Automated Machine Learning (AutoML): A Tutorial

Matthias Feurer
University of Freiburg
feurerm@cs.uni-freiburg.de
@__mfeurer__

Frank Hutter
University of Freiburg & Bosch
fh@cs.uni-freiburg.de
@FrankRHutter

@automlfreiburg

Tutorial based on Chapters 1-3 of the book Automated Machine Learning
Slides available at automl.org/events/tutorials -> AutoML Tutorial
(all references are clickable links)
Motivation: Successes of Deep Learning

- Speech recognition
- Computer vision in self-driving cars
- Reasoning in games

Feurer and Hutter: AutoML
One Problem of Deep Learning

Performance is very **sensitive** to **many hyperparameters**

- Architectural hyperparameters

 - Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ...

→ **Easily 20-50 design decisions**

Feurer and Hutter: AutoML
Deep Learning and AutoML

Current deep learning practice

Expert chooses architecture & hyperparameters ➔ Deep learning “end-to-end”

AutoML: true end-to-end learning

Meta-level learning & optimization ➔ Learning box

Feurer and Hutter: AutoML
Learning box is not restricted to deep learning

- Traditional machine learning pipeline:
 - Clean & preprocess the data
 - Select / engineer better features
 - Select a model family
 - Set the hyperparameters
 - Construct ensembles of models
 - ...

AutoML: true end-to-end learning

- Meta-level learning & optimization
- Learning box

Feurer and Hutter: AutoML
Outline

Part 1: General AutoML (Matthias, today)
1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion

Part 2: Neural Architecture Search (Frank, tomorrow)
1. Search Spaces
2. Black-box Optimization
3. Beyond Black-box Optimization
4. Best Practices
Part 1: General AutoML
1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
Outline

Part 1: General AutoML

1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
Definition: Hyperparameter Optimization (HPO)

Let

- \(\lambda \) be the hyperparameters of a ML algorithm \(A \) with domain \(\Lambda \),
- \(\mathcal{L}(A_{\lambda}, D_{\text{train}}, D_{\text{valid}}) \) denote the loss of \(A \), using hyperparameters \(\lambda \) trained on \(D_{\text{train}} \) and evaluated on \(D_{\text{valid}} \).

The hyperparameter optimization (HPO) problem is to find a hyperparameter configuration \(\lambda^* \) that minimizes this loss:

\[
\lambda^* \in \arg \min_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}, D_{\text{train}}, D_{\text{valid}})
\]
Types of Hyperparameters

- **Continuous**
 Example: learning rate in NNs or GBMs

- **Integer**
 Example: #units, #trees in GBM

- **Categorical**
 - Finite domain, unordered
 - Example 1: algo ∈ {SVM, RF, NN}
 - Example 2: activation function ∈ {ReLU, Leaky ReLU, tanh}
 - Example 3: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
 - Special case: binary
Conditional hyperparameters B are only active if other hyperparameters A are set a certain way

- **Example 1:**
 - A = choice of optimizer (Adam or SGD)
 - B = Adam’s second momentum hyperparameter (only active if A=Adam)

- **Example 2:**
 - A = number of layers in a deep neural network
 - B = number of units in layer k (only active if A >= k)

- **Example 3:**
 - A = choice of classifier (RF or SVM)
 - B = SVM’s kernel hyperparameter (only active if A = SVM)
Definition: Combined Algorithm Selection and Hyperparameter Optimization (CASH)

Let

- $\mathcal{A} = \{A^{(1)}, \ldots, A^{(n)}\}$ be a set of algorithms
- $\Lambda^{(i)}$ denote the hyperparameter space of $A^{(i)}$, for $i = 1, \ldots, n$
- $\mathcal{L}(A^{(i)}_\lambda, D_{train}, D_{valid})$ denote the loss of $A^{(i)}$, using $\lambda \in \Lambda^{(i)}$ trained on D_{train} and evaluated on D_{valid}.

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is to find a combination of algorithm $A^* = A^{(i)}$ and hyperparameter configuration $\lambda^* \in \Lambda^{(i)}$ that minimizes this loss:

$$A^*_{\lambda^*} \in \arg\min_{A^{(i)} \in \mathcal{A}, \lambda \in \Lambda^{(i)}} \mathcal{L}(A^{(i)}_\lambda, D_{train}, D_{valid})$$
Illustration of the CASH problem in Auto-sklearn:
• 15 base classifiers
• Up to ten hyperparameters each
• Four levels of conditionality
Not limited to the classification algorithm:

See also Thornton et al. (KDD 2013) which introduced the CASH problem.
Outline

Part 1: General AutoML

1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
The blackbox function is expensive to evaluate → sample efficiency is important
Grid Search and Random Search

- Both completely uninformed
- Grid search suffers from the curse of dimensionality
- Random search handles low intrinsic dimensionality better
- Example: an additive function \(y = f(x) + g(x) \)

Bergstra and Bengio, JMLR 2012; Image source: Feurer & Hutter, CC-BY 4.0

Feurer and Hutter: AutoML
Bayesian Optimization

Iteration 2

- Objective function
- Posterior mean
- Posterior mean +/- stdev
- Observation

Iteration 3

- Objective function
- New observation
- Acquisition function

Iteration 4

- Posterior uncertainty
- Posterior mean
Acquisition Function: Expected Improvement

\[f(x^+) \]

\[\mu(x_1) \]
\[\mu(x_2) \]
\[\mu(x_3) + \sigma(x_3) \]
\[\mu(x_3) - \sigma(x_3) \]

Image source: Brochu et al., arXiv:1012.2599

Feurer and Hutter: AutoML
Bayesian Optimization

Approach

- Conduct an initial design
- Iteratively:
 - Fit a probabilistic model to the function evaluations $\langle \lambda, f(\lambda) \rangle$, most often a Gaussian process
 - Use that model to trade off Exploration vs. Exploitation in an acquisition function

Popular since Mockus [1974]

- Sample-efficient
- Works when objective is nonconvex, noisy, has unknown derivatives, etc
- Recent convergence results [Srinivas et al, 2010; Bull 2011; de Freitas et al, 2012; Kawaguchi et al, 2016; Nguyen et al., 2017; Berkenkamp et al., 2019]

Excellent reviews by Shahriari et al. (IEEE, 2016) and Frazier (arXiv:1807.02811)
During the development of AlphaGo, its many hyperparameters were tuned with Bayesian optimization multiple times.

This automatic tuning process resulted in substantial improvements in playing strength. For example, prior to the match with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate from 50% to 66.5% in self-play games. This tuned version was deployed in the final match.

Of course, since we tuned AlphaGo many times during its development cycle, the compounded contribution was even higher than this percentage.

[Chen et al., arXiv:1812.06855]
Problems for standard Gaussian Process (GP) approach:

- Complex hyperparameter space
 - High-dimensional (low effective dimensionality) [e.g., Wang et al., 2013]
 - Mixed continuous/discrete hyperparameters [e.g., Hutter et al., 2011]
 - Conditional hyperparameters [e.g., Jenatton et al., 2017]

- Noise: sometimes heteroscedastic, large, non-Gaussian

Model overhead (budget is runtime, not #function evaluations)

Simple solution used in SMAC: random forests [Breiman, 2001]

- Frequentist uncertainty estimate: variance across individual trees’ predictions [Hutter et al, 2011]
Other methods

- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
- Tree Parzen Estimator [Bergstra et al., 2011]
 - Non-parametric KDEs for \(p(\lambda \text{ is good}) \) and \(p(\lambda \text{ is bad}) \), rather than \(p(y|\lambda) \)
 - Ratio is proportional to Expected Improvement
- Population-based methods
 - Genetic algorithms, evolutionary algorithms, evolutionary strategies, particle swarm optimization
 - Embarassingly parallel, conceptually simple

See Chapter 1 of the AutoML book for more information.
Part 1: General AutoML

1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
Beyond Blackbox Hyperparameter Optimization

DNN hyperparameter setting λ → Validation performance $f(\lambda)$

Too slow for DL / big data

Blackbox optimizer

max $f(\lambda)$, $\lambda \in \Lambda$
Main Approaches Going Beyond Blackbox HPO

- Extrapolation of learning curves
- Multi-fidelity optimization
- Meta-learning [if there’s time left]
- Hyperparameter gradient descent [see AutoML book]
- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Bayesian neural networks [Klein et al, ICLR 2017]
- Linear combination of previous curves [Chandrashekaran and Lane, ECML2017]
Multi-Fidelity Optimization

- Use cheap approximations of the blackbox, performance on which correlates with the blackbox, e.g.
 - Subsets of the data
 - Fewer epochs of iterative training algorithms (e.g., SGD)
 - Fewer trials in deep reinforcement learning
 - Downsampling images in object recognition

- Also applicable in different domains, e.g., fluid simulations:
 - Less particles
 - Shorter simulations
Multi-fidelity Optimization

- Make use of cheap low-fidelity evaluations
 - E.g.: subsets of the data (here: SVM on MNIST)
 - 0.0078% data
 - 6.25% data
 - 25% data
 - 100% data

 - Many cheap evaluations on small subsets
 - Few expensive evaluations on the full data
 - Up to 1000x speedups [Klein et al, AISTATS 2017]
Multi-fidelity Optimization

- **Make use of cheap low-fidelity evaluations**
 - E.g.: subsets of the data (here: SVM on MNIST)
 - Make use of cheap low-fidelity evaluations
 - E.g.: subsets of the data (here: SVM on MNIST)
 - 0.0078% data
 - 6.25% data
 - 25% data
 - 100% data

- Fit a Gaussian process model $f(\lambda, b)$ to predict performance as a function of hyperparameters λ and budget b
- Choose both λ and budget b to maximize “bang for the buck”

A Simpler Approach: Successive Halving (SH)

- **Idea:** Use a bandit to allocate more budget to promising configurations

- **Successive Halving** [Jamieson & Talwalkar, AISTATS 2016]
 - Randomly sample N configurations & evaluate on cheapest fidelity
 - Keep the top half, double its budget (or top third, triple budget)
A Simpler Approach: Successive Halving (SH)

[Jamieson & Talwalkar, AISTATS 2016]
Hyperband (its first 4 calls to SH)

Each call to Successive Halving takes roughly the same amount of wallclock time!

[Li et al, JMLR 2018]
Advantages of Hyperband
- Strong anytime performance
- General-purpose
 - Low-dimensional continuous spaces
 - High-dimensional spaces with conditionality, categorical dimensions, etc
- Easy to implement
- Scalable
- Easily parallelizable

Advantage of Bayesian optimization: strong final performance

Combining the best of both worlds in BOHB
- Bayesian optimization
 - for choosing the configurations to evaluate (using a TPE variant)
- Hyperband
 - for deciding how to allocate budgets
Hyperband vs. Random Search

Biggest advantage: much improved anytime performance

Auto-Net on dataset adult

Feurer and Hutter: AutoML
Bayesian Optimization vs Random Search

Biggest advantage: much improved final performance

Auto-Net on dataset adult

Feurer and Hutter: AutoML
Combining Bayesian Optimization & Hyperband

Best of both worlds: strong \textit{anytime and final performance}

Auto-Net on dataset adult

Feurer and Hutter: AutoML
Part 1: General AutoML

1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
What can be automated?

Image credit: Rich Caruana, AutoML 2015
Example I – Data cleaning and ingestion

- Automatically detect the dialect of CSV files
 [van den Burg et al., arXiv:1811.11242]

- Automatically classify data types
 [Valera and Ghahramani, ICML 2017]

- Automatically detect mistakes in the data gathering process
 [Sutton et al., KDD 2018]

- Check out the talk of Charles Sutton @ AutoML Workshop 2019
Example II – Feature Engineering

- From relational data bases:
 - Automatically aggregates information, can for example generate the **average sum of orders**
 - Requires post-hoc pruning of the features
 - [Kanter and Veeramachaneni, DSAA 2015]

- From featurized data:
 - Generate candidate features by applying
 - unary (normalization, discretization, sqrt, square, log etc.)
 - binary (+, -, *, /)
 - higher order (GroupByThen)
 - Use search mechanism to perform guided exploration
 - Use feature selection to remove unnecessary features again
 - [Smith and Bull, GP&EM 2005, Katz et al., ICDM 2016]
Example III: Off-the-shelf Algorithms

- Reduce the amount of tuning:
 - Random Forests are excellent default classifiers
 - Learning rate adaption
 - rProp
 - RMSProp
 - ...
 - Adam
 - ...
 - Ranger (look ahead + rectified Adam)
 - Pre-trained Neural Networks
 - Better defaults
 - ...

Feurer and Hutter: AutoML
Example IV: Classical Meta-Learning

- Learning Defaults
- Joint Models for Bayesian Optimization
- Post-hoc analysis of hyperparameter importance

(see slides in the end for further info and links)
while not done:

1. sample tasks T_i
2. update task weights

 \[\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta}) \]
3. update meta weights θ by solving

\[
\min_{\theta} \sum_{T_i} \mathcal{L}_{T_i}(f_{\theta'}) = \sum_{T_i} \mathcal{L}_{T_i}(f_{\theta' - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta})})
\]

See also

REPTILE [Nichol et al., arXiv preprint 2018]
LEAP [Flennerhag et al., ICLR 2019]
iMAML [Rajeswaran et al., NeurIPS 2019]
Example VI: Learning to Learn

Deep Learning

engineering features → learning features

Meta Learning

engineering to learn → learning to learn

Target model

Optimizee

Optimizel

Updated weights

Learned optimizer

Optimizer

[Andrychowicz et al., NeurIPS 2016]
What can be automated?

Image credit: Rich Caruana, AutoML 2015
Part 1: General AutoML

1. AutoML by Hyperparameter Optimization
2. Black-box Hyperparameter Optimization
3. Beyond black-box optimization
4. Examples of AutoML
5. Wrap-up & Conclusion
If you have access to multiple fidelities

- We recommend **BOHB** [Falkner et al, ICML 2018]
- https://github.com/automl/HpBandSter
- Combines the advantages of Bayesian optimization and Hyperband

If you do not have access to multiple fidelities

- Low-dim. continuous: GP-based BO (e.g., **BoTorch**, **MLRMBO**, **Sigopt**, GP version of **SMACv3**)
- High-dim, categorical, conditional: **SMAC** or **Hyperopt**
- Purely continuous, budget >10x dimensionality: **CMA-ES**
Open-source AutoML Tools based on HPO

- **Auto-WEKA** [Thornton et al, KDD 2013]
 - 768 hyperparameters, 4 levels of conditionality
 - Based on WEKA and SMAC

- **Hyperopt-sklearn** [Komer et al, SciPy 2014]
 - Based on scikit-learn & TPE

- **Auto-sklearn** [Feurer al, NeurIPS 2015]
 - Based on scikit-learn & SMAC
 - Uses meta-learning and posthoc ensembling
 - Won AutoML competitions 2015-2016 & 2017-2018

- **H2O AutoML** [no reference]
 - Uses implementations from H2O.ai
 - Based on random search and stacking

- **TPOT** [Olson et al, EvoApplications 2016]
 - Based on scikit-learn and evolutionary algorithms

- **ML-PLAN** [Mohr et al., Machine Learning 2018]
 - Based on WEKA and Hierarchical Task Networks
Auto-sklearn also won the last two phases of the AutoML challenge human track (!)

- It performed better than up to 130 teams of human experts
- It is open-source (BSD) and trivial to use:

```python
import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
```

→ More in a hands-on session tomorrow
What have we learned?

1. AutoML by Hyperparameter Optimization
 AutoML can be phrased as an HPO problem

2. Black-box Hyperparameter Optimization
 We reviewed Bayesian optimization

3. Beyond black-box optimization
 Practically applicable by using domain knowledge

4. Meta-learning
 Increase practicality by using previous data

5. Examples
 AutoML can be used in almost every step of the ML pipeline

6. Open issues and future work
 Datasets, search space representation & overfitting
Further reading

- Automated Machine Learning: Methods, Systems, Challenges
 - Edited by Frank Hutter, Lars Kotthoff and Joaquin Vanschoren
 - Contains introductions to HPO, Meta-Learning and NAS

- Various literature reviews on arXiv:
 - [1908.05557](https://arxiv.org/abs/1908.05557): Focus on open source software
 - [1810.13306](https://arxiv.org/abs/1810.13306): General and comprehensive
 - [1908.00709](https://arxiv.org/abs/1908.00709): Focuses mostly on NAS

- AutoML workshop video recordings
 - icml2019.automl.org
Thank you for your attention!

Special thanks to Frank Hutter and Joaquin Vanschoren for providing me with the slides this presentation is based on.

Contact:
feurerm@cs.uni-freiburg.de

@__mfeurer__ @automlfreiburg