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Abstract
AI automation tools need machine-readable hyperparameter schemas to define their search
spaces. At the same time, AI libraries often come with good human-readable documenta-
tion. While such documentation contains most of the necessary information, it is unfor-
tunately not ready to consume by tools. This paper describes how to automatically mine
Python docstrings in AI libraries to extract JSON Schemas for their hyperparameters. We
evaluate our approach on 119 transformers and estimators from three different libraries and
find that it is effective at extracting machine-readable schemas. Our vision is to reduce
the burden to manually create and maintain such schemas for AI automation tools and
broaden the reach of automation to larger libraries and richer schemas.

1. Introduction

Machine-learning practitioners use libraries of operators: reusable implementations of es-
timators (such as logistic regression, LR) and transformers (such as principal component
analysis, PCA). Training an operator fits its parameters (learnable coefficients such as LR
weights or PCA eigenvectors) to a dataset. Besides parameters, most operators also have hy-
perparameters: arguments that must be configured before training, such as the choice of LR
solver or the number of PCA components. Python libraries for machine learning (ML) such
as scikit-learn (Buitinck et al., 2013) tend to have good human readable documentation for
hyperparameters. Unfortunately, this documentation is usually not easily machine readable.
ML practitioners can configure hyperparameters either by hand or by using an HPO (au-
tomated hyperparameter optimization) tool such as hyperopt-sklearn (Komer et al., 2014)
or auto-sklearn (Feurer et al., 2015), or the grid search or randomized search from scikit-
learn. A hyperparameter schema specifies which hyperparameters are categorical and which
continuous, which values or ranges are valid, and conditional hyperparameter constraints.
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Figure 1: Overview of our mining approach.

Python has recently emerged as
the dominant ML language and many
ML libraries adopt scikit-learn style
conventions for interoperability (in-
cluding PyTorch (sko), pandas (skl),
Spark (spa), statsmodels (sta), and
TensorFlow (ker)). This paper pro-
poses and demonstrates an approach
for mining hyperparameter schemas
from the Python file implementing an
ML operator. The approach, shown in Figure 1, mines the docstring and refines the result-
ing schema via dynamic analysis of the implementation. Using the Python file as a single
source of truth simplifies maintenance when a new library version adds new features or dep-

©2020 G. Baudart, P. Kirchner, M. Hirzel, K. Kate.



G. Baudart, P. Kirchner, M. Hirzel, K. Kate

recates old ones. Furthermore, since the Python file is written by library developers and the
documentation is widely read by library users, it is a reliable source of truth.

Our approach outputs hyperparameter schemas in JSON Schema, which is a type descrip-
tion language for JSON documents (Pezoa et al., 2016). JSON Schema is widely adopted for
web APIs, cloud management, and document databases, among other domains, and there
are abundant public resources for learning and using it. JSON Schema is independent from
specific AI automation tools and recent work has demonstrated that it can be converted
to specifications for popular such tools (Baudart et al., 2020). We found JSON Schema to
have just the right expressiveness for hyperparameters including categoricals and conditional
constraints. Furthermore, we found JSON Schema easy to extend with additional meta-data
such as distributions for continuous hyperparameters.

This paper makes the following contributions: (1) Mining Python docstrings to ex-
tract hyperparameter schemas including constraints. (2) Using dynamic analysis to ob-
tain additional information about hyperparameters beyond the docstrings. (3) Reconcil-
ing hyperparameter metadata into a single machine-readable schema in JSON Schema for-
mat. We evaluate our approach on 119 automatically mined hyperparameter schemas for
ML operators and 42 hand-curated schemas. We make both datasets publicly available
(https://github.com/IBM/lale/tree/master/lale/lib/(autogen|sklearn)). Overall, we hope this pa-
per contributes towards making HPO tools easier to use, more reliable, and more effective.

2. Problem Statement

This paper is about solving the problem of mining hyperparameter specifications from a
Python docstring and turning them into a JSON Schema. To make things concrete, Figure 2
show an example input and the desired corresponding output of this mining problem.

The left side of Figure 2 shows an excerpt of class sklearn.linear_model.LogisticRegression
with its docstring. A docstring is a string literal that documents a specific class or function
definition. The HTML documentation for scikit-learn and other popular ML libraries is
auto-generated from their docstrings. For this to work, the docstrings follow conventions
understood by the HTML generation tool, in this case, the numpydoc extension (numpydoc
maintainers, 2008) for Sphinx (Brandl, 2008). In other words, docstrings are written in a
controlled natural language (CNL) (Kuhn, 2014): controlled, since they follow numpydoc
conventions, and natural, since they are human-readable even before being converted into
HTML. In practice, while docstrings suffice for HTML generation, they exhibit variability
and typos that make schema extraction non-trivial.

This paper proposes an extractor that converts the docstring not to HTML but to
JSON Schema. The right side of Figure 2 shows the schema for two categorical arguments
solver and penalty and one continuous arguments C. Like most ML libraries, scikit-learn
encodes categorical hyperparameters via Python string constants as opposed to Python
enums, but only the values mentioned in the documentation are valid. The example also
contains a conditional hyperparameter constraint: the value of solver implies which values
are valid for penalty. We can express this implication by taking the logically equivalent form
¬premise ∨ conclusion and using the JSON Schema keywords anyOf and not.
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class LogisticRegression:
"""Logistic Regression classifier.

Parameters
------

solver : str, {’linear’, ’sag’, ’lbfgs’}, \
optional (default=’linear’).

Algorithm for optimization.
- Solvers ’sag’ and ’lbfgs’ support only l2.

penalty : str, ’l1’ or ’l2’, default: ’l2’
Norm used in the penalization.
The ’sag’ and ’lbfgs’ solvers support
only l2 penalties.

C : float, default: 1.0
Inverse regularization strength;
must be a positive float.
Like in support vector machines, smaller
values specify stronger regularization

"""

def __init__(self, solver=’warn’,
penalty=’l2’, C=1.0, ...):

self.solver = solver
self.penalty = penalty
self.C = C
...

{ ’$schema’:’http://json−schema.org/draft−04/schema#’,
’allOf’: [

{ ’type’: ’object’,
’additionalProperties’: False,
’required’: [’solver’, ’penalty’, ’C’],
’relevantToOptimizer’: [’solver’, ’penalty’, ’C’],
’properties’: {

’solver’: {
’description’: ’Algorithm for optimization.’,
’enum’: [’linear’, ’sag’, ’lbfgs’],
’default’: ’linear’},

’penalty’: {
’description’: ’Norm used in the penalization.’,
’enum’: [’l1’, ’l2’],
’default’: ’l2’},

’C’: {
’description’: ’Inverse regularization strength.’,
’type’: ’number’,
’distribution’: ’loguniform’,
’minimum’: 0.0,
’exclusiveMinimum’: True,
’default’: 1.0,
’minimumForOptimizer’: 0.03125,
’maximumForOptimizer’: 32768},

{ ’description’: ’Solvers sag and lbfgs support only l2.’,
’anyOf’: [

{ ’type’: ’object’,
’properties’: {’solver’:{’not’:{’enum’:[’sag’,’lbfgs’]}}}},

{ ’type’: ’object’,
’properties’: {’penalty’:{’enum’:[’l2’]}}}]}]}

Figure 2: Simplified excerpt of the scikit-learn code for the LogisticRegression estima-
tor (left) and the corresponding hyperparameters schema (right).

3. Mining Docstrings

This section describes the CNL Parser component of the overview diagram in Figure 1. A
CNL (controlled natural language) is a natural language (e.g., English) with some amount of
structure (e.g., the input format for Sphinx and numpydoc, adopted by scikit-learn and other
ML libraries). The CNL parser starts by reading the docstring from the Python file, such
as the one on the left of Figure 2. It uses Sphinx and numpydoc to extract the docstring
of methods __init__ (class constructor), fit (for training), and predict or transform (for
using an operator after training) of the operator class. Sphinx and numpydoc pre-parse this
information into a list of argument tuples of the form (name, short_desc, long_desc) as well
as descriptions of the return values of the methods. Given the list of argument tuples, the
CNL parser uses two hand-crafted CNL grammars to extract per-argument schemas and
inter-argument constraints, respectively.

Mining Argument Schemas. The CNL parser uses a grammar (see Figure 3 in the
appendix) to extract per-argument schemas from the short_desc fields and inter-argument
constraints that appear in the long_desc. The example of Figure 2 illustrates the main
difficulties for mining and extraction. The parser needs to ignore noise such as whitespace,
string quotes, or the trailing backslash (\). In addition, even within the same operator,
the documentation uses different ways to express the same thing, e.g., enumerating values
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in curly braces {...} vs. using or. Overall, these difficulties arise from the ‘N’ in CNL:
docstrings use natural language. Noise is easy to handle using filtering during lexical analysis.
For the other difficulties, our grammar takes advantage of the ‘C’ in CNL: docstrings use
controlled language to the extent that they follow the conventions encouraged by Sphinx and
numpydoc. The grammar thus specifies multiple syntactic alternatives to capture different
ways to express the same thing (e.g., enum or default).

Mining Constraints. For inter-argument constraints, the CNL parser first extracts com-
plete sentences from the long description. Next, it uses regular expressions to flag possible
candidate constraints, for example, sentences containing the word ‘only’. Then it parses each
candidate using a grammar that captures common patterns (see Figure 4 in the appendix).
Unfortunately, there is great variety in how docstrings express conditional hyperparameter
constraints. Our grammar is only a first attempt to extract meaningful information. When
the CNL parser fails to parse a sentence flagged as a potential constraint, it puts a placeholder
into the schema with a TODO that a human can fill in later. Having mined both per-argument
schemas and inter-argument constraints, the last step of the CNL parser is to assemble all
the pieces into a single raw schema. The resulting JSON Schema is machine-readable and
captures the information in a format suitable both for validation and for search.

4. Refining Mined Meta-Data

This section describes the Schema Refiner component of the overview diagram in Figure 1.
This component uses dynamic analysis on the Python code to make additional observations,
which it combines with heuristics and overrides to turn the raw schema from the CNL Parser
into a refined schema for HPO tools.

Dynamic analysis for default values. Non-algorithmic defaults complicate the analysis
of types and values. This occurs, for example, when an argument default is appropriated for
purposes other than parameterization. To illustrate, it has become relatively commonplace
within scikit-learn to advise users of upcoming changes in defaults for important arguments
by setting the default value in the constructor’s signature to ’warn’ (e.g., Figure 2 (left))
to trigger a warning message. Our dynamic analysis creates an instance by calling the
constructor __init__() without passing any explicit arguments, then calls fit on the resulting
instance — which might assign the argument to its actual algorithmic default value — and
finally introspects the instance for these (possibly altered) default values and their types.

Dynamic analysis via runtime exception testing. We use the following techniques
to harvest good values and filter bad values for constructor arguments.
Bad values: Defaulting all other arguments, we give a deliberately bad value to the argument
under test and capture the exception. This exception text usually reports the bad value
which is easily distinguished in the message. Frequently, the exception text also reports
valid choices for the argument value, using a range of syntax that we can parse.
Greedy harvesting: We allow argument values that are valid for one operator to be tested for
the same argument name in a different operator. This occasionally discovers valid values,
particularly for under-documented classes.
Sampling: Defaulting all other arguments, an argument’s range is sampled for testing for
valid values. If categorical, all values are tested. Failed values are filtered out for the class.
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The message received for deliberately false values can help to disambiguate the complaint
in the case where it is not known a priori if the tested value is good or bad.
Bounds testing: With the caveat that some bounds may depend upon data and the values
of other arguments, the bounds of continuous ranges can be tested individually for validity
and exclusivity, which can be expressed in JSON Schema via e.g., ’exclusiveMinimum’: True.

Argument Overrides and Relevance to HPO. We provide for a dictionary of overrides
that allow the automatically extracted types and ranges to be replaced with user-specified
values, or for the parameter to be excluded from optimization. E.g., suppressing the ’mae’

choice for ’criterion’ on tree regressors because of prolonged fit times, or custom bounds for
numeric parameters. The ForOptimizer suffix indicates that these are not hard constraints.
This step also sets the distribution field (e.g. loguniform) and the relevantToOptimizer list,
omitting irrelevant arguments such as verbosity.

5. Results

This sections measures the effectiveness of our extractor tool with three experiments. (1) We
mined the schema of 119 operators from three different libraries: 115 from scikit-learn (Buit-
inck et al., 2013), 2 from XGBoost (Chen and Guestrin, 2016), and 2 from LightGBM (Ke
et al., 2017). (2) We compared the schemas of 42 operators with manually curated schemas:
38 from scikit-learn, 2 from XGBoost, and 2 from LightGBM. (3) We used the generated
schemas to find three-steps pipelines for 15 OpenML datasets with Lale (Baudart et al.,
2020), an Auto-ML library that uses hyperparameter search spaces in JSON Schema.

Table 1: Summary of the auto-generated schemas.
total coverage scikit-learn xgboost lightgbm

classes 119 1.00 115 2 2
arguments 1,867 1.00 1,686 88 93
types 1,758 0.94 1,606 (1,490 + 116) 77 (73 + 4) 75 (69 + 6)
default 1,204 0.64 1,090 (660 + 430) 49 (13 + 36) 65 (61 + 4)
range 399 0.50 339 (0 + 339) 37 (0 + 37) 23 (0 + 23)
constraints 43 0.36 43 /118 0 /0 0 /2

Complete dataset.
Table 1 presents the re-
sults of the extractor
executed on the com-
plete dataset (see also
Appendix B.1). For
each category, we re-
port the number mined
by the CNL parser and
the corrections made by
the schema refiner (parser+ refiner). For the constraints we report the number of valid con-
straints and the number of detected constraints (valid/detected). Overall, we were able to
mine 94% of the 1, 758 argument types (including the input/output schemas of the fit,
transform, and predict methods of all the operators). We extracted a default value for 64%
of the arguments but default values are not always relevant, e.g., for the input/output type
of the fit or predict method. We found a valid range for 50% of the 790 relevant arguments,
i.e., numeric arguments (integer or number) or string arguments used to captures enum values.
Finally, we detected 120 constraints but only 43 were converted into valid JSON Schema.

Curated dataset. Table 2 presents the results of the comparison (see also Appendix B.2).
For this experiment, we focused on the arguments to the operator’s constructor. The ex-
tractor correctly mined the type for 81% of the arguments and the default value for 97%.
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Table 2: Auto-generated vs. curated schemas.
reference generated match precision recall F1

arguments 452 452 452 1.00 1.00 1.00
types 452 399 367 0.92 0.81 0.86
defaults 452 441 438 0.99 0.97 0.98
ranges 103 83 83 1.00 0.81 0.89
distributions 166 125 125 1.00 0.75 0.86
constraints 65 20 (/50) 18 0.90 0.28 0.42

The extractor also found a valid
range for 81% of the 103 de-
fined ranges in the curated set,
and 75% of the distributions. Fi-
nally, the extractor detected 50
of the 65 constraints of the cu-
rated set. Among the detected
constraints, 20 are converted into
valid JSON Schema and 90% of
these match the curated schemas.

Auto-ML pipelines. To demonstrate the use of our schemas, we use Lale pipelines of
the form preprocessor >> feature_extractor >> classifier. Then, we let AutoML auto-
matically select each step from a predefined set of operators (see details in Appendix B.3)
and tune its hyperparameters based on our extracted schemas. For comparison, we used
auto-sklearn (Feurer et al., 2015) with the same resource constraints as a baseline: 1h of
optimization time and a timeout of 6mn per trial. Note that in this comparison, both the
framework and the hyperparameter schemas differ. The results show that Lale with our
auto-generated schemas achieves similar accuracies as auto-sklearn, a state-of-the-art tool.

6. Related Work

The most closely related work is jDoctor, which mines javadoc comments to extract method
pre- and post-conditions (Blasi et al., 2018). The results of mining are similar to schemas
in that they can capture argument ranges and even some constraints. But jDoctor focuses
on Java, whereas we focus on Python code without static type annotations and with string
constants. Furthermore, jDoctor focuses on testing, whereas we focus on AutoML.

Our schema refiner uses dynamic analysis on Python code to augment the information
extracted from docstrings. Fuzz testing, also known as fuzzing, is a well-established approach
for finding software defects by generating random inputs (Miller et al., 1990). While our
schema refiner is inspired by fuzzing, its goal is not to find defects but to extract schemas.

The primary contribution of this paper is the documentation mining, not the chosen
output format. We could have used different formats to express hyperparameter schemas.
Python 3 introduces optional type annotations that can be checked statically (van Rossum
et al., 2014). Unfortunately, since Python 3 types lack intersection types, string constant
types, and conditional constraints, they are less suitable for HPO. PCS is a file format for
specifying hyperparameter schemas for the SMAC tool (Hutter and Ramage, 2015). PCS is
well-suited for HPO and JSON Schema can be converted to PCS (Baudart et al., 2020).

7. Conclusion

This paper presents a tool that mines Python docstrings of ML libraries to extract hyper-
parameter schemas for HPO. The extracted schemas include names, types, defaults, and
descriptions, ranges and distributions for continuous hyperparameters, enumerations of con-
stants for categorical hyperparameters, and constraints for conditional hyperparameters.
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Appendix A. Mining Docstrings

A.1 Mining Argument Schemas

Sphinx and numpydoc pre-parse the documentation into a list of argument tuples of the form
(name, short_desc, long_desc). The CNL parser uses the grammar in Figure 3 to extract
per-argument schemas from the short_desc fields.

The start symbol of the grammar, start, splits the docstring into three parts: the type, or
a sequence of possible types (encoded in JSON using the anyOf keyword); an optional flag;
and the default value.

A.2 Mining Constraints

For inter-argument constraints, the CNL parser first extracts complete sentences from the
long description. Next, it uses a set of regular expression rules to flag possible candidate con-
straints, for example, sentences containing the word ‘only’. On each candidate it discovers,
the CNL parser uses the grammar in Figure 4.

Unfortunately, there is great variety in how docstrings express conditional hyperparam-
eter constraints. Since our CNL grammar does not anticipate the syntax of this example,
it cannot fully extract this constraint. However, it does detect the presence of some con-
straint, and it puts a placeholder into the raw JSON Schema with a TODO that a human
domain expert can then fill in later to further enhance it.

Appendix B. Results

This section measures the effectiveness of our extractor tool on two datasets: complete
and curated. The complete dataset comprises 119 operators from three different libraries:
115 from scikit-learn (Buitinck et al., 2013), 2 from XGBoost (Chen and Guestrin, 2016),
and 2 from LightGBM (Ke et al., 2017). For XGBoost and LightGBM we considered
both the regressor and the classifier. For scikit-learn we filter the classes revealed by
sklearn.utils.testing.all_estimators() to obtain estimators and transformers. We exclude
classes that are abstract, or that are meta-estimators. Further we examine their method
resolution order, confirm the existence of fit, and predict or transform, and confirm their
signatures. Finally, we exclude some classes known to be deprecated, e.g., Imputer, and some
known to be intended only to be used by other classes, e.g., ExtraTree.

The curated dataset comprises 42 operators with manually curated schemas: 38 from
scikit-learn, 2 from XGBoost, and 2 from LightGBM. Whereas the complete dataset allows
us to evaluate the robustness and coverage of the tool overall, the curated dataset allows us
to compare the extracted schemas against a ground truth for reference.

Finally, we used the generated schemas to find three-steps pipelines for 15 OpenML
datasets with Lale and compare the results with with auto-sklearn.

B.1 Complete Dataset Evaluation

Table 1 presents the results of the extractor executed on the complete dataset. For each
library, it reports the number of extracted arguments, types, default values, ranges, and
constraints. In addition, Table 1 explicitly shows the contributions of the CNL parser
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start ::= seq optional default (. | , )?
seq ::= (type , ?)+ (or type)?

type ::= int | integer | float | double | boolean | bool | string | str
| None | Ignored | callable | dict | type
| obj | array | enum

optional ::= (, optional )?

default ::= , ? (default (= | : )? val
| ( default (= | : )? val )
| val by default
| or val ( default ))?

obj ::= object | RandomState instance | returns an instance of self

array ::= atype (shape)?
atype ::= list | array | tuple | array_like | array−like

| numpy array | sparse matrix | scipy . sparse | scipy sparse
| {? atype (or | , ) atype }?

shape ::= , ? of ? (shape | size )? =? vtuple (or shape)?

enum ::= { val (, ? or ? (an | a )? val )∗ }
| (string | str ) , ? enum
| [ ? val (| val )+ ]?

vtuple ::= (( | [ ) val (, val )∗ , ? (] | )) | None

val ::= NAME | NUMBER

Figure 3: CNL grammar for parsing per-argument schemas.

start ::= only when cond

only ::= only (used | effective | compatible | significant | available | applies )?
when ::= when | if | with | in | for

cond ::= atom | cond (and | or) cond
atom ::= NAME compare seq | the? seq NAME (is used)?
seq ::= val (( , val )∗ , ? (and | or) val )?

compare ::= == | = | > | < | >= | >= | is set to | is
val ::= NUMBER | NAME

Figure 4: CNL grammar for parsing inter-argument constraints.
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and the schema refiner for each category to illustrate the advantages of combining the two
strategies.

Overall, we were able to mine 94% of the 1, 867 argument types (including the input/out-
put schemas of the fit, transform, and predict methods of all the operators). Missing argu-
ment types mostly come from unsupported or under-specified data structures, e.g., object,
dict, or callable. Even when mined, it is not clear how an AI automation tool would
instantiate such arguments during search.

We extracted a default value for 64% of the arguments but default values are not always
relevant, e.g., for the input/output type of the fit or predict method. Table 1 shows that,
even if default values are often documented, the schema refiner can extract a lot of additional
information, e.g., via dynamic analysis.

Since ranges are not consistently documented, the range analysis is solely based on the
schema refiner. We found a valid range for 50% of the 792 relevant arguments, i.e., numeric
arguments (integer or number) or string arguments used to captures enum values. However,
ranges are not required for all of these arguments. In fact we observe that, even in the
curated schemas, ranges are only defined for a few arguments to produce valid search spaces
for hyperparameter search tools.

Finally, we detected 120 constraints but only 43 were converted into valid JSON Schema.
The remaining 77 generate TODO warnings that can be manually inspected.

B.2 Curated Dataset Evaluation

Next, we compare the result of the extractor with a set of manually curated schemas. Results
are presented in Table 2. Compared to Table 1 we focus on the arguments to the operator’s
constructor (__init__), leaving aside the arguments and return values of its fit, predict, or
transform methods For each category we report the reference number, the generated number,
and the number of matches between the two sets. We also report the corresponding precision,
recall, and F1 score.

The extractor is able to detect all the 452 arguments, which indicates that all the ar-
guments are consistently documented across the three libraries. In the curated set, all
arguments have a correct type and a default value. The extractor correctly mined the type
for 81% of the arguments and the default value for 97%. The extractor also found a valid
range for 81% of the 103 defined ranges in the curated set. We categorized a range as valid
if the extractor returns an interval included in the range defined in the curated schema.
Compared to the complete dataset, these counts are relatively low because the curated
dataset includes the XGBoost and LightGBM operators that are both more complex and
less documented.

Mismatches between extracted and curated default values are due to values that cannot
be represented in JSON Schemas: the default value of the missing argument of the XG-
Boost operators and the missing_values of SimpleImputer is nan, which is replaced by None

in the curated schemas. Additionally, our extractor found inconsistencies between the doc-
umentation and the code. For instance, the documentation for the categories argument of
OneHotEncoder is:

categories : ’auto’ or a list of lists/arrays of values, \
default=’auto’.

11
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but the OneHotEncoder.__init__ method gives a default value categories=None.
Arguments types are often complex union types allowing multiple choices for one argu-

ment. For example, n_jobs can often be either None or an integer. To further investigate the
discrepancies between generated and curated types, we analyzed the numbers of type values
and enum values. The type values analysis reports the number of terminal types found in
the schemas, i.e, boolean, integer, number, string, or enum. The enum values analysis reports
the number of members found in each enum list.

reference generated match precision recall F1

type values 631 611 525 0.86 0.83 0.85
enum values 426 269 238 0.88 0.56 0.68

We observe that for both analyses the precision is relatively high: 86% for type values
and 88% for enum values, which suggests that extracted data are mostly correct. However,
for enum values the generated number is significantly lower than the curated number: the
extractor only found 56% of the enum values in the curated dataset.

This is mostly due to arguments that are under-specified as string in the documentation
and for which the schema refiner can not find a suitable enumeration. For example, the
documentation of the criterion argument of GradientBoostingClassifier is:

criterion: string, optional (default="friedman_mse")

but the valid enumeration is [’friedman_mse’, ’mse’, ’mae’]. These under-specifications are
relatively common when the enum value is only one possible choice in a complex union type.
For example, the documentation of the max_features argument of DecisionTreeClassifier is:

max_features: int, float, string or None, optional \
(default=None)

but again the valid enumeration is [’auto’, ’sqrt’, ’log2’].
Finally, the extractor detected 50 of the 65 constraints of the curated set. Among the

detected constraints, 20 are converted into valid JSON Schema and 90% of these match the
curated schemas. The mismatches are due to complex constraints that are merged in the
curated schemas. For instance, the description of the power_t argument of MLPClassifier

contains:

It is used in updating effective learning rate when
the learning_rate is set to ’invscaling’.
Only used when solver=’sgd’.

which is captured in the curated schemas as: "power_t can only differ from its default value
0.5 if solver == ’sgd’ and learning_rate == ’invscaling’", or in JSON Schema:

’anyOf’: [
{’type’: ’object’,
’properties’: {’power_t’: {’enum’: [0.5]}}},

{’type’: ’object’,
’properties’: {

’learning_rate’: {’enum’: [’invscaling’]},
’solver’: {’enum’: [’sgd’]}}}]}
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but the extractor is only able to extract the second condition on the solver (solver == ’sgd’).
The results for the constraints show that, even if we are able to flag most of the con-

straints, our CNL parser is not the best tool to extract meaningful information from the
constraint candidate. The language used to express the constraints is far less constrained
than the one used for the type description. An obvious direction for future work is thus to
try classic natural language understanding techniques.

B.3 AutoML Pipelines

The selected datasets comprise 5 simple classification tasks (test accuracy > 90% in all
our experiments) and 10 relatively complex tasks (test accuracy < 90%). For all the tasks
we start from the same three-step pipeline with both generated — lale-gen in Table 3 —
and curated schema — lale-cur in Table 3. For comparison, we used auto-sklearn (Feurer
et al., 2015) — autoskl in Table 3 — as a baseline. All tasks were configured with the same
resource constraints: one hour of optimization time and a timeout of six minutes per trial.
Lale then uses the search spaces defined in the schemas, the topology of the pipeline, and
off-the-self optimizers such as Hyperopt (Komer et al., 2014), to find the best candidate.

preprocessors = [ NoOp, MinMaxScaler, StandardScaler, Normalizer, RobustScaler]
features_extractors = [ NoOp, PCA, PolynomialFeatures, Nystroem]
classifiers = [ GaussianNB, GradientBoostingClassifier, KNeighborsClassifier,

RandomForestClassifier, ExtraTreesClassifier,
QuadraticDiscriminantAnalysis, PassiveAggressiveClassifier,
DecisionTreeClassifier, LogisticRegression, XGBClassifier,
LGBMClassifier, SVC ]

lale_pipe = make_pipeline( make_choice(*preprocessors),
make_choice(*features_extractors),
make_choice(*classifiers) )

For each experiment, we used a 66%− 33% validation-test split, and a 5-fold cross val-
idation on the validation split during optimization. Experiments were run on a 32 cores
(2.0GHz) virtual machine with 128GB memory. Table 3 shows the accuracy results (mean
and standard deviation across 5 independent runs) and the number of runs for each experi-
ments (where “ok” indicates a successful run and “ko” indicates an aborted run).

We observe that Lale with our auto-generated schemas achieves accuracies (88.1%) that
are comparable to auto-sklearn (88.0% with auto) and Lale with curated schemas (88.5%).
However, the number of aborted runs show that side-constraints play a key role during the
optimization process. Only 4.0% of the runs using curated schemas were aborted, compared
to 21.7% with generated schemas (and 6.7% for auto-sklearn).
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Table 3: Accuracy results for the OpenML classification tasks

autoskl lale-gen lale-cur

Precision Runs Precision Runs Precision Runs

dataset mean std ok ko mean std ok ko mean std ok ko

australian 85.09 (0.39) 527.8 (24.8) 85.35 (0.45) 146.0 (29.2) 86.14 (1.02) 416.8 (12.4)
blood 77.89 (1.24) 688.4 (42.2) 75.63 (1.61) 213.8 (43.8) 76.28 (4.57) 351.6 (9.6)
breast-cancer 73.05 (0.52) 758.6 (45.2) 72.63 (2.40) 202.4 (40.4) 72.00 (1.43) 552.0 (16.2)
car 99.37 (0.09) 461.6 (9.0) 99.16 (0.20) 123.8 (28.4) 99.19 (0.49) 138.4 (9.6)
credit-g 76.61 (1.07) 328.0 (22.4) 76.30 (0.87) 109.2 (24.4) 74.73 (0.68) 223.4 (11.6)
diabetes 77.01 (1.18) 545.0 (27.4) 75.83 (0.81) 217.8 (43.8) 76.77 (1.61) 384.2 (10.2)
hill-valley 99.45 (0.87) 343.0 (49.6) 99.65 (0.30) 79.4 (18.2) 99.60 (0.20) 113.0 (4.0)
jungle-chess 88.06 (0.22) 28.2 (8.2) 86.66 (1.06) 85.8 (19.4) 90.29 (0.00) 47.4 (7.0)
kc1 83.79 (0.28) 323.4 (21.4) 83.19 (0.27) 100.4 (22.0) 83.28 (1.10) 175.0 (6.2)
kr-vs-kp 99.70 (0.04) 176.2 (16.0) 99.34 (0.15) 61.0 (17.8) 99.55 (0.22) 79.0 (8.0)
mfeat-factors 98.70 (0.07) 114.8 (19.8) 97.33 (0.51) 46.0 (17.2) 97.85 (0.22) 62.0 (12.8)
phoneme 90.31 (0.35) 292.8 (3.6) 88.62 (0.46) 129.2 (24.0) 88.93 (0.49) 198.4 (4.6)
shuttle 87.27 (10.3) 70.8 (8.6) 99.92 (0.01) 60.6 (16.0) 99.94 (0.01) 49.0 (8.4)
spectf 87.93 (0.77) 493.4 (44.4) 88.10 (2.58) 134.0 (26.2) 88.10 (2.14) 276.6 (6.2)
sylvine 95.42 (0.19) 159.8 (12.2) 94.46 (0.19) 80.0 (18.2) 95.14 (0.14) 128.2 (0.4)
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