

Automated Machine Learning (AutoML): A Tutorial

Matthias Feurer

University of Freiburg

Thomas Elsken

Bosch Center for Artificial Intelligence & University of Freiburg

feurerm@cs.uni-freiburg.de

Thomas.Elsken@de.bosch.com

1. General AutoML

- 2. Neural Architecture Search
- 3. Meta Learning & Learning to Learn

For more details, see: <u>automl.org/book</u>

AutoML: true end-to-end learning

Neural Architecture Search - Motivation

UNI FREIBURG

Can we automatically design neural network architectures?

Neural Architecture Search

- Search Space Design
- Blackbox Optimization
- Beyond Blackbox Optimization

Based on: Elsken, Metzen and Hutter

[Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

Basic Neural Architecture Search Spaces

Chain-structured space (different colours: different layer types)

UNI FREIBURG

> More complex space with multiple branches and skip connections

UNI FREIBURG

Introduced by Zoph et al. [CVPR 2018]

Two possible cells

Architecture composed of stacking together individual cells

Neural Architecture Search

- Search Space Design
- Blackbox Optimization
- Beyond Blackbox Optimization

Based on: Elsken, Metzen and Hutter [Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

NAS with Reinforcement Learning

- UNI FREIBURG • NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
 - State-of-the-art results for CIFAR-10, Penn Treebank
 - Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained

NAS with Reinforcement Learning

UNI FREIBURG

[Zoph & Le, ICLR 2017]

- architecture of neural network represented as string
 e.g., ["filter height: 5", "filter width: 3", "# of filters: 24"]
- controller (RNN) generates string that represents architecture

NAS with Evolution

UNI FREIBURG

- Neuroevolution (already since the 1990s [<u>Angeline et al., 1994</u>; <u>Stanley</u> and Miikkulainen, 2002])
 - Mutation steps, such as adding, changing or removing a layer [Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]

RL vs. Evolution vs. Random Search

during architecture search

UNI FREIBURG

final evaluation

[Real et al., AAAI 2019]

 Joint optimization of a vision architecture with 238 hyperparameters with TPE [Bergstra et al, ICML 2013]

• Auto-Net

UNI FREIBURG

- Joint architecture and hyperparameter search with SMAC
- First Auto-DL system to win a competition dataset against human experts [Mendoza et al, AutoML 2016]

Kernels for GP-based NAS

- Arc kernel [Swersky et al, BayesOpt 2013]
- NASBOT [Kandasamy et al, NIPS 2018]
- Sequential model-based optimization
 - PNAS [Liu et al, ECCV 2018]

[Wistuba et al., preprint 2019]

Blackbox optimization is expensive! Can we do better?

Neural Architecture Search

- Search Space Design
- Blackbox Optimization
- Beyond Blackbox Optimization

Based on: Elsken, Metzen and Hutter [Neural Architecture Search: a Survey, JMLR 2019; also Chapter 3 of the AutoML book]

Main approaches for making NAS efficient

• Weight inheritance & network morphisms

UNI FREIBURG

Weight sharing & one-shot models

- Multi-fidelity optimization
 - do search on smaller models, less training epochs, fewer data,...
- Meta-learning
 - Avoid running NAS from scratch for every task

Weight inheritance & network morphisms

- UNI FREIBURG • Network morphisms [Chen et al., 2016; Wei et al., 2016]
 - Change the network structure, but not the modelled function (i.e., for every input the network yields the same output as before applying the network morphism)

- Can use this in NAS algorithms as operations to generate new networks
- Avoids costly training from scratch

UNI FREIBURG we have trained network

$$N_1(x) = Softmax_{w_{1,1}} \circ ReLU \circ Conv_{w_{1,2}}(x)$$

More details in our blog post.

want to add another Relu-Conv block

$$N_{2}(x) = Softmax_{w_{2,1}} \circ ReLU \circ Conv_{w_{2,2}} \circ ReLU \circ Conv_{w_{2,3}}(x)$$

copy

 $w_{2,1} = w_{1,1}, \quad w_{2,3} = w_{1,2}$

and set $w_{2,2}$ so that $Conv_{w_{2,2}}(x) = x$

Then:

FREIBURG

Weight inheritance & network morphisms

[Cai et al, AAAI 2018; Elsken et al, NeurIPS MetaLearn 2017; Cortes et al, ICML 2017; Cai et al, ICML 2018; Elsken et al, ICLR 2019]

model_{best} perf. = 82%

\rightarrow enables efficient architecture search

Designing Efficient Architectures

- UNI FREIBURG Multi-objective NAS: LEMONADE [Elsken et al., ICLR 2019, blog post]
 - Multi-objective evolutionary method
 - Objectives such as accuracy, # parameters, # flops, latency
 - Outputs Pareto-front wrt. multiple objectives
 - No need to specify tradeoff between objectives a-priori

Some numbers (Cifar-10)

	Reference	Error (%)	Params (Millions)	GPU Days	
RL	Baker et al. (2017) Zoph and Le (2017) Cai et al. $(2018a)$ Zoph et al. (2018) Zoph et al. (2018) + Cutout Zhong et al. (2018) Cai et al. $(2018b)$ Cai et al. $(2018b)$	$ \begin{array}{r} 6.92 \\ 3.65 \\ 4.23 \\ 3.41 \\ 2.65 \\ 3.54 \\ 2.99 \\ 2.49 \\ \end{array} $	(Millions) 11.18 37.4 23.4 3.3 3.3 39.8 5.7 5.7	Days 100 22,400 10 2,000 2,000 96 200 200	NAS with
EA	Real et al. (20100) + Cutout Real et al. (2017) Xie and Yuille (2017) Suganuma et al. (2017) Liu et al. $(2018b)$ Real et al. (2018) Elsken et al. (2018) Wistuba $(2018a)$ + Cutout	5.40 5.39 5.98 3.75 3.34 5.2 3.57	5.4 N/A 1.7 15.7 3.2 19.7 5.8	$2,600 \\ 17 \\ 14.9 \\ 300 \\ 3,150 \\ 1 \\ 0.5$	network morphisms

[Wistuba et al., preprint 2019]

Weight Sharing & One-shot Models

- embed architectures from search space into single network, the *"one-shot model"*
- each path through the one-shot model is an architecture
- solely need a single training of the one-shot model
- weights are shared across architectures embedded in one-shot model

Figure: embeddings of two 7-layer CNNs (red, green) [Saxena & Verbeek, NeurIPS 2016]

- Problems/ limitations:
 - Search space restricted to one-shot model
 - One-shot model needs to be kept in GPU-memory
 - Search bias?

UNI FREIBURG

Weight Sharing & One-shot Models

• Simplifying One-Shot Architecture Search [Bender et al., ICML 2018]

 Use path dropout to make sure the individual models perform well by themselves

UNI FREIBURG

- ENAS [Pham et al., ICML 2018]
 - Use RL to sample paths (=architectures) from one-shot model
- SMASH [Brock et al., MetaLearn 2017]

Train hypernetwork that generates weights of models

DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)

UNI FREIBURG

- One-shot model with continuous architecture weight α for each operator

- mixed operator:
$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

• Solve a bi-level optimization problem (c)

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$

s.t. $w^*(\alpha) = \operatorname{argmin}_w \quad \mathcal{L}_{train}(w, \alpha)$

• In the end, discretize to obtain a single architecture (d)

DARTS: Differentiable Neural Architecture Search

- B DARTS S · Very fast:
 - By alternating SGD steps for α and w runtime only a bit higher than SGD for w alone
 - Very brittle optimization:

Requires hyperparameter tuning for new problems

- One-shot models needs to be kept in GPU memory
- Discretization at end of search degenerates performance; retraining necessary
- Already lots of follow-up work trying to solve these problems [Xie et al., ICLR 2019, Cai et al., ICLR 2019, Dong et al., CVPR 2019]

Some numbers (Cifar-10)

	Reference	Error (%)	Params	GPU
			(Millions)	Days
	Zoph and Le (2017)	3.65	37.4	22,400
	Cai et al. (2018a)	4.23	23.4	10
\mathbf{RL}	Zoph et al. (2018)	3.41	3.3	2,000
	Zoph et al. (2018) + Cutout	2.65	3.3	2,000
	Cai et al. (2018b)	2.99	5.7	200
	Cai et al. $(2018b)$ + Cutout	2.49	5.7	200
	Real et al. (2017)	5.40	5.4	2,600
ΕA	Liu et al. (2018b)	3.75	15.7	300
	Real et al. (2019)	3.34	3.2	3,150
	Elsken et al. (2018)	5.2	19.7	1
	Wistuba $(2018a)$ + Cutout	3.57	5.8	0.5
	Pham et al. (2018)	3.54	4.6	0.5
	Pham et al. (2018) + Cutout	2.89	4.6	0.5
12	Bender et al. (2018)	4.00	5.0	N/A
hot	Casale et al. (2019) + Cutout	2.81	3.7	1
Š	Liu et al. $(2019b)$ + Cutout	2.76	3.3	4
On	Xie et al. $(2019b)$ + Cutout	2.85	2.8	1.5
Ŭ	Cai et al. (2019) + Cutout	2.08	5.7	8.33
	Brock et al. (2018)	4.03	16.0	3
	Zhang et al. (2019)	2.84	5.7	0.84
dom	Liu et al. (2018b)	3.91	N/A	300
	Luo et al. (2018)	3.92	3.9	0.3
an	Liu et al. $(2019b)$ + Cutout	3.29	3.2	4
н	Li and Talwalkar (2019) + Cutout	2.85	4.3	2.7

Feurer and Elsken: AutoML

[Wistuba et al., preprint 2019]

NAS for dense prediction tasks

- UNI FREIBURG • Auto-DeepLab [Liu et al., CVPR 2019]
 - also optimize downsampling factor for each layer
 - 3 GPU days search on Cityscapes
 - Based on DARTS

(a) Network level architecture used in DeepLabv3 [9].

(c) Network level architecture used in Stacked Hourglass [55].

Optimized:

(3 GPU days search on Cityscapes)

Feurer and Elsken: AutoML

NAS for dense prediction tasks

- UNI FREIBURG • AutoDispNet [Saikia et al., ICCV 2019]
 - Introduce upsampling cells in addition to normal and reduction cells to allow for encoder-decoder architectures
 - DARTS [Liu et al., ICLR 2019] for architecture optimization
 - BOHB [Falkner et al., ICML 2018] for hyperparameters

Remarks on Experimentation in NAS

- Final results are often *incomparable* due to
 - Different training pipelines without available source code
 - Releasing the final architecture does not help for comparisons
 - Different hyperparameter choices

UNI FREIBURG

- Very different hyperparameters for training and final evaluation
- Different search spaces / initial models
 - Starting from random or from state-of-the-art?
- \rightarrow Need for looking beyond the error numbers on CIFAR
- → Need for benchmarks including training pipeline & hyperparams
- Experiments are often very expensive
- → Need for cheap benchmarks that allow for many runs, e.g., <u>Ying et al.</u>, ICML 2019

- 1. General AutoML
- 2. Neural Architecture Search
- 3. Meta Learning & Learning to Learn

For more details, see: <u>automl.org/book</u>

AutoML: true end-to-end learning

"Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or metadata, to learn new tasks much faster than otherwise possible."

[Vanschoren, Chapter 2 of the AutoML book]

Meta Learning & Learning to Learn

- Meta Learning for Few Shot Learning
- Learning to Optimize

Meta Learning & Learning to Learn

- Meta Learning for Few Shot Learning
- Learning to Optimize

Few-Shot Learning

- Classic deep learning setting: large, diverse data
 - What if we don't have a large dataset? (medical data sets, personalized education, speech for rare languages,...)

source

• We can still learn from related tasks and experience.

• Few-Shot Learning setting: many small but related tasks

Slide inspired by Chelsea Finn

Learning Initializations for Few-Shot Learning

- UNI FREIBURG • Model-Agnostic Meta-Learning (MAML) [Finn et al., ICML 2017]
 - Learn initialization for weights θ of neural network that quickly adapts to weights θ'_i for new task T_i

Learning Initializations for Few-Shot Learning

meta-learning ---- learning/adaptation

 $abla \mathcal{L}_2$

UNI FREIBURG • Model-Agnostic Meta-Learning (MAML) [Finn et al., ICML 2017]

while not done:

- 1. sample tasks T_i
- 2. update task weights

 $\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$

3. update meta weights θ by solving

$$\min_{\theta} \sum_{\mathcal{T}_{i}} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'}) = \sum_{\mathcal{T}_{i}} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta})})$$

See also

REPTILE [Nichol et al., arXiv preprint 2018], PLATIPUS [Finn et al., NeurIPS 2018] Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples Triantafillou et al., NeurIPS MetaLearn 2018

Learning Initializations for Few-Shot Learning

- UNI FREIBURG Transferring Knowledge Across Learning (LEAP) [Flennerhag et al., ICLR 2019]
 - look at training process rather than final weights only
 - Iteratively learn initialization with a) shorter expected gradient path that b) also improves performance

gradient path length

meta objective:

 $\min_{\theta^0} F(\theta^0) = \mathbb{E}_{\tau \sim p(\tau)} \left[d(\theta^0; M_\tau) \right]$

s.t.
$$\theta_{\tau}^{i+1} = u_{\tau}(\theta_{\tau}^{i}), \quad \theta_{\tau}^{0} = \theta^{0},$$

 $\theta^{0} \in \Theta = \bigcap_{\tau} \left\{ \theta^{0} \mid f_{\tau}(\theta_{\tau}^{K_{\tau}}) \leq f_{\tau}(\psi_{\tau}^{K_{\tau}}) \right\}$

improved performance

 θ_1

 $f(\theta)$

 θ_2

Meta Learning & Learning to Learn

- Meta Learning for Few Shot Learning
- Learning to Optimize

UNI FREIBURG • Many machine learning problems solved by applying some form of gradient descent

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$$

- Much modern work in optimization based on designing algorithms for specific class of problems
- e.g., for deep learning: AdaGrad [Duchi et al., JMLR 2011], Adam [Kingma et al., ICLR 2015], RMSProp, ...

Can we learn better optimizers / update rules?

Learning to Optimize (with RNNs)

- UNI FREIBURG Learning to Learn by Gradient Descent by Gradient Descent [Andrychowicz et al., NeurIPS 2016]
 - Replace classic gradient-based updates such as

 $\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$

• by learning model g_t providing updates

$$\theta_{t+1} = \theta_t + g_t(\nabla f(\theta_t), \phi)$$

parameters of RNN

RNN providing updates for function's parameters

function to be optimized

• g_t trained by optimizing meta objective

$$\mathcal{L}(\phi) = \mathbb{E}_f\left[\sum_{t=1}^T w_t f(\theta_t)\right]$$

Learning to Optimize (with RNNs)

UNI FREIBURG

[Andrychowicz et al., NeurIPS 2016]

[Andrychowicz et al., NeurIPS 2016]

- Does the learned optimizer generalize to optimizing other neural networks architectures?
- Learned optimizer trained on optimizing MLP with 20 hidden units, 1 layer, sigmoid activation function

Learning to Optimize (with RNNs)

- UNI FREIBURG Learning to Learn without Gradient Descent by Gradient Descent ۲ [Chen et al., ICML 2017]
 - Directly propose next query point x_t rather then update rule

 $\mathbf{h}_t, \mathbf{x}_t = \text{RNN}_{\theta}(\mathbf{h}_{t-1}, \mathbf{x}_{t-1}, y_{t-1})$

- No need for gradients during meta-test time!
- meta objective: e.g., maximize Expected Improvement

$$L_{\text{EI}}(\theta) = -\mathbb{E}_{f,y_{1:T-1}} \left[\sum_{t=1}^{T} \text{EI}(\mathbf{x}_t \mid y_{1:t-1}) \right]$$

Learning to Optimize (with RL)

[<u>Bello et al., ICML 2017]</u>

Top 5 update rules

Learning to Optimize for Unsupervised Learning

- Meta-Learning Update Rules for Unsupervised Representation Learning [Metz et al., ICLR 2019]
 - Unsupervised Learning: discover data representations without access to supervised labels

UNI FREIBURG

Learning to Optimize for Unsupervised Learning

UNI FREIBURG Generalization of learned unsupervised learning rules

[Metz et al., ICLR 2019]

Learning to Simulate

NAS & Meta Learning Wrap-up

NAS is not insanely expensive anymore; several ways to speed up blackbox NAS

– Weight inheritance

UNI FREIBURG

- Weight sharing & one-shot models
- Meta Learning (so far mostly unexplored)

 \rightarrow by now: resources required for running NAS methods often in same order of magnitude as simply training a network

- Exciting research fields, lots of progress but also lots of open problems:
 - meaningful benchmarks missing
 - NAS beyond image classification
 - NAS for multi-task, multi-objective problems
 - Understanding why architectures found by NAS work well

• Meta Learning and Learning to Learn very natural concepts to look at

- Humans almost never learn from scratch
- Has the potential to significantly speed up learning of new tasks and improve performance when limited data is available

Thank you for your attention!

More details in AutoML book: automl.org/book

Contact:

thomas.elsken@de.bosch.com

Backup Slides

New NAS papers over time

Number of papers on architecture search

Year

source

UNI FREIBURG

	Reference	Error (%)	Params (Millions)	GPU Days
RL	Baker et al. (2017) Zoph and Le (2017) Cai et al. (2018a) Zoph et al. (2018) Zoph et al. (2018) + Cutout Zhong et al. (2018) Cai et al. (2018b) Cai et al. (2018b) + Cutout	$\begin{array}{c} 6.92 \\ 3.65 \\ 4.23 \\ 3.41 \\ 2.65 \\ 3.54 \\ 2.99 \\ 2.49 \end{array}$	11.18 37.4 23.4 3.3 3.3 39.8 5.7 5.7	$ \begin{array}{r} 100 \\ 22,400 \\ 10 \\ 2,000 \\ 2,000 \\ 96 \\ 200 \\ 200 \\ 200 \end{array} $
EA	Real et al. (2017) Xie and Yuille (2017) Suganuma et al. (2017) Liu et al. (2018b) Real et al. (2019) Elsken et al. (2018) Wistuba (2018a) + Cutout	5.40 5.39 5.98 3.75 3.34 5.2 3.57	5.4 N/A 1.7 15.7 3.2 19.7 5.8	2,600 17 14.9 300 3,150 1 0.5
SMBO	Kandasamy et al. (2018) Liu et al. (2018a) Luo et al. (2018)	8.69 3.41 3.18	N/A 3.2 10.6	1.7 225 200
One-Shot	Pham et al. (2018) Pham et al. (2018) + Cutout Bender et al. (2018) Casale et al. (2019) + Cutout Liu et al. $(2019b)$ + Cutout Xie et al. $(2019b)$ + Cutout Cai et al. (2019) + Cutout Brock et al. (2018) Zhang et al. (2019)	$\begin{array}{c} 3.54 \\ 2.89 \\ 4.00 \\ 2.81 \\ 2.76 \\ 2.85 \\ 2.08 \\ 4.03 \\ 2.84 \end{array}$	$\begin{array}{c} 4.6 \\ 4.6 \\ 5.0 \\ 3.7 \\ 3.3 \\ 2.8 \\ 5.7 \\ 16.0 \\ 5.7 \end{array}$	$\begin{array}{c} 0.5\\ 0.5\\ N/A\\ 1\\ 4\\ 1.5\\ 8.33\\ 3\\ 0.84 \end{array}$
Random	Liu et al. (2018b) Luo et al. (2018) Liu et al. (2019b) + Cutout Li and Talwalkar (2019) + Cutout	3.91 3.92 3.29 2.85	N/A 3.9 3.2 4.3	$300 \\ 0.3 \\ 4 \\ 2.7$
Human	Zagoruyko and Komodakis (2016) Gastaldi (2017) (26 $2x32d$) Gastaldi (2017) (26 $2x96d$) Gastaldi (2017) (26 $2x112d$) Yamada et al. (2016) + ShakeDrop	3.87 3.55 2.86 2.82 2.67	36.2 2.9 26.2 35.6 26.2	- - - -

Designing Efficient Architectures

- UNI FREIBURG • NAS and compression:
 - Efficient Neural Architecture Compression (ESNAC) [Cao et al., ICLR 2019]
 - learn embedding space over architectures via bi-directional LSTM
 - Use Bayesian Optimization in embedded space to compress architectures
 - AutoML for Model Compression (AMC) [He et al., ECCV 2018]
 - Optimize per-layer compression rate via RL

- Auto-Net [Mendoza et al, AutoML 2016]
 - First system AutoML 2016
 - Based on SMAC and Lasagne (\rightarrow deprecated)
- Auto-Keras [Jin, Song & Hu, AutoML 2018]
 - Based on network morphisms and Keras; <u>code</u>
- Auto-PyTorch [unpublished]
 - Based on PyTorch and BOHB; <u>code (pre-alpha)</u>
- Neural Network Intelligence by Microsoft
 - Based on various techniques; <u>code</u>