
7th ICML Workshop on Automated Machine Learning (2020)

Multi-Source Unsupervised Hyperparameter Optimization

M. Nomura∗ nomura_masahiro@cyberagent.co.jp
CyberAgent, Inc.

Y. Saito∗ saito.y.bj@m.titech.ac.jp
Tokyo Institute of Technology

Abstract
How can we conduct efficient hyperparameter optimization for a completely
new task? In this work, we consider a novel setting, where we search for the optimal
hyperparameters for a target task of interest using only unlabeled target task and ‘somewhat
relevant’ source task datasets. In this setting, it is critical to estimate the ground-truth
target task objective using only the available information. We propose estimators to
unbiasedly approximate the ground-truth with a desirable variance property. Building on
these estimators, we provide a general and tractable hyperparameter optimization procedure
for our setting. The experimental evaluations demonstrate that the proposed framework
broadens the applications of automated hyperparameter optimization.

1. Introduction

Hyperparameter optimization (HPO) has been a pivotal part of machine learning (ML)
and contributed to achieving a good performance in a wide range of tasks (Feurer and
Hutter, 2019). For example, it is widely acknowledged that the performance of deep neural
networks depends greatly on the configuration of the hyperparameters (Dacrema et al., 2019;
Henderson et al., 2018; Lucic et al., 2018). HPO is a special case of a black-box function
optimization problem, where the input is a set of hyperparameters and the output is a
validation score. Among the black-box optimization methods, adaptive algorithms, such
as Bayesian optimization (BO) (Snoek et al., 2012; Frazier, 2018) have shown superior
empirical performance compared with traditional algorithms, such as grid search or random
search (Frazier, 2018).

A critical assumption in HPO is the availability of an accurate validation score (,
which is often denoted as f (Frazier, 2018)). However, in reality, there are many cases where we
cannot access the ground-truth f of the task of interest (referred to as target task hereinafter).
For example, in display advertising, predicting the effectiveness of each advertisement,
i.e., click-through rates (CTR), is important for showing relevant advertisements to users.
Therefore, it is necessary to conduct HPO before a new advertisement campaign starts.
However, for new advertisements that have not yet been displayed to users, one cannot use
labeled data to conduct HPO. In this case, the standard HPO procedure is infeasible, as one
cannot utilize the labeled target task data and the true validation score of the ML model
under consideration.

In this work, we address the infeasibility issue of HPO when the labels of the target task
are unavailable. To formulate the situation, we first introduce a novel HPO setting called
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multi-source unsupervised hyperparameter optimization (MSU-HPO). In MSU-HPO, it is
assumed that we do not have the labeled data for a target task. However, we do have the
data for some source tasks with a different distribution from the target task. It is natural
to assume that we have access to multiple source tasks in most practical settings. In the
display advertising example, several labeled datasets of old advertisements that have already
been deployed are often available, which we can use as labeled source task datasets. To the
best of our knowledge, no HPO approach exists that can address a situation without labeled
target task data, despite its significance and possibility for applications.

A problem with MSU-HPO is that the ground-truth for the target task objective f is
inaccessible, and one cannot directly apply the standard HPO procedure. Thus, it is critical
to approximate f using only the available data. To this end, we propose two estimators,
enabling the evaluation of the ML models on the target task using only the unlabeled target
and labeled source datasets. Our estimators are general and can be used in combination with
any common black-box optimization technique, such as Gaussian process-based BO (Snoek
et al., 2012) and tree-structured parzen estimator (Bergstra et al., 2011). Through theoretical
analysis, we show that the proposed estimators can unbiasedly approximate the target task
objective, one of which achieves a desirable variance property by selecting useful source tasks
based on a task divergence measure. Using the proposed estimators, we present a general
and computationally inexpensive HPO procedure for the MSU-HPO setting. Finally, we
demonstrate that our estimators work properly through numerical experiments with synthetic
and real-world datasets.

We summarize the related literature and our main contributions in Appendix A.

2. Problem Setting

Let X ⊂ Rd be the d-dimensional input space and Y ⊂ R be the real-valued output space. We
use pT (x, y) to denote the joint probability density function of the input and output variables
X ∈ X and Y ∈ Y . The objective of MSU-HPO is to find the best set of hyperparameters θ
with respect to the target distribution:

θopt = arg max
θ∈Θ

fT (θ) (1)

where Θ is a pre-defined hyperparameter search space and fT (θ) is the target task objective,
which is defined as the negative generalization error over the target distribution:

fT (θ) = −E(X,Y )∼PT [L(hθ(X), Y )] (2)

where L : Y ×Y → R≥0 is a bounded loss function such as the zero-one loss and hθ : X → Y
is an arbitrary machine learning model that predicts the output values using the input vectors
with a set of hyperparameters θ ∈ Θ.

In a standard hyperparameter optimization setting (Bergstra et al., 2011; Feurer and
Hutter, 2019; Snoek et al., 2012), labeled i.i.d. validation samples {xi, yi}nTi=1 ∼ pT are
available, and one can easily estimate the target objective in Eq. (2) by the following
empirical mean:

f̂T (θ;D′T ) = − 1

nT

nT∑
i=1

L(hθ(xi), yi) (3)
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where D′T is any size nT of the i.i.d. labeled samples from the target task distribution.
Then, a hyperparameter optimization is conducted directly using the estimated target

function in Eq. (3) as a replacement for the ground-truth target objective fT (θ) in Eq. (2).
In contrast, under the MSU-HPO setting, labels of the target task are assumed to be

unobservable; we can use only unlabeled target validation samples denoted as DT = {xi}nTi=1

hereinafter. Instead, we assume the availability of the multiple source task datasets which is
denoted as {DSj}

NS
j=1 where j is a source task index andNS denotes the number of source tasks.

Each source task dataset is defined as the i.i.d. labeled samples: DSj = {xji , y
j
i }
n
Sj

i=1 ∼ pSj
where pSj (x, y) is a joint probability density function that characterizes the source task j.

Regarding the target and source distributions, we make the following assumptions.

Assumption 1. Source tasks have support for the target task, i.e., pT (x) > 0⇒ pSj (x) >
0, ∀x ∈ X , ∀j ∈ {1, . . . , NS}.

Assumption 2. Conditional output distributions remain the same between the target and
all of the source tasks, i.e., pT (y|x) = pSj (y|x), ∀j ∈ {1, . . . , NS}.

One critical difficulty of the MSU-HPO setting is that the simple approximation using the
empirical mean in Eq. (3) is infeasible, as the labeled target dataset is unavailable. Therefore,
it is essential to accurately estimate the target task objective function fT (θ) using only an
unlabeled target dataset and labeled multiple source datasets.

3. Method

3.1 Unbiased Objective Estimator

A natural first candidate way to approximate the target task objective function is to use the
importance weighting technique. To define our proposed estimator, we first formally introduce
the density ratio between the target task distribution and the source task distribution below.

Definiton 1. (Density Ratio) For any (x, y) ∈ X × Y with a positive source density
pSj (x, y) > 0, the density ratio between the target and a source task distributions is

0 ≤ wSj (x, y) =
pT (x, y)

pSj (x, y)
=

pT (x)

pSj (x)
= wSj (x) ≤ C (4)

where C is a positive constant. The equalities are derived from Assumption 2.

Using the above density ratio function, we define an estimator for the target task objective
function called the unbiased estimator.

Definiton 2. (Unbiased Estimator) For a given set of hyperparameter θ ∈ Θ, the unbiased
estimator for the target task objective function is defined as

f̂UB

(
θ; {DSj}

NS
j=1

)
= − 1

n

NS∑
j=1

n
Sj∑
i=1

wSj (x
j
i ) · L(hθ(x

j
i ), y

j
i ) (5)

where UB stands for unbiased, n =
∑NS

j=1 nSj is the total sample size of the source tasks, DSj
is any sample size nSj of the i.i.d. samples from the distribution of source task j.
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The estimator in Eq. (5) is an application of the importance weighted cross-validation (Sugiyama
et al., 2007) to the multiple-source task setting and can easily be shown to be statistically unbi-
ased for the ground-truth target task objective function in Eq. (2), i.e., E

[
f̂UB

(
θ; {DSj}

NS
j=1

)]
=

fT (θ).
We also characterize the variance of the unbiased estimator.

V
(
f̂UB

(
θ; {DSj}

NS
j=1

))
=

1

n2

NS∑
j=1

nSj
(
E(X,Y )∼p

Sj

[
w2
Sj (X) · L2(hθ(X), Y )

]
− (fT (θ))2

)
(6)

As stated above, the unbiased estimator is a valid approach for approximating a target
task objective when multiple source task datasets have distributions different from that of
the target task. The problem is that its variance depends on the square value of the density
ratio function, which can be huge when there is a source task with a distribution that is
dissimilar to that of the target task.

3.2 Variance Reduced Objective Estimator

To address this variance issue of the unbiased estimator, we define a divergence measure
between the two tasks below.

Definiton 3. (Task Divergence Measure) The divergence between a source task distribution
pSj where j ∈ {1, . . . NS} and the target task distribution pT is defined as

Div
(
T ||Sj

)
= E(X,Y )∼p

Sj

[
w2
Sj (X) · L2(hθ(X), Y )

]
− (fT (θ))2 (7)

This task divergence measure is large when the corresponding source distribution deviates
significantly from the target task distribution. Building on this divergence measure, we define
the following estimator for the target task objective.

Definiton 4. (Variance Reduced Estimator) For a given set of hyperparameters θ ∈ Θ, the
variance reduced estimator for the target task objective function is defined as

f̂V R

(
θ; {DSj}

NS
j=1

)
= −

NS∑
j=1

λ?j

n
Sj∑
i=1

w(xji ) · L(hθ(x
j
i ), y

j
i ) (8)

where VR stands for variance reduced, DSj is any sample size nSj of the i.i.d. samples from
the distribution of source task j. λ?j is a weight for source task j, which is defined as

λ?j =

Div (T ||Sj) NS∑
j=1

nSj

Div (T ||Sj)

−1

Note that, for all j ∈ {1, . . . NS}, λ?j ≥ 0 and
∑NS

j=1 λ
?
jnSj = 1.

The variance reduced estimator in Eq. (8) is also statistically unbiased for the ground-truth
target task objective in Eq. (2), i.e., E

[
f̂V R

(
θ; {DSj}

NS
j=1

)]
= fT (θ).

Then, we demonstrate that the variance reduced estimator in Eq. (8) is optimal in the
sense that any other convex combination of a set of weights λ = {λ1, . . . λNS} that satisfies
the unbiasedness for the target task objective function does not provide a smaller variance.
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Algorithm 1 Hyperparameter optimization procedure under the MSU-HPO setting
Input: unlabeled target task dataset DT = {xi}nTi=1; labeled source task datasets {DSj =

{xji , y
j
i }
n
Sj

i=1}
NS
j=1; hyperparameter search space Θ; a machine learning model hθ; a target

task objective estimator f̂ , a hyperparameter optimization algorithm OPT
1: for j ∈ {1, . . . , NS} do
2: Split DSj into three folds Ddensity

Sj
, Dtrain

Sj
, and Dval

Sj

3: Estimate density ratio wSj (·) with DT and Ddensity
Sj

4: end for
5: Optimize the hyperparameter θ ∈ Θ of hθ with OPT by setting f̂(θ; {Dval

Sj
}NSj=1) as its

objective (the model parameter of hθ is obtained by optimizing f̂(θ; {Dtrain
Sj
}NSj=1))

6: return hθ? (where θ? is the output of OPT)

Theorem 1. (Variance Optimality) For any given set of weights λ = {λ1, . . . λNS} that
satisfies λj ≥ 0 and

∑NS
j=1 λjnSj = 1 for all j ∈ {1, . . . NS}, the following inequality holds

V
(
f̂V R

(
θ; {DSj}

NS
j=1

))
≤ V

(
f̂λ

(
θ; {DSj}

NS
j=1

))
where f̂λ(θ; {DSj}

NS
j=1) = −

∑NS
j=1 λj

∑n
Sj

i=1 w(xji ) ·L(hθ(x
j
i ), y

j
i ). See Appendix B for the proof.

Theorem 1 suggests that the variance reduced estimator achieves a desirable finite sample
variance property by weighting each source task based on its divergence to the target task.

We summarize the high-level HPO procedure in Algorithm 1. We provide some details of
our procedure in Appendix C. We also present the regret analysis in Appendix D.

4. Experiment

4.1 Setup

We investigate the behavior of our method using Parkinson’s telemonitoring dataset1 (Tsanas
et al., 2009), which consists of voice measurements collected by using a telemonitoring device
for 42 patients with Parkinson disease. Each patient has about 150 recordings characterized
by a feature with 17 dimensions. The goal is to predict the Parkinson disease symptom
score for each recording. We use support vector machine (SVM) implemented in scikit-
learn (Pedregosa et al., 2011) as a ML model and tune the kernel coefficient γ ∈ [10−6, 106]
of its RBF kernel and regularization parameter C ∈ [10−6, 106] using HPO methods.

To create the MSU-HPO setting, we treat each patient as a task. We select one patient
as a target task and regard the remaining patients as multiple source tasks. Then, the
experimental procedure is as follows. (1) Tune hyperparameters of SVM by a HPO method
using the unlabeled target task and labeled source tasks, (2) Split the original target task
data into 70% training set and 30% test set, (3) Train the tuned SVM model using the
training set of the target task, (4) Predict the symptom score on the test set of the target task,
(5) Calculate mean-absolute-error (MAE) of the prediction and regard it as the performance

1. We present the result with a synthetic data in Appendix E
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of the MSU-HPO method under consideration, (6) Repeat the above steps 10 times with
different random seeds and report the mean, standard error, and worst-case performances
over the simulations.

To the best of our knowledge, there is no existing HPO method for MSU-HPO, and thus,
we use the following possible estimators as baselines: (i) Naive: this estimator uses the
concatenation of source tasks to calculate a validation score and ignores the distributional
shift, (ii) Oracle: this estimator uses the labeled target task to calculate a validation score.
Thus, this is infeasible in MSU-HPO, and we report its performance as a reference.

Table 1: Comparing different MSU-HPO methods

Estimators Mean Standard error Worst Case

Naive 2.6183 0.1325 3.2700

Unbiased (ours) 1.3564 0.4591 3.8028

Variance reduced (ours) 1.0870 0.3507 3.0596

Oracle (reference) 0.0563 0.0015 0.0648

Notes: The table present the prediction performance of SVM tuned by MSU-HPO with each estimator. The
bold fonts represent the best performance among estimators using only the unlabeled target task and labeled
source task datasets. The mean, standard error, and worst-case performances are induced by running the
simulations 10 times with different random seeds.

4.2 Results

Table 1 shows the prediction performance (MAE) of SVM tuned by setting each estimator
as f̂ in Algorithm 1. Note that we use GP-UCB (Srinivas et al., 2010) as OPT for all
estimators.

First, the proposed estimators significantly outperform the naive estimator in mean
performance because they can correctly address the distributional difference among patients.
However, the unbiased estimator underperforms the naive one in the worst-case performance
and has the largest standard error, because it suffers from the variance and instability
issues. On the other hand, the variance reduced method performs the best in the mean and
worst-case performances and has a smaller standard error than the unbiased method. This
is because it can increase the stability by down-weighting harmful data when calculating
a validation score, as discussed in our theoretical analysis. Finally, the performance of the
oracle method indicates that there is room for further improvement, even though our methods
largely outperform the naive method.

5. Conclusion

We explored a novel problem setting, MSU-HPO, with the goal of enabling HPO for a new
task of interest (target task). To this end, we proposed two estimators to approximate the
target task objective function using only available data. In particular, the variance reduced
estimator achieves variance optimality building the task divergence measure. The empirical
evaluation demonstrated that it helps us determine useful hyperparameters, even when the
labels of the target task are unusable.
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Appendix A. Summary of Related Work and Contributions

We summarize the related literature and our main contributions below.

A.1 Related Work

A typical HPO setting is to find a better set of hyperparameters using a labeled target
task of interest. As faster convergence is an essential performance metric of the HPO
methods, the research community is moving on to the multi-source or transfer settings for
which there are some previously solved related source tasks. By combining the additional
source task information and the labeled target task dataset, it has been shown that one can
improve the hyperparameter search efficiency, and thus reach a better solution with fewer
evaluations (Bonilla et al., 2008; Feurer et al., 2018, 2015; Perrone et al., 2018; Ramachandran
et al., 2018; Springenberg et al., 2016; Swersky et al., 2013; Vanschoren, 2019). A critical
difference between the multi-source (or transfer) HPOs and our MSU-HPO settings is the
existence of labels for the target task. Previous studies assume that analysts can utilize
labeled target data, but as discussed above, this is often unavailable, and thus, these methods
are infeasible. This work enables the use of any HPO method in the absence of a labeled
target dataset in a theoretically grounded manner for the first time.

Another related field is the model evaluation in covariate shift literature, whose objective
is to evaluate the performance of the ML models of the target task using only a relevant
single source dataset (Sugiyama et al., 2007; You et al., 2019; Zhong et al., 2010). These
studies build on the importance sampling (IS) method (Elvira et al., 2015; Sugiyama et al.,
2007) to obtain an unbiased estimate of ground-truth model performances. While our
proposed methods are also based on IS, a major difference is that we assume that there are
multiple source datasets with different distributions. We will demonstrate that with the
multi-source setting, the previous IS method can fail, and propose an estimator satisfying the
optimal variance property. Moreover, as these methods are specific to model evaluation, the
connection between the IS-based estimation techniques and the automated HPO methods
has not yet been explored. Consequently, we are the first to empirically evaluate the possible
combination of these fields.

A.2 Contributions

The contributions of this work can be summarized as follows:

• We formulate a novel and highly practical HPO setting, MSU-HPO.

• We propose two unbiased estimators for the ground-truth validation score calculable
with the available data. Additionally, we demonstrate that one of them achieves optimal
finite variance among a reasonable class of unbiased estimators.

• We describe a flexible and computationally tractable HPO procedure building on the
proposed estimators.

• We empirically demonstrate that the proposed procedure works favorably in situations
where a labeled target dataset is not available. Furthermore, our empirical results
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suggest a new possible connection between the adaptive HPO and IS-based unbiased
estimation techniques.

These theoretical and empirical findings provide ML practitioners with guidelines on how
to optimize the hyperparameters of their ML models, even in situations where they do not
have the labels of the target task.

Appendix B. Omited Proofs

B.1 Derivation of Unbiasedness

We first define a general class of unbiased estimators called λ-unbiased estimator that includes
the unbiased and variance reduced estimators as special cases.

Definiton 5. (λ-unbiased Estimator) When a set of weights λ = {λ1, . . . λNS} that satisfies
λj ≥ 0 and

∑NS
j=1 λjnSj = 1 for all j ∈ {1, . . . NS} is given, the λ-unbiased estimator for the

target task objective function is

f̂λ

(
θ; {DSj}

NS
j=1

)
= −

NS∑
j=1

λj

n
Sj∑
i=1

wSj (x
j
i ) · L(hθ(x

j
i ), y

j
i ) (9)

when λj = nSj/N , it is the unbiased estimator in Eq. (5). In contrast, it is the variance
reduced estimator in Eq. (8) when λj = λ?j

Then we show that the λ-unbiased estimator is statistically unbiased for the target task
function.

Proof. By the linearity of the expectation operator,

E
[
f̂λ

(
θ; {DSj}

NS
j=1

)]
= −

NS∑
j=1

λj

n
Sj∑
i=1

E(X,Y )∼p
Sj

[wSj (X) · L(hθ(X), Y )]

= −
NS∑
j=1

λj

n
Sj∑
i=1

E(X,Y )∼p
Sj

[
pT (X,Y )

pSj (X,Y )
· L(hθ(X), Y )

]

=

NS∑
j=1

λj

n
Sj∑
i=1

−E(X,Y )∼pT [L(hθ(X), Y )]

=

NS∑
j=1

λj

n
Sj∑
i=1

fT (θ)

=

NS∑
j=1

λjnSj

 · fT (θ)

= fT (θ)

Thus, the unbiased estimator in Eq. (5) and the variance reduced estimator in Eq. (8) are
both statistically unbiased for the ground truth target task objective function in Eq. (2).
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B.2 Derivation of Eq. (6)

Proof. The variance can be represented as follows because samples are independent

V
(
f̂UB

(
θ; {DSj}

NS
j=1

))
=

1

n2

NS∑
j=1

n
Sj∑
i=1

V (wSj (X) · L(hθ(X), Y ))

=
1

n2

NS∑
j=1

nSj · V (wSj (X) · L(hθ(X), Y ))

V (wSj (X) · L(hθ(X), Y )) is decomposed as

V (wSj (X) · L(hθ(X), Y )) = E(X,Y )∼p
Sj

[
w2
Sj (X) · L2(hθ(X), Y )

]
−
(
E(X,Y )∼p

Sj
[wSj (X) · L(hθ(X), Y )]

)2

From the unbiasedness property, E(X,Y )∼p
Sj

[wSj (X) · L(hθ(X), Y )] = fT (θ). Then, we now
have

V (wSj (X) · L(hθ(X), Y )) = E(X,Y )∼p
Sj

[
w2
Sj (X) · L2(hθ(X), Y )

]
− (fT (θ))2

B.3 Proof of Theorem 1

By following the same logic flow as in Section A.2, the variance of the λ-unbiased estimator
in Eq. (9) is

V
(
f̂λ

(
θ; {DSj}

NS
j=1

))
=

NS∑
j=1

λ2
jnSj

(
E(X,Y )∼p

Sj

[
w2
Sj (X) · L2(hθ(X), Y )

]
− (fT (θ))2

)

=

NS∑
j=1

λ2
jnSj ·Div

(
T ||Sj

)
(10)

Thus, by replacing λj for
(
Div

(
T ||Sj

)∑NS
j=1

n
Sj

Div(T ||Sj)

)−1
, we have

V
(
f̂λ

(
θ; {DSj}

NS
j=1

))
=

NS∑
j=1

NS∑
j=1

nSj

Div (T ||Sj)

−2

nSj ·Div
(
T ||Sj

)
=

NS∑
j=1

nSjDiv
(
T ||Sj

)
(Div (T ||Sj))2(

∑NS
j=1

n
Sj

Div(T ||Sj))2

=

NS∑
j=1

nSj

Div (T ||Sj)

NS∑
j=1

nSj

Div (T ||Sj)

−2

=

NS∑
j=1

nSj

Div (T ||Sj)

−1
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Algorithm 2 Hyperparameter optimization procedure under the MSU-HPO setting
Input: unlabeled target task dataset DT = {xi}nTi=1; labeled source task datasets {DSj =

{xji , y
j
i }
n
Sj

i=1}
NS
j=1; hyperparameter search space Θ; a machine learning model hθ; a target

task objective estimator f̂ , a hyperparameter optimization algorithm OPT
Output: the optimized set of hyperparameters θ? ∈ Θ
1: for j ∈ {1, . . . , NS} do
2: Split DSj into three folds Ddensity

Sj
, Dtrain

Sj
, and Dval

Sj

3: Estimate density ratio wSj (·) by LSIF with DT and Ddensity
Sj

4: end for
5: Optimize the hyperparameter θ ∈ Θ of hθ with OPT by setting f̂(θ; {Dval

Sj
}NSj=1) as its

objective
6: (the model parameter of hθ is obtained by optimizing f̂(θ; {Dtrain

Sj
}NSj=1))

7: return hθ? (where θ? is the output of OPT)

Moreover, for any set of weights λ = {λ1, . . . λNS}, we obtain the following variance optimality
using the Cauchy-Schwarz inequality.NS∑

j=1

λ2
jnSj ·Div

(
T ||Sj

)NS∑
j=1

nSj

Div (T ||Sj)

 ≥
NS∑
j=1

λjnSj

2

= 1

=⇒

NS∑
j=1

λ2
jnSj ·Div

(
T ||Sj

) ≥
NS∑
j=1

nSj

Div (T ||Sj)

−1

=⇒ V
(
f̂λ

(
θ; {DSj}

NS
j=1

))
≥ V

(
f̂V R

(
θ; {DSj}

NS
j=1

))

Appendix C. Hyperparameter Optimization Procedure

We describe several detailed components of the hyperparameter optimization procedure in
the MSU-HPO setting.

Density Ratio Estimation: In general, density ratio functions between the target and
source tasks are unavailable, and thus, should be estimated beforehand. To estimate this
parameter, we employ the least-squares importance fitting procedure (Kanamori et al., 2009;
Yamada et al., 2011), which suggests directly minimizing the following squared error for the
true density ratio function:

ŝ = arg min
s∈S

Ep
Sj

[
(w(X)− s(X))2

]
= arg min

s∈S

[
1

2
Ep

Sj

[
s2(X)

]
− EpT [s(X)]

]
(11)

where S is a class of measurable functions s : X → R≥0. It should be noted that the empirical
version of Eq. (11) is calculable with unlabeled target and source task datasets.

Task Divergence Estimation: To utilize the variance reduced estimator, the task
divergence measure Div

(
T ||Sj

)
in Eq. (7) needs to be estimated from the available data.

12



Multi-Source Unsupervised Hyperparameter Optimization

Algorithm 3 Bayesian Optimization under the MSU-HPO setting
Input: unlabeled target task dataset DT = {xi}nTi=1; labeled source task datasets {DSj =

{xji , y
j
i }
n
Sj

i=1}
NS
j=1; hyperparameter search space Θ; a machine learning model hθ; a target

task objective estiamtor f̂ , limit B, acquisition function α(·)
Output: the optimized set of hyperparameters θ? ∈ Θ
1: Set A0 ← ∅
2: for j ∈ {1, . . . , NS} do
3: Split DSj into three folds Ddensity

Sj
, Dtrain

Sj
, and Dval

Sj

4: Estimate density ratio wSj (·) by LSIF with DT and Ddensity
Sj

5: end for
6: for t = 1, 2, . . . , B do
7: Select θt = arg maxθ∈Θ α(θ | At−1)

8: Train hθt by optimizing f̂(θ; {Dtrain
Sj
}NSj=1) and obtain a trained model h∗θ

9: Evaluate h∗θ and obtain a validation score zt = f̂(θ; {Dval
Sj
}NSj=1)

10: At ← At−1 ∪ {(θt, zt)}
11: end for
12: t? = arg maxt{z1, . . . zB}
13: return hθ? (where θ? = θt?)

This can be done using the following empirical mean.

D̂iv
(
T ||Sj

)
=

1

nSj

n
Sj∑
i=1

(
w(xji ) · L(hθ(x

j
i ), y

j
i )
)2
−

(
1

nSj

n
Sj∑
i=1

w(xji ) · L(hθ(x
j
i ), y

j
i )

)2

(12)

How to train hθ?: To evaluate the validation score of θ ∈ Θ, the model parameters of
hθ should be optimized by the supervised learning procedure. However, in the MSU-HPO
setting, the labeled target task dataset is unavailable, and direct training of hθ is infeasible.
Therefore, we suggest splitting the labeled source task datasets {DSj} into the training
{Dtrain

Sj
} and validation {Dval

Sj
} sets. Then, we can train hθ using the training set as follows:

h∗θ = arg max
hθ∈Hθ

f̂
(
θ; {DtrainSj }

NS
j=1

)
where f̂ is an estimator for the target task objective function such as the unbiased and
variance reduced estimators, and Hθ is a hypothesis space defined by a set of hyperparameters
θ ∈ Θ.

This training procedure enables us to obtain the model parameters of hθ as if it were
trained on the labeled target task dataset. In addition, it is sufficient to train hθ only once
to evaluate θ ∈ Θ;the proposed procedure is computationally inexpensive compared with
other methods in task transfer settings such as distBO (Law et al., 2019).

Algorithm 2 describes the high-level hyperparameter optimization procedure which allows
any black-box optimization method to be used. In addition, Algorithm 3 describes the

13
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hyperparameter optimization procedure under the MSU-HPO setting with the popular
Bayesian optimization method.

Appendix D. Regret Analysis

In this section, we analyze the regret bound under the MSU-HPO setting. We define a regret
as

rnB = f(θ∗)− f(θ̂∗B),

where f : Θ→ R is the ground-truth target task objective, n =
∑NS

j=1 nSj is the total sample
size among source tasks, B is the total number of evaluation rounds, θ∗ = arg maxθ f(θ), and
θ̂∗B = arg maxθ∈{θ1,··· ,θB} f̂n(θ) where f̂n : Θ→ R is a target task objective approximated by
any estimator (e.g., the unbiased estimator and the variance reduced estimator).

To bound the regret above, we first decompose it into the following terms:

rNB = f(θ∗)− f(θ̂∗B)

= (f(θ∗)− f̂n(θ̂∗)) + f̂n(θ̂∗)− (f(θ̂∗B)− f̂n(θ̂∗B))− f̂n(θ̂∗B)

= (f̂n(θ̂∗)− f̂n(θ̂∗B))︸ ︷︷ ︸
(A)

+ (f(θ̂∗B)− f̂n(θ̂∗B))︸ ︷︷ ︸
(B)

+ (f(θ∗)− f̂n(θ̂∗))︸ ︷︷ ︸
(C)

, (13)

where θ̂∗ = arg maxθ∈Θ f̂N (θ).
The term (A) represents the regret obtained by optimizing the approximated target task

objective f̂n. The term (B) represents the difference of a function value between the true
objective f and the approximated objective f̂n at θ̂∗B, which is the solution obtained by the
optimization for the approximated objective. The term (C) represents the difference between
the maximum value for the true objective f and the maximum value for the approximated
objective f̂n. Note that the term (A) depends on a optimizer, not an estimator; in contrast,
the term (B) and (C) depend on only an estimator.

We first show the following two lemmas which is used to bound the regret.

Lemma 2. The following inequality holds with a probability of at least 1− δ, δ ∈ (0, 1)

(f(θ̂∗B)− f̂n(θ̂∗B)) ≤
√

V(f̂n(θ̂∗B))/δ.

Proof. By Chebyshev’s inequality, we have

P{f̂N (θ̂∗B)− f(θ̂∗B) ≥ c} ≤ P{|f̂N (θ̂∗B)− f(θ̂∗B)| ≥ c}
≤ V(f̂N (θ̂∗B))/c2.

Putting the RHS as δ and solving it for c completes the proof.

Lemma 3. The following inequality holds with a probability of at least 1− δ, δ ∈ (0, 1)

|f(θ∗)− f̂n(θ̂∗)| ≤
√

2(V(f̂n(θ∗)) + V(f̂n(θ̂∗)))/δ.
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Proof. By Chebyshev’s inequality, we have

P{f(θ∗)− f̂n(θ̂∗) ≥ c}
≤ P{|f(θ∗)− f̂n(θ̂∗)| ≥ c}
≤ P{|f(θ∗)− f̂n(θ∗)| ≥ c ∪ |f(θ̂∗)− f̂n(θ̂∗)| ≥ c}
≤ P{|f(θ∗)− f̂n(θ∗)| ≥ c}+ P{|f(θ̂∗)− f̂n(θ̂∗)| ≥ c}

≤ 1

c2
(V(f̂n(θ∗)) + V(f̂n(θ̂∗))).

Putting the RHS as δ and solving it for c completes the proof.

Theorem 4. (Regret Bound on the MSU-HPO setting) When the λ-unbiased estimator with
an arbitrary set of weights λ is used as f̂(θ, ; {Dval

Sj
}NSj=1), the following regret bound holds

with a probability of at least 1− δ, δ ∈ (0, 1),

rNB ≤ Rn +

√
2V(f̂n(θ̂∗B))/δ +

√
2(V(f̂n(θ∗)) + V(f̂n(θ̂∗)))/δ, (14)

where Rn = (f̂n(θ̂∗)− f̂n(θ̂∗B)).

Proof. Putting Lemma 2 to the term (B) in Eq. 13 and Lemma 3 to the term (B) in Eq. 13
complete the proof.

Remark. When an estimator is the proposed unbiased estimator or variance reduced
esitmator, the variance V(f̂n(·)) is o(n); the second term and third term in Eq.(14) is to be no-

regret with respect to n: limn→∞(
√

2V(f̂n(θ̂∗B))/δ +

√
2(V(f̂n(θ∗)) + V(f̂n(θ̂∗)))/δ)/n = 0.

That is, when we use a no-regret optimizer with respect to B, such as GP-UCB (Srinivas
et al., 2010), the regret overall is to be no-regret2 with respect to n and B.

Appendix E. Experimental Results with a Toy Problem

E.1 Setup

We consider a 1-dimensional regression problem with the MSU-HPO setting. The generative
process of the dataset in this experiment is as follows:

µi ∼ U(−ci, ci), {xil}nl=1 | µi
i.i.d.∼ N (µi, 1), {yil}nl=1 | {xil}nl=1

i.i.d.∼ {N (0.7xil + 0.3, 1)}nl=1,

where U is the uniform distribution, N denotes the normal distribution, and ci ∈ R is a prior
parameter that characterizes the marginal input distribution (p(x)) of task i. The objective
function f is given by:

f(θ;Di) =
1

N

N∑
l=1

L(θ, yi), L(θ, yi) = (θ − yi)2/2. (15)

2. In this case, we need some assumption on the objective function. For example, the regret bound of
GP-UCB depends on a RKHS norm or a smoothness of a kernel of the objective function.
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Figure 1: Results of the experiment on synthetic toy problems over 30 runs.

The optimal solution for this experiment is θ = n−1
∑n

l=1 yl.
As discussed in our theoretical analysis, when p(x) of the source task and the target

task differs significantly, the performance of the variance reduced estimator is better than
that of the unbiased estimator. To demonstrate this, we set ci separately for the source
(cSi ∈ {1.0, 2.0, · · · , 5.0}, i ∈ {1, · · · , NS}) and the target tasks (cT = 1.0). That is, the
source and target distributions are similar when cSi = 1.0(= cT ); in contrast, the source and
target distributions are quite different when cSi = 5.0. Finally, we set NS = 2 and n = 1000.

E.2 Results

Figure 1 shows the results of the experiment on the toy problem over 30 runs with different
random seeds. Figure 1 (a) indicates that the proposed unbiased and variance reduced
estimators significantly outperform the naive method in all settings. This is because our
estimators can unbiasedly approximate the target task objective by considering the distribu-
tional shift, while the naive method cannot. Moreover, this figure highlights the advantage
of unbiasedness when the distributions of the target and source tasks diverge largely (i.e.,
when cSi is large.). Next, we compare the performance of the unbiased and variance reduced
estimator in Figure 1 (b). This reports the performance of the unbiased estimator relative to
the variance reduced one with varying values of c. The result indicates that the advantages
of using the variance reduced estimator over the unbiased one are further strengthened when
there is a large divergence between the target and source task distributions. Finally, as shown
in Figure 1 (a), the variance reduced estimator achieves almost the same performance as the
upper bound without using the labels of the target task, and this suggests the importance of
the variance optimality proven in Theorem 1.
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