in changing environments.
Using gradient boosting decision tree (GBDT) as the base model, our system won the second
place in the NeurIPS 2018 AutoML Challenge (Escalante et al., 2019).
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Figure 1: The workflow of an AutoML system under the lifelong machine learning scenario.

2. NeurIPS 2018 AutoML Challenge

In this section, we first introduce the workflow of an AutoML system under lifelong machine
learning, and then review the details of the NeurIPS 2018 AutoML Challenge.

As illustrated in Figure 1, the workflow of such an AutoML system is as follows. The
system is first trained on a batch of data with true labels. Then new data arrives sequentially
in batches. At each subsequent stage, the system first predicts the labels of a new test
batch, then the true labels of this batch are revealed to evaluate the prediction results.
After evaluation, the current batch can be used as a new training batch to update the
AutoML system.

The NeurIPS 2018 AutoML Challenge consists of a feedback phase and a blind test
phase. During the feedback phase, five public datasets are provided for the participants
to develop their AutoML systems. During the blind test phase, the developed AutoML
system is blindly tested on five new datasets without any human intervention. As only
binary classification problems are considered in the challenge, normalized AUC (scaling
AUC to [−1, 1]) is used as the evaluation metric.

Compared to previous challenges, this challenge introduces some new difficulties under
the lifelong learning scenario and accordingly raises new requirements for AutoML systems.

• Varied feature types. Four different types of features are included, namely numer-
ical, categorical, multi-value categorical and temporal, which requires a more compli-
cated search space for feature engineering, especially for extracting useful information
from the interaction between different types of features.
• High-cardinality categorical features. Categorical features with high cardinality

following a power-law distribution are given, which requires a proper encoding scheme
to get a compact and informative representation of categorical features.
• Concept drift. The data distribution is changing dynamically over time, which

requires the system to evolve adaptively to handle the drifting concept.
• Scalability. The datasets in the challenge are 10-100 times larger than those in

previous challenges, which requires an efficient and robust design of the system to
satisfy the time and memory constraints.
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Figure 2: The framework of our proposed AutoML system. The boxes represent operations,
the cylinders represent data, and the circle represents the model.

3. Our System

In this section, we first introduce the AutoML system we design for lifelong machine learn-
ing, then introduce the detailed realization used in the competition.

3.1 System Overview

The system framework is illustrated in Figure 2. When a new test batch arrives, the
system first performs data preprocessing, which may include imputing missing values or
removing some low-quality features. Then it comes to feature engineering, which mainly
consists of streaming feature encoding and high-order feature combination. Then using the
learned model in the previous stage, the system makes predictions for the test batch. After
prediction, the true labels of the test batch are revealed to evaluate the performance. Then
the batch with labels is put into the historical data buffer. The system updates the base
model used for prediction by retraining it with subsampled data, which is contained in a
sliding window on the batch sequence saved in the buffer. The optimal configuration of the
base model is given by hyperparameter optimization.

3.2 Categorical Feature Encoding

Encoding is essential for categorical features to transform nominal categories into numerical
representation which can be handled by machine learning models.

The choice of encoding scheme largely depends on the characteristics of the categorical
feature, and has a great influence on model performance (Müller et al., 2016). We highlight
two key factors for choosing the proper encoding scheme used in the competition.

First, as mentioned in Section 2, many categorical features in the challenge have high
cardinality and follow a power-law distribution. The most commonly used encoding schemes
one-hot encoding is therefore infeasible, as it will give an extremely sparse and inefficient
representation with very high dimensions (Micci-Barreca, 2001).
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Second, we prefer encoding schemes which provide practical meanings in the order of
the encoded feature values. This can help construct a more interpretable feature space and
possibly improve the model performance.

Taking these factors into consideration, we adopt a frequency encoding scheme by map-
ping each category X to its frequency in the data batch, which is an empirical estimation of
p(X). Frequency encoding can easily handle high cardinality by providing a compact one-
dimensional representation. Moreover, it provides an ordinal representation with a clear
practical meaning. For example, the frequency of a category may represent the popularity
of an item, which can be used as an informative indicator for the target variable. Due to
the page limit, we give a full comparison of different encoding schemes we have considered
for categorical features in Table 2.

We will further introduce how to improve frequency encoding by streaming encoding in
Section 3.4.

3.3 High-order Feature Combination

High-order feature combination aims at extracting useful information from the interaction
between different features to improve model performance.

There are two key challenges for high-order feature combination. First, the effect of
high-order feature combination varies significantly across datasets, which requires a robust
strategy to choose the proper feature combination for different dataset adaptively. Second,
the search space of high-order feature combination is extremely large, which requires an
efficient strategy to select effective feature transformations within an affordable time budget.
We choose the trade-off between robustness and efficiency based on both prior knowledge
and automated feature selection.

The search space for high-order feature combination in our system for the competition
consists of a set of binary transformations predefined based on prior knowledge, which is
much more complicated than the feature processing methods considered in the winning
solutions of previous AutoML challenges (Feurer et al., 2015, 2018). Due to the page limit,
we give a detailed description of the binary transformations we have used in Appendix B.1.

To search over this feature space and select the proper feature combination for different
datasets, we apply each type of transformation on the original feature set and perform
automated feature selection in an expansion-reduction fashion (Kanter and Veeramachaneni,
2015; Lam et al., 2017), which includes three key steps.

1. Pre-selection. Coarsely select the features used for each type of transformation
based on prior knowledge. For example, we discard categorical features with too many
or too few unique categories for groupby transformation, as the groups corresponding
to these categories usually don’t have a clear practical meaning.

2. Feature generation. Generate new features with all feasible pairs of the pre-selected
features.

3. Post-selection. Add all generated features to the current feature set and train a
coarse GBDT model. If model performance doesn’t improve after adding the new
features, discard this type of transformation for the current dataset. Otherwise, sort
the new features by feature importance score, use the average score as a threshold,
and add the top k generated features above the threshold to the current feature set.
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3.4 Concept Drift Adaptation

Concept drift adaptation aims at evolving the AutoML system over time to utilize the latest
knowledge and adapt to concept drift in streaming data.

Mathematically, concept drift is defined as the change of joint probability of input
variables X and target variable y between different time points t0 and t1:

∃X : pt0(X, y) 6= pt1(X, y).

As a common practice, concept drift can be further classified as real drift and virtual drift
(Gama et al., 2014). Real drift refers to the change of p(X|y), which makes previously
learned model become obsolete and inaccurate on future test batches. Virtual drift refers
to the change of p(X), which makes feature representation inconsistent between batches.
We design a windowing strategy and a streaming encoding scheme to tackle these two types
of drift respectively.

Windowing strategy tackles real drift by maintaining a predictive model consistent
with a set of most recent examples (Widmer and Kubat, 1996; Street and Kim, 2001).
Specifically, we apply a sliding window on historical data batches and retrain a new GBDT
model with the data in the window for each test batch.

Streaming encoding tackles the distribution drift in categorical feature, which ac-
counts for a major part of virtual drift in the challenge. Specifically, (1) To capture the
drifting trends of categorical features, we maintain a streaming frequency encoder and up-
date it in an online fashion. When a new data batch arrives, the information of categorical
features in this batch is utilized to update the mapping function of the streaming encoder.
Mathematically, let pt(X) be the mapping function of category X on batch t, then the
mapping function on the next batch pt+1(X) is updated as:

pt+1(X) =
pt(X) ·Nt + xt+1

Nt + nt+1
,

where Nt is the total number of instances in the previous t batches, nt+1 is the sample size
of batch (t + 1), and xt+1 is the count of category X in batch (t + 1). (2) To achieve a
consistent representation of categorical features between the training set and the test set in
each test stage, we always encode the training set and the test set simultaneously with the
updated encoder in each test stage.

3.5 Other Components

In this subsection, we introduce some other important components in our AutoML system
for the competition.

Model selection. Gradient boosting tree (Friedman, 2001) has been proved to be the
best choice for many real-world problems with heterogeneous features (Chen and Guestrin,
2016). It has also been reported that using gradient boosting tree alone as the candidate
model is sufficient to build an AutoML system with good performance (Feurer et al., 2018;
Thomas et al., 2018). Consequently, we use gradient boosting decision tree, implemented
by LightGBM (Ke et al., 2017), as the only classification model without explicit model
selection, which helps simplify the pipeline and improve the efficiency of our system.
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Hyperparameter optimization. To improve the efficiency of our AutoML system,
we perform hyperparameter optimization with warm start. We firstly search over a hand-
crafted portfolio to find a near optimal configuration, then perform local search around it to
find the best hyperparameters, which is implemented by Hyperopt (Bergstra et al., 2013).
Details of the portfolio and the local search space are illustrated in Appendix B.2.

Resource management. Resource management aims at automatically adjusting the
system configuration to satisfy the resource constraints on different dataset, which consists
of time budget control and memory control. For time budget control, the system firstly
estimates the computational cost of each component, then automatically adjusts some key
configurations to satisfy the time budget, such as whether or not to apply local search in
hyperparameter optimization, and the number of iterations in GBDT. For memory control,
the system firstly estimates the peak value of memory usage based on data size, then
automatically adjusts some key configurations to satisfy the memory constraint, such as
the pool size of multiprocessing and the batch number of the historical data buffer.

4. Challenge Results

The NeurIPS 2018 AutoML Challenge attracted more than 300 participants (Escalante
et al., 2019), and the final ranking of each team is determined by its average ranking on the
five private datasets during the blind test phase. The final ranks of the top 3 teams in the
challenge are shown in Table 1. Our team won the second place with an average ranking of
2.4, which validates the effectiveness and generalization of our AutoML system.

Table 1: Final rankings of the top 3 teams in the challenge.

Team Name Set 1 Set 2 Set 3 Set 4 Set 5 Average

autodidact.ai 2 4 1 2 2 2.2
Meta Learners 3 1 2 1 5 2.4

GrandMasters 4 6 4 3 4 4.2

We have also conducted further experiments on the five public datasets of the feedback
phase to evaluate the novel components proposed in our system. Due to the page limit,
please refer to Appendix C for the experimental results.

5. Conclusion

We propose an AutoML system for lifelong machine learning, an important learning sce-
nario which widely exists in many real-world applications but has rarely been considered
in previous AutoML systems. Our system can learn continuously, accumulate past learned
knowledge and deal with concept drift. For the competition, we adopt GBDT as the base
model, introduce frequency encoding, high-order feature combination and streaming encod-
ing, and obtain a good realization of our system. The resulting system won the second place
in the NeurIPS 2018 AutoML Challenge. For future work, we plan to add a new memory
module to enalbe better continual learning, and enlarge the scope of base models to enable
better model selection.
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Appendix A. Encoding Schemes for Categorical Features

As mentioned in Section 3.2, we considered two key factors for choosing the proper en-
coding scheme in our system, i.e. whether it can provide a compact representation of
high-cardinality categorical features, and whether the encoded feature has practical mean-
ing in its order. We compared four different encoding schemes based on these criterions, as
shown in Table 2.

Table 2: Comparison of encoding schemes for categorical features.
Encoding
scheme

Description
Compact

representation
Order with

meaning

One-hot
Encoding

Transform a categorical feature with
N categories into N binary features,
with one of them 1, and all others 0

No No

Label
Encoding

Represent each category by a unique
integer between 0 and N , where N is
the number of unique categories in the
categorical feature

Yes No

Frequency
Encoding

Represent each category X by its fre-
quency, which is an estimation of p(X)

Yes Yes

Target
Encoding

Represent each category X by the
mean of the target variable in this cat-
egory, which is an estimation of p(y|X)

Yes Yes

Both frequency encoding and target encoding satisfy the two criterions. However, target
encoding is easy to overfit, as the usage of training labels causes data leakage. Furthermore,
real concept drift causes a significant change of p(X|y) between batches, which introduces
great noise to target encoding and harms its performance. Consequently, we only adopt
frequency encoding in our system.

Appendix B. Configuration Space

B.1 Binary Transformations for Feature Combination

The binary transformations are performed on all feasible pairs of two types of features,
represented by operand A and operand B respectively. A detailed description of the trans-
formations we have used is presented in Table 3.

B.2 Search Space for GBDT

To improve the efficiency of hyperparameter optimization, we search over three key hy-
perparameters which have great influence on the performance of GBDT, i.e. num leaves
(maximum tree leaves for base learners), n estimators (number of boosting trees to fit) and
learning rate. The hand-crafted portfolio is presented in Table 4. The local search space is
presented in Table 5, in which m,n, η are num leaves, n estimators and learning rate of the
best configuration in the portfolio respectively.
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Table 3: Binary transformations for feature combination.
Transformation Operand A Operand B Description

arithmetic Numerical Numerical +,−,×,÷

num mean groupby cat Categorical Numerical
Group B by A, then compute the
mean of B in each group as a new
feature

cat cat combine Categorical Categorical

Create a new categorical feature
by combining A and B into a
tuple (A,B), then perform fre-
quency encoding on (A,B)

cat nunique groupby cat Categorical Categorical

Group B by A, then count how
many unique categories of B ap-
pear in each group as a new fea-
ture

time diff groupby cat Categorical Temporal

Group B by A, sort the samples
in each group by B, then com-
pute the difference of B between
adjacent instances in each group
as a new feature

Table 4: The hand-crafted portfolio for hyperparameter optimization.
Config No. num leaves n estimators learning rate

1 60 600 0.01

2 80 600 0.01

3 40 1000 0.01

4 60 1000 0.01

5 40 1500 0.01

6 60 1500 0.01

Table 5: The local search space for hyperparameter optimization.
Hyperparameter Search space Search step size

num leaves [m− 20,m+ 20] 5

n estimators [n− 200, n+ 200] 50

learning rate [η − 0.005, η + 0.005] 0.001

10



Auto-Lifelong: An AutoML System for Lifelong Machine Learning

Appendix C. Experimental Results

To validate the effect of the novel components proposed in our system, we gradually add
them to a vanilla model and evaluate the system performance after each one of them is
added. We build the vanilla model by retraining a new model with the last N batches for
each test batch and encoding categorical features with label encoding. Then we gradually
add the following components to the current model: frequency encoding on each batch
separately, streaming frequency encoding, high-order feature combination.

We experiment on the five public datasets in the feedback phase of the challenge. We
set the batch number of the historical data buffer as N = 3 across all datasets. The score
on each dataset is computed as the average normalized AUC score over all test batches.
The experimental results are illustrated in Table 6, which validate the effect of the proposed
components.

Table 6: Average normalized AUC score of the system on the five public datasets with
different components added.

Dataset
Vanilla
model

Frequency encoding
separately

Streaming
encoding

High-order
feature combination

A 0.4598 0.4641 0.5142 0.5488

B 0.1936 0.2995 0.3020 0.3284

C 0.4586 0.5278 0.5114 0.5794

D 0.3428 0.4704 0.4739 0.5968

E 0.6706 0.7275 0.7379 0.7672
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