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Abstract

Given the increasing importance of machine learning in our lives and the need for
algorithmic fairness, several methods have been proposed to measure and mitigate biases in
machine learning models. Commonly, these techniques are specialized approaches applied
to a single type of model and a specific definition of fairness, limiting their effectiveness
in practice. In this paper, we present a general constrained Bayesian optimization (BO)
framework to optimize the performance of any black-box machine learning model while
enforcing fairness constraints. BO is a class of global optimization algorithms that has
been successfully applied to automatically tune the hyperparameters of machine learning
models. We apply BO with fairness constraints to a range of popular models, including
random forests, gradient boosting and neural networks, showing that we can obtain accurate
and fair solutions by acting solely on the hyperparameters. We also show empirically that
our approach is competitive with specialized techniques that explicitly enforce fairness
constraints during training, and outperforms preprocessing methods that learn unbiased
representations of the input data.

1. Introduction

With the increasing use of machine learning (ML) in domains such as lending, hiring, criminal
justice, and college admissions, there has been a major concern for the potential for ML to
unintentionally encode societal biases and result in systematic discrimination (Angwin et al.,
2016; Barocas et al., 2018; Bolukbasi et al., 2016; Buolamwini and Gebru, 2018; Caliskan
et al., 2017). For example, a classifier that is only tuned to maximize performance can
unfairly predict a high credit risk for some subgroups of the population applying for a loan.
Extensive work has been done to measure and mitigate biases during different stages of the
ML life-cycle (Barocas et al., 2018).

In many practical ML settings, there is a need to optimize the performance of black-box
ML models while enforcing fairness constraints. For example, several cloud platforms allow
their customers to bring their own proprietary model training code and datasets, perform
model training, and then tune the hyperparameters of the models treating them as a black-
box (Golovin et al., 2017; Clark and Hayes, 2019). However, being tailored to specific models
and fairness definitions, most existing fairness techniques are inapplicable to these settings.

Motivated by this, we present a general constrained Bayesian Optimization (BO) frame-
work to tune the performance of black-box ML models while satisfying fairness constraints.
We demonstrate its effectiveness on several classes of ML models, including random forests,
gradient boosting, and neural networks, showing that we can obtain accurate and fair models
simply by acting on their hyperparameters. Figure 1 illustrates this idea by plotting the ac-
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Figure 1: Unfairness-accuracy trade-off by varying the hyperparameters of XGBoost, RF
and NN on the COMPAS benchmark. Each dot corresponds to a different
hyperparameter configuration.

curacy and unfairness achieved by trained gradient boosted tree ensembles (XGBoost, Chen
and Guestrin (2016)), random forests (RF) and a simple feedforward neural network (NN),
with each dot corresponding to a random hyperparameter configuration. The key observa-
tion is that, given a level of accuracy, one can reduce unfairness just by tuning the model
hyperparameters. As an example, for RF, paying 0.02 points of accuracy (-2.5%, from 0.69
to 0.67) can lead to a model with 0.08 fewer unfairness points (-70%, from 0.13 to 0.04).

Our approach supports arbitrary fairness constraints, allows for multiple constraints
simultaneously, and is complementary to existing bias mitigation techniques. In experiments
over a set of popular sensitive classification tasks, we show that it is more effective than
pre-processing techniques that learn unbiased representations of the input data, and is
competitive with methods that have access to the model internals and incorporate fairness
constraints as part of the objective during model training.

2. Blackbox Bayesian Optimization

Bayesian optimization (BO) is a well-established methodology to optimize expensive black-
box functions (see Shahriari et al., 2016, for an overview). It relies on a probabilistic model
of the unknown target f(x) one wishes to optimize and which is repeatedly queried until
one runs out of budget (e.g., time). Queries consist in evaluations of f at hyperparameter
configurations x1, . . . ,xn selected according to an explore-exploit trade-off criterion or
acquisition function (Jones et al., 1998). The hyperparameter configuration corresponding to
the best query is then returned. One popular approach is to impose a Gaussian process (GP)
prior over f and, in light of the observed queries f(x1), . . . , f(xn), compute the posterior
GP (Rasmussen and Williams, 2006). The posterior GP is characterized by a posterior mean
function and a posterior variance function that are required when evaluating the acquisition
function for each new query of f .

A widely used acquisition function is the Expected Improvement (EI) (Mockus et al.,
1978). For a Gaussian predictive distribution, EI is defined in closed-form as the following:
EI(x) = E[max(0, f(xmin) − f(x))] = σ2(x)(z(x)Φn(z(x)) + φn(z(x))), where z(x) :=
µ(x)−f(xmin)

σ2(x)
. µ and σ2 are respectively the posterior GP mean and variance, and Φn and φn

respectively the CDF and PDF of the standard normal. Alternative acquisition functions
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based on information gain criteria have been developed (Hennig and Schuler, 2012). Standard
acquisitions only focus on the objective f(x) and do not account for additional constraints.
In this work, we aim to optimize a black-box function f(x) subject to fairness constraints
c(x) ≤ ε, ε ∈ R, with ε determining how strictly the fairness constraint should be enforced.

3. Fairness definitions

Today, there is no consensus on a unique definition of fairness, and some of the most common
definitions are conflicting (Verma and Rubin, 2018). In our blackbox framework, we can
incorporate different definitions. Our goal is not to introduce yet another fairness definition,
but to propose a flexible methodology that is able to output fair models regardless of the
selected criterion we want to enforce. Let Y be the binary label in {0, 1}, S the protected (or
sensitive) attribute, and Ŷ our predicted label. Let a, b be in {0, 1}. We summarize the most
common definitions, grouping those that result in equivalent mathematical formalizations.

Predicted outcome given the true label. The probability of making a mistake is the
same regardless of the value taken by the protected attribute P (Ŷ = a|Y = b, S = 0) =
P (Ŷ = a|Y = b, S = 1). For example, Equal Opportunity (EO) is part of this family, where
we fix a = 1 and b = 1, i.e., P (Ŷ = 1|Y = 1, S = 0) = P (Ŷ = 1|Y = 1, S = 1).

True label given predicted outcome. A different way of weighting mistakes, still re-
quiring the probability of error being independent of the value taken by the protected
attribute: P (Y = a|Ŷ = b, S = 0) = P (Y = a|Ŷ = b, S = 1).

Predicted outcome only. The prediction is unaffected by the protected attribute, regard-
less of the actual true decision P (Ŷ = a|S = 0) = P (Ŷ = a|S = 1). Statistical Parity (SP)
is part of this family, where we fix a = 1, i.e., P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 1).

Our goal is to have accurate models with a controlled (small) violation of the fairness
constraint. Following Donini et al. (2018), we consider the family of the ε-fair models. A
model Ŷ is ε-fair if its violation of the fairness definition is less or equal to ε > 0. In the
case of EO, a model Ŷ is ε-fair if the difference in EO (DEO) is smaller or equal to ε:

|P (Ŷ = 1|Y = 1, S = 0)− P (Ŷ = 1|Y = 1, S = 1)| 6 ε. (1)

In the case of SP, we can follow the same approach with the difference in SP (DSP):

|P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)| 6 ε. (2)

3.1 Black-box Algorithmic Fairness

Blackbox approaches to enforce fairness have been proposed in the literature, usually
consisting in data pre-processing techniques. For example, Zemel et al. (2013) learn a fair
representation of the data on top of the training procedure. Another common practice consists
in applying the following two-step procedure (Kamiran and Calders, 2012): (i) removing
the sensitive attribute from the feature set; (ii) rebalancing the dataset, i.e., increasing the
number of observations using synthetic oversampling by using SMOTE (Chawla et al., 2002).
These methodologies are blackbox, but the hyperparameters of the underlying base methods
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Algorithm 1 Fair Bayesian Optimization (FairBO)

1: Input: Initial design budget M , total budget N , unfairness upper bound ε.
2: Evaluate f(xi) and c(xi) for i = 1, ...,M random hyperparameters xi from the search

space.
3: Define set of evaluated hyperparameters C = {(xi, f(xi), c(xi)}Mi=1

4: Update constraint and objective models based on C.
5: while i < N −M do
6: xnew = arg maxxEI(x)P (c(x) ≤ ε).
7: Evaluate f(xnew) and c(xnew).
8: Update C = C ∪ {(xnew, f(xnew), c(xnew))}
9: Update objective and constraint models based on C.

10: i = i+ 1
11: end while
12: return Best fair hyperparameter configuration in C.

still need to be tuned for performance and, as we will show shortly, can have an impact on
the degree of fairness obtained. Another possible approach is described in Agarwal et al.
(2018), where a fair classification task is reduced to a sequence of cost-sensitive classification
problems. The solutions to these problems yield a randomized classifier with a low empirical
error subject to fairness constraints. This is a blackbox method with respect to the base
model, but still needs specific implementations based on the fairness definition at hand and
outputs an ensemble of models.1 In contrast, we show that our constrained BO approach is
agnostic to the selected fairness constraint.

4. Fair Bayesian Optimization

The most established technique to extend BO to the constrained case is the constrained
EI (cEI) (Gardner et al., 2014; Gelbart et al., 2014; Snoek et al., 2015). An additional
GP is placed on the constraint and the EI weighted with the posterior probability P (x)
of the constraint being satisfied, giving cEI(x) = P (x)EI(x). In our setting, feasible
hyperparameter configurations are those satisfying the desired fairness constraint (e.g., the
difference in statistical parity across subgroups should be lower than 10%). We define cEI(x)
with respect to the current fair best, which may not be available in the first iterations.
Therefore, we start by greedily optimizing P (x) and then switch to cEI(x) when the first
fair hyperparameter configuration is found. Algorithm 1 describes FairBO, the approach to
optimize the hyperparameters of a blackbox function while satisfying an arbitrary fairness
constraint. The procedure is straightforward to extend to handle multiple definitions
of fairness simultaneously: P (x) becomes a product, each term being the probability of
satisfying each fairness definition. FairBO can also be implemented through alternative,
entropy-based acquisition functions (Hernández-Lobato et al., 2015; Perrone et al., 2019).
We leave this for future work.

1. Fairlearn code at: https://github.com/fairlearn/fairlearn.
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Figure 2: Comparison of RS, BO, and FairBO over the validation error of the best feasible
solution, tuning RF. The fairness constraint is DSP ≤ 0.05.
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Figure 3: Comparison of RS, BO, and FairBO on the task of tuning RF on Adult. The
horizontal line is the fairness constraint, set to DSP ≤ 0.05.

5. Experiments

We consider 3 benchmark datasets widely used in the context of fairness: (i) Adult –
Census Income (Dua and Graff, 2017), a binary classification task with binary gender as
sensitive attribute, where the task is to predict if income exceeds $50K/yr based on census
data; (ii) German Credit Data (Dua and Graff, 2017), a binary classification problem
with binary gender as sensitive attribute, where the goal is to classify people described
by a set of attributes as good or bad credit risks; (iii) COMPAS, a binary classification
problem concerning recidivism risk, with binarized ethnic group as sensitive attribute
(one group for “white” and one for all other ethnic groups).2 We tune 4 popular ML
algorithms implemented in scikit-learn (Pedregosa et al., 2011): XGBoost, Random
Forest (RF), a simple feedforward neural network (NN), and Linear Learner (LL), optimizing
the hyperparameters listed in Appendix A. We optimize for validation accuracy, with a
random 70%/30% split into train/validation. We place an upper bound on DSP (inequality
(2)). We obtained analogous results with DEO (inequality (1)), noting that other fairness
definitions can be plugged in.

5.1 Results

We first compare FairBO to Random Search (RS) and to standard BO based on the expected
improvement. Figure 2 compares the validation error of the fair solution on Adult, COMPAS,
and German data, tuning RF as a base model (analogous results are obtained on XGBoost,

2. COMPAS link: https://github.com/propublica/compas-analysis.
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Method Adult German COMPAS

FERM 0.164 ± 0.010 0.185 ± 0.012 0.285 ± 0.009
Zafar 0.187 ± 0.001 0.272 ± 0.004 0.411 ± 0.063

FERM preprocess 0.228 ± 0.013 0.231 ± 0.015 0.343 ± 0.002
SMOTE 0.178 ± 0.005 0.206 ± 0.004 0.321 ± 0.002
FairBO (ours) 0.175 ± 0.007 0.196 ± 0.005 0.307 ± 0.001

Table 1: Validation error of the best fair models for model-specific (first two rows) and
model-agnostic fairness methods. Fairness is defined as DSP <= 0.1.

NN and LL). All methods are initialized with 5 random hyperparameter configurations
and results are averaged across 10 repetitions, with 95% confidence intervals obtained
via bootstrapping. The fairness constraint is DSP 6 0.05. As expected, FairBO finds a
well-performing fair model more quickly than EI and RS. Figure 3 shows that standard
BO with EI can get stuck in high-performing yet unfair regions, failing to return a feasible
solution. RS is more robust than standard BO, but needs significantly higher resources to
find an accurate and fair solution (e.g., five times slower than constrained BO on Adult).

In the context of algorithmic fairness several ad-hoc methods have been proposed. We
compare to the method of Zafar (Zafar et al., 2017) and Fair Empirical Risk Minimization
(FERM) (Donini et al., 2018), the state-of-the-art to yield fair linear models.3 These methods
enforce fairness during training and optimize the linear model parameters to make it both fair
and accurate with respect to a fixed fairness definition. In this sense these are not black-box
approaches, and to be able to compare to them we apply FairBO to LL. As alternative
black-box approaches we compare to SMOTE, which preprocesses data by removing the
sensitive feature and rebalancing observations, and FERM preprocess (Donini et al., 2018),
which learns a fair representation of the data before fitting a linear model. We allocate 100
hyperparameter tuning iterations for all approaches.

Table 1 shows the best fair model found by FairBO on LL compared to the best fair
model found by each baseline. As expected, FERM achieves higher accuracy, due to the
constraint applied directly while training the parameters (as opposed to the hyperparameters)
of the linear model. On the other hand, the performance gap with FairBO is modest, and
FairBO outperforms Zafar. While simple, we found that constrained BO is a competitive
baseline that can outperform or compete against highly specialized techniques. FairBO is
also the best model-agnostic method, outperforming both SMOTE and FERM preprocessing.
Constrained BO is thus more effective than pre-processing techniques, which remove bias
from the data at a high price in accuracy.

6. Conclusions

We showed that tuning model hyperparameters is a surprisingly effective strategy to mitigate
unfairness in ML, and proposed a constrained BO framework to jointly tune ML models
for accuracy and fairness. On top of being model agnostic, constrained BO works with
arbitrary fairness definitions and allows for any type of fairness constraints. The proposed
methodology empirically finds more accurate fair solutions than data-debiasing techniques,
while being competitive with state-of-the-art algorithm-specific fairness techniques.

3. Code for Zafar from https://github.com/mbilalzafar/fair-classification.
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Appendix A. Optimized hyperparameters

A.1 Algorithms

We considered the problem of tuning four popular ML algorithms: XGBoost (XGB), random
forest (RF), feedforward neural network (NN), linear learner (LL). In this section, we give
more details on the search space over which each hyperparameter was optimized.

XGBoost We consider a 7-dimensional search space: number of boosting rounds in {1, 2,
. . . , 256} (log scaled), learning rate in [0.01, 1.0] (log scaled), minimum loss reduction to
partition leaf node gamma in [0.0, 0.1], L1 weight regularization alpha in [1e-3, 1e+3] (log
scaled), L2 weight regularization lambda in [1e-3, 1e+3] (log scaled), subsampling rate in
[0.01, 1.0], maximum tree depth in {1, 2, . . . , 16}.

Random Forest We consider a 4-dimensional search space: number of trees in {1, 2, . . . ,
64} (log scaled), tree split threshold in [0.01, 0.5] (log scaled), tree maximum depth in {1, 2,
3, 4, 5}, criterion for quality of split in {Gini, Entropy}.

NN We consider an 11-dimensional search space: number of layers in {1, 2, 3, 4}, each
layer size in {2, 3, . . . , 32} (log scaled), activation in {Logistic, Tanh, ReLU}, tolerance in
[1e-5, 1e-2] (log scaled), L2 regularization in [1e-6, 0.1] (log scaled), and Adam parameters:
initial learning rate eps in [1e-6, 1e-2] (log scaled), beta1 and beta2 in [1e-3, 0.99] (log
scaled).

Linear Learner We consider a 6-dimensional search space: iteration count in {1, 2, . . . ,
128}, regularization type in {L1, L2, ElasticNet}, Elastic Net mixing parameter in [0, 1],
regularization factor alpha in [1e-3, 1e3] (log scaled), initial learning rate eta0 in [1e-4,
1e-1] (log scaled), learning rate schedule in {Constant, Optimal, Invscaling, Adaptive}.

A.2 Baselines

In addition to the hyperparameters of the tuned algorithms, we allocated 100 iterations of
random search to tune each baseline, namely SMOTE, Zafar and FERM.

SMOTE In addition to the 6 Linear Learner’s hyperparameters, we jointly tuned 2
hyperparameters controlling the degree of dataset rebalancing: oversampling rate of the less
frequent class in [0.3, 1.0] and number of neighbors to generate synthetic examples in {1, 2,
. . . , 20}.

FERM preprocess FERM preprocessing learns a fair representation of the dataset, which
is then fed to Linear Learner. Hence, we tuned the same six hyperparameters as per the
standard Linear Learner.

Zafar We tuned 3 hyperparameters: L1 regularization coefficient in [0.001, 10.0] (log
scaled), L2 regularization coefficient in [0.001, 10.0] (log scaled), and Zafar’s epsilon-fairness
threshold in [0.0, 1.0].

FERM We consider 2 hyperparameters for FERM. The L2 regularization coefficient C in
[0.001, 10.0] (log scaled), and FERM’s epsilon-fairness threshold in [0.0, 1.0].
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Figure 4: Zafar on Linear Learner. Compared are random search, BO and FairBO. The
fairness constraint is DSP ≤ 0.1.

Appendix B. Additional experiments

B.1 Zafar with FairBO

By focusing on the hyperparameter level, FairBO is also a complementary approach to
enforce fairness on top of model-specific techniques. These techniques often come with
their own hyperparameters and their tuning can still negatively impact the fairness of the
resulting solution. We demonstrate this idea by combining FairBO and Zafar in Figure 4.
The results show that FairBO finds a better performing fair solution, and does so more
quickly than random search and standard BO (EI). On top of being a competitive baseline,
FairBO can be then naturally plugged on top of alternative fairness techniques, improving
the accuracy of the final solution.

B.2 Hyperparameters and unfairness

We showed that tuning the hyperparameters can effectively mitigate unfairness while
optimizing performance. In this section, we investigate more closely the role of each tuned
hyperparameter on the unfairness of the resulting model. For every tuned algorithm, we
apply fANOVA (Hutter et al., 2014) to study hyperparameter importance with respect to
the fairness metric, fixed as statistical parity. Hyperparameter configurations and unfairness
metrics are collected from 100 iterations of random search and 10 random seeds, for a total
of 1000 data points per algorithm-dataset pair. The results are showed in Figure 5. It
emerges that hyperparameters controlling the regularization level tend to have the largest
impact on fairness.

11



Perrone, Donini, Kenthapadi, Archambeau

Figure 5: Hyperparameter importance on fairness.
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