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Abstract

We propose regression networks for the problem of few-shot classification, where a classifier
must generalize to new classes not seen in the training set, given only a small number of
examples of each class. In high dimensional embedding spaces the direction of data gen-
erally contains richer information than magnitude. Next to this, state-of-the-art few-shot
metric methods that compare distances with aggregated class representations, have shown
superior performance. Combining these two insights, we propose to meta-learn classifica-
tion of embedded points by regressing the closest approximation in every class subspace
while using the regression error as a distance metric. Similarly to recent approaches for
few-shot learning, regression networks reflect a simple inductive bias that is beneficial in
this limited-data regime and they achieve excellent results, especially when more aggre-
gate class representations can be formed with multiple shots. The code for this project is
publicly available at https://github.com/ArnoutDevos/RegressionNet

1. Introduction

The ability to adapt quickly to new situations is a cornerstone of human intelligence. Artifi-
cial learning methods have been shown to be very effective for specific tasks, often surpassing
human performance (Silver et al., 2016; Esteva et al., 2017). However, by relying on stan-
dard training paradigms for supervised learning or reinforcement learning, these artificial
methods still require much training data and training time to adapt to a new task.

An area of machine learning that learns and adapts from a small amount of data is
called few-shot learning (Fei-Fei et al., 2006). A shot corresponds to a single example, e.g.,
an image and its label. In few-shot learning the learning scope is expanded from the classic
setting of a single task with many shots to a variety of tasks with a few shots each. Several
machine learning approaches have been used for this, including metric-learning (Vinyals
et al., 2016; Snell et al., 2017; Sung et al., 2018), meta-learning (Finn et al., 2017; Ravi and
Larochelle, 2017), and generative models (Fei-Fei et al., 2006; Lake et al., 2015).

Chen et al. (2019) show that a metric-learning based method called prototypical networks
(Snell et al., 2017), although simple in nature, achieves competitive performance with state-
of-the-art meta-learning approaches such as MAML (Finn et al., 2017) and other metric-
learning methods. Metric-learning methods approach the few-shot classification problem by
”learning to compare”. To learn high capacity nonlinear comparison models, most modern
few-shot metric-learning methods use a neural embedding space to measure distance.

In image classification with neural embeddings, the embedding dimensions are usually
high: e.g., 1600 for a Conv-4 backbone (used later). In high dimensional image vector
spaces ”direction” of data generally contains richer information than ”magnitude” (Zhe
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Figure 1: Few-shot learning process (top) and metric-learning based methods (bottom),
with S the support set (colored circles), Q the query set (white circle), Ỹ the output
distribution over classes for the query points, fφ a neural embedding function, and hθ a
neural network based distance function. Figure inspired by Chen et al. (2019).

et al., 2019). MatchingNet (Vinyals et al., 2016) leverages purely directional information
whereas ProtoNet (Snell et al., 2017) and RelationNet (Sung et al., 2018) mostly improve
on this by comparing with aggregated class representations.

We propose regression networks which combine the good properties of directional in-
formation in high-dimensional vector spaces with rich aggregate class information. The
proposed method is based on the idea that there exists an embedding in which every point
from the same class can be approximated by a linear combination of other points in that
same class. In order to do this, we learn a nonlinear mapping of the input space to an
embedding space by using a neural network and regress the best embedded approximation,
for each example. Classification of an embedded query point is then performed by simply
finding the nearest class subspace by comparing regression errors.

Subspaces have been used to model images for decades in computer vision and machine
learning (Fitzgibbon and Zisserman, 2003; Naseem et al., 2010). For example, the linear
regression classification (LRC) method (Naseem et al., 2010) relies on the fact that the set
of all reflectance functions produced by Lambertian objects, which parts of natural images
are composed of, lie near a low-dimensional vector subspace (Basri and Jacobs, 2003). More
recently, Simon et al. (2018) have explored few-shot learning with affine subspaces. Unlike
our approach with vector subspaces, affine subspaces cannot be constructed with 1-shot
learning, a key few-shot learning problem.

Figure 1 shows an overview of the few-shot learning process and a comparison of the
proposed method with comparable state-of-the-art metric-learning based approaches.

2



Regression Networks for Meta-Learning Few-Shot Classification

2. Regression Networks

2.1 Notation

We formulate theN -wayK-shot classification problem in an episodic way. Every episode has
a small support set of N classes with K labeled examples S = {(x11, y11), . . . , (xNK , yNK)},
and a query set of Q different examples Q = {(x1(K+1), y1(K+1)), . . . , (xN(K+Q), yN(K+Q))}.
Note that the query set contains labels only during training, and the goal is to predict the
labels of the query set during testing. In S and Q each xij ∈ RD is the D-dimensional
feature vector of an example and yij ∈ {1, . . . , N} is the corresponding label.

2.2 Model

Regression networks perform classification by regressing the best approximation to an em-
bedding point in each aggregated class representation and subsequently using the regression
error as a measure of distance. For this we start by constructing a K-dimensional embed-
ded subspace Sn of each class n, given K shots per class, through an embedding function
fφ : RD → RM with learnable parameters φ. With slight abuse of notation, every class
is represented by its subspace matrix Sn ∈ RM×K , that contains the K vectors of the
embedded class support points:

Sn =
[
fφ(xn1) . . . fφ(xnK)

]
(1)

The regression-error distance d̃(ei,Sn) of a point ei ∈ RM in the embedding space to a
class subspace Sn can be measured by regressing the closest point in the subspace in terms
of a certain distance metric. The closest point can be constructed with a linear combination
(represented by vector a ∈ RK×1) of the embedded support examples spanning that space.
By using a Euclidean distance metric, this can be formulated as a quadratic optimization
problem in a of the following form:

d̃(ei,Sn) = min
a

d(ei,Sna) = min
a
‖ei − Sna‖2 (2)

The associated learning problem with this few-shot (K) high-dimensional (M) overdeter-
minded system is least-squares linear regression. Given that M ≥ K, this is a well condi-
tioned system, and it admits a differentiable closed-form solution (Friedman et al., 2001):

d̃(ei,Sn) =
∥∥∥ei − Sn

(
STnSn

)−1
STnei

∥∥∥
2

(3)

= ‖ei −Pnei‖2 (4)

where it is important to note that the matrix to be inverted is of size K × K and the
number of shots K is usually small. The transformation matrix Pn projects the point ei
orthogonally onto the subspace spanned by the columns of Sn (Koç and Barkana, 2014).
Note that this transformation matrix Pn has to be computed only for every class, not every
example, which speeds up practical computation. Because the embedding function fφ can
output linearly dependent embeddings for different support examples, a small term λ1 > 0
is added to avoid singularity:

d̃(ei,Sn) =
∥∥∥ei − Sn

(
STnSn + λ1I

)−1
STnei

∥∥∥
2

(5)
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With this point-to-subspace distance function d̃ : RM × RM×K → [0,+∞), regression
networks give a distribution over classes for a query point x based on a softmax over
distances to each of the class subspaces in the embedding space:

pφ(y = n | x) =
exp

(
−d̃(fφ(x),Sn)

)
∑

n′ exp
(
−d̃(fφ(x),Sn′)

) (6)

Meta-learning continues by minimizing the negative log-probability function Lbase(φ) =
− log pφ(y = n | x) of the true class n via stochastic gradient descent (SGD). Training
episodes are formed by randomly sampling a subset of N classes from the training set.
Then, a subset of K examples within each class is chosen as the support set S, and a subset
of Q examples within each class is chosen as the query set Q.

2.3 Subspace Orthogonalization

The K-dimensional class vector subspaces live in a much larger M -dimensional space.
Therefore, we can exploit this freedom during training by making subspaces as directionally
different as possible. Concretely, we propose to add a pairwise subspace orthogonolization
term to the loss function:

LT = Lbase + λ2

N∑
i 6=j

∥∥STi Sj∥∥2F
‖Si‖2F ‖Sj‖

2
F

(7)

where ‖·‖F is the Frobenius norm and λ2 is a scaling hyperparameter. Section 3.2 studies
the effect of this term. We have also experimented with principal angles between vector
subspaces (Bjorck and Golub, 1973), because they only depend on the subspaces, not on
the (non-unique) set of points that define the subspaces as in Equation (7). Their results
were comparable with our current approach, but come at a higher computational cost with
a singular value decomposition.

Algorithm 1 in Appendix A details the complete regression networks training procedure.

3. Experiments

In terms of few-shot learning evaluation, we focus on the natural image-based mini-ImageNet
(Vinyals et al., 2016) dataset. To ensure a fair comparison with other methods, we perform
experiments under the same conditions using the verified re-implementation (Chen et al.,
2019) of MatchingNet, ProtoNet, RelationNet, MAML and extend it with R2D2 (Bertinetto
et al., 2019). Compared to our direct approach, R2D2 is a meta-learning technique which
leverages the closed-form solution of multinomial regression indirectly for classification (See
Section 4). We decide to compare with these methods in particular, because they serve as
the basis of many state-of-the-art few-shot classification algorithms (Oreshkin et al., 2018;
Xing et al., 2019), and our method is easily interchanged with them. Experimental details
can be found in Appendix B.

In this section, next to performance evaluation, we address the following research ques-
tions: (i) Can regression networks benefit from richer class representations and higher
dimensions? (Section 3.1). (ii) How much effect does subspace orthogonalization have?
(Section 3.2).
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Conv-4 ResNet-10

Method 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet 48.14±0.78 63.28±0.68 54.49±0.81 69.14±0.69
ProtoNet 44.42±0.84 65.15±0.67 51.98±0.84 73.77±0.64
RelationNet 49.31±0.85 65.33±0.70 52.19±0.83 69.97±0.68
MAML 46.47±0.82 62.71±0.71 54.69±0.89 66.62±0.83
R2D2 50.07±0.79 65.66±0.69 55.71±0.78 71.69±0.63
RegressionNet (ours) 47.02±0.77 67.09±0.69 55.44±0.86 76.29±0.59

Table 1: Average accuracies (%) of mini-ImageNet test tasks with 95% confidence intervals.

N -way K-shot λ2 = 0 λ2 > 0

5-way 1-shot 54.83±0.83 55.44±0.86
5-way 5-shot 74.03±0.68 76.29±0.59

Table 2: Ablation study of effect of subspace orthogonalization stimulation (Equation (7))
using a ResNet-10 backbone on mini-ImageNet. 1-shot: λ2 = 10−3, 5-shot: λ2 = 10−2

3.1 Few-shot Image Classification: mini-ImageNet

Table 1 shows the results for 5-way classification for mini-ImageNet for a different number
of shots and backbones.

First, because regression networks are expected to benefit more from better subspace
representations when more support examples are available per class, we investigate the
effect of the number of shots. As expected, when increasing the number of shots K per
class from 1 to 5, the classification accuracies increase for all methods. In the 5-shot case,
RegressionNet significantly outperforms all other methods, showing the benefit of using rich
class representations.

Secondly, as the backbone gets deeper, regression networks and prototypical networks
begin to perform significantly better than matching networks and relation networks with
R2D2 following close. Although the performance difference is small for mini-Imagenet,
given a relatively deep feature extractor ResNet-10, regression networks outperform all
other meta-learning and metric-learning methods when enough shots are available.

3.2 Ablation study

In order to evaluate the effect of adding the subspace orthogonalization stimulating term
to the loss function discussed in Section 2.3, we conduct an experiment without it. The
results, comparing a ResNet-10 model trained with subspace orthogonalization and without,
are shown in Table 2. All ablation experiments use ResNet-10 as a backbone.

Under all settings considered, subspace orthogonalization gives a classification accuracy
improvement (up to 2%). Note that, even without subspace orthogonalization, our proposed
method is still competitive with all other methods in Table 1.
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4. Related work

In addition to the reproduced metric (meta-)learning based few-shot methods (Snell et al.,
2017; Vinyals et al., 2016; Sung et al., 2018; Bertinetto et al., 2019), there is a large body of
work on few-shot learning and metric (meta-)learning. We discuss work that is more closely
related to regression networks in particular.

Our approach shows similarities to the linear regression classification (LRC) method
(Naseem et al., 2010), where each class is represented by the vector subspace spanned by
its examples. LRC was developed for face recognition, where only a few examples are
available, however it relies on a linear embedding. Our approach also uses few examples,
but it incorporates neural networks in order to nonlinearly embed examples and we couple
this with episodic training to handle the meta-learning few-shot scenario.

Simon et al. (2018) have explored affine subspace representations for few-shot learning.
In contrast to our closed-form linear regression approach, they make use of a truncated
singular value decomposition (SVD) of the support example matrix. Affine subspaces cannot
be constructed with 1-shot learning, a key few-shot learning problem. In contrast, our
closed-form linear regression approach relies on vector subspaces, which can be constructed
with 1-shot learning.

Bertinetto et al. (2019) propose to use regularized linear regression as a classifier on top
of the embedding function. Doing so, they directly approach a classification problem with
a regression method, but they show competitive results. To achieve this, they introduce
learnable scalars that scale and shift the regression outputs for them to be used in the cross-
entropy loss. Regression networks rely on the same closed-form solver for linear regression to
compute the transformation matrices, but are inherently designed for classification problems
because of their similarity to the LRC method (Naseem et al., 2010).

5. Conclusion

We have proposed regression networks for meta-learning few-shot classification. The method
assumes that for any embedded point we can regress the closest approximation in every class
representation and use the error as a distance measure. Classes are represented by their
embedded vector subspaces, which are spanned by their examples. The approach produces
better results than other state-of-the-art metric-learning based methods, when rich class
representations can be formed with multiple shots. Stimulating subspace orthogonality
consistently improves performance. A direction for future work is to study the effect of using
a low-rank approximation of the class subspace. Overall, the simplicity and effectiveness of
regression networks makes it a promising approach for metric-based few-shot classification.
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Mehmet Koç and Atalay Barkana. Application of linear regression classification to low-
dimensional datasets. Neurocomputing, 131:331–335, 2014.

7

https://academic.microsoft.com/paper/2964206659
https://academic.microsoft.com/paper/2964206659
https://academic.microsoft.com/paper/2604763608
https://academic.microsoft.com/paper/2604763608


Devos and Grossglauser

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Imran Naseem, Roberto Togneri, and Mohammed Bennamoun. Linear regression for face
recognition. IEEE transactions on pattern analysis and machine intelligence, 32(11):
2106–2112, 2010.
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Appendix A. Algorithm

Algorithm 1 Regression Networks

Require: Training set with task batches of NT N -way K-shot episodes/tasks
{T1, . . . , TNT

}, with every Ti containing sets STi = {(xi11, yi11), . . . , (xiNK , yiNK)} and
QTi = {(xi1(K+1), yi1(K+1)), . . . , (xiN(K+Q), yiN(K+Q))}. STin and QTin denote the class
n subsets of support and query sets, respectively, of episode Ti.

Require: α, λ1, λ2: step size, conditioning and orthogonalization parameters
1: Randomly initialize φ
2: while not done do
3: for each batch do . Sample batch of tasks
4: for i in {1, . . . , NT } do . Select task
5: for n in {1, . . . , N} do . Select class
6: Sn ← fφ(STin) . Embed class support set subspace Sn ∈ RM×K

7: Pn ← Sn
(
STnSn + λ1I

)−1
STn . Compute transformation matrix

8: LTi ← 0 . Initialize episode loss
9: for n in {1, . . . , N} do

10: for (x, y = n) in QTin do

11: LTi←LTi + 1
NQ

[
‖fφ(x)−Pnfφ(x)‖2 + log

∑
n′

exp(−‖fφ(x)−Pn′fφ(x)‖2)
]

+ λ2
∑N

i 6=j
‖ST

i Sj‖2F
‖Si‖2F ‖Sj‖2F

12: φ← φ− α∇φ
∑
i
LTi . Update embedding parameters φ with gradient descent

Appendix B. Experimental details

B.1 Experimental Setup and Datasets

The mini-Imagenet dataset proposed by (Vinyals et al., 2016) contains 100 classes, with 600
84 × 84 images per class sampled from the larger ImageNet dataset (Deng et al., 2009).
Following Ravi and Larochelle (2017), 64 classes are isolated for the training set and, from
the remaining classes, the validation and test sets of 16 and 20 classes, respectively, are
constructed. We use exactly the same train/validation/test split of classes as the one
suggested by Ravi and Larochelle (2017). We implement regression networks using the
automatic-differentation framework PyTorch (Paszke et al., 2017).

Many training optimizations exist, including using more classes in the training episodes
than in the testing episodes (Snell et al., 2017) or pre-training the feature extractor with all
training classes and a linear output layer (Qiao et al., 2018). However, we train all methods
from scratch and construct our training and testing episodes to have the same number of
classes N and shots K because we are interested in the relative performance of the methods.
For RegressionNet, the conditioning parameter used to ensure a fully invertible matrix in
Equation (5) is set to λ1 = 10−3. For 1-shot and 5-shot learning, λ2 = 10−3 and λ2 = 10−2

are used, respectively.
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B.2 Architectures and training

Despite the modification of some implementation details of the methods with respect to
the original papers, these settings ensure a fair comparison and Chen et al. (2019) report
a maximal drop in classification performance of 2% with respect to the original reported
performance of each method. For MAML, we reuse the results from Chen et al. (2019).

The Conv-4 backbone is composed of four convolutional blocks with an input size of
84×84 as in Snell et al. (2017). Each block comprises a 64-filter 3×3 convolution with a
padding of 1 and a stride of 1, a batch normalization layer, a ReLU nonlinearity and a 2×2
max-pooling layer.

The ResNet-10 backbone has an input size of 224×224 and is a simplified version of
ResNet-18 in He et al. (2016), by using only one residual building block in each layer.

All methods are trained with a random parameter initialization and use the Adam
optimizer (Kingma and Ba, 2014) with an initial learning rate of 10−3. During the training
stage, data augmentation is done in the form of: random crop, color jitter, and left-right
flip. For MatchingNet, a rather sophisticated long-short term memory (LSTM)-based full
context embedding (FCE) classification layer without fine-tuning is used over the support
set, and the cosine similarity metric is multiplied by a constant factor of 100. In RelationNet,
the L2 norm is replaced with a softmax layer to help the training procedure (Chen et al.,
2019). The relation module is composed of 2 convolutional blocks (same as in Conv-4),
followed by two fully connected layers of size 8 and 1.

In all settings, we train for 60,000 episodes and use the held-out validation set to select
the best model during training. To construct an N -way episode, we sample N = 5 classes
from the training set of classes. From each sampled class, we sample K examples to con-
struct the support set of an episode and Q = 16 examples for the query set. During testing,
we average the results over 600 episodes of exactly the same form, but this time they are
sampled from the test set classes.
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