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Abstract

This paper introduces a web demo that showcases the main characteristics of the AutoGOAL
framework. AutoGOAL is a framework in Python for automatically finding the best way to
solve a given task. It has been designed mainly for automatic machine learning (AutoML)
but it can be used in any scenario where several possible strategies are available to solve
a given computational task. This paper presents an overview of the framework’s design
and an experimental evaluation in several machine learning problems. The accompanying
software demo is available online and full source code is available under a FOSS license1.

1. Introduction

The field of machine learning has applications across a wide range of computational problems
in different domains. However, given the vast quantity of resources and technologies available,
often one of the most difficult challenges is to select the best combination of them when a
specific problem is faced. Making the right selection requires both technical expertise and
experience in the problem domain. On one hand, technical expertise on managing different
technologies allows experts to understand the strengths and limitations of each technique,
while on the other hand, domain expertise provides key insights gained from previous
experiences. Researchers often spend a significant amount of time and computational
resources exploring multiple approaches in search of optimal configurations. This entails
testing marginally different approaches, features and hyper-parameter values. The field of
automatic machine learning (AutoML) has risen to prominence as a principled alternative for
finding optimal or close to optimal solutions to complex machine learning problems (Hutter
et al., 2018). Several software libraries have been created, which leverage existing machine
learning technologies and provide AutoML features built on them. However, despite the
recent success of AutoML, several challenges still remain.

1. https://autogoal.github.io

c©2020 S. Estevez-Velarde et. al..

https://autogoal.github.io


S. Estevez-Velarde et. al.

Most existing AutoML tools focus on a specific family of algorithms (such as neural
networks) or a specific problem setting (such as supervised learning from tabular data).
Furthermore, these tools are often designed as user-friendly interfaces to a back-end machine
learning framework (e.g., the main components in AutoSklearn (Feurer et al., 2015) are
based on the Transformer-Estimator API in scikit-learn). However, in practical scenarios,
researchers need to combine technologies from different frameworks which are not always
designed to interface with each other. Hence, even using modern AutoML tools, a significant
effort is necessary to develop an interface code for connecting the output of algorithms from
one machine learning framework into algorithms in a different framework.

This work presents AutoGOAL, a software library for AutoML that can seamlessly
combine technologies and resources from different frameworks. To unify disparate APIs
into a single interface, AutoGOAL proposes a novel graph-based representation for machine
learning pipelines. Furthermore, a search strategy based on probabilistic grammatical
evolution is used to discover optimal machine learning pipelines (Estevez-Velarde et al., 2019)
whose components can be from different back-end libraries. The key features of AutoGOAL
are:

Ease of use: AutoGOAL provides high-level classes that non-experts can use as black-box
AutoML solutions, compatible with several data types including text, images and
structured (tabular) data.

Multiple domains: AutoGOAL comes prepackaged with 133 plus adapters of existing
algorithms, from 7 different back-end libraries, for multiple problems including text
preprocessing, feature extraction, dataset augmentation, dimensionality reduction, as
well as supervised and unsupervised learning techniques.

Extensibility: AutoGOAL proposes a simple programming interface that developers can
implement to create an automatically discoverable adapter for an existing technology
from any machine learning framework.

This paper focuses on the engineering design of AutoGOAL by introducing a demo
application using the library to solve several machine learning problems, organised as follow:
Section 2 describes AutoGOAL from the perspective of a user of the library. Section 3
describes the library’s design. Section 4 presents experimental results of the application
of AutoGOAL to several different machine learning problems. Section 5 describes a demo
application built with AutoGOAL. Finally, Section 6 presents the conclusions and recom-
mendations for future work.

2. User Interaction

AutoGOAL can be used as a software library in the Python programming language. This
library is oriented towards two machine learning user profiles: non-experts and experts.
Non-expert users will interact with the High-Level API through a Python class —AutoML—
that abstracts the complete AutoML process in a black-box interface. In the case of expert
users, they will interact with the Low-Level API, by declaring in their own experimental
setup the elements that are suitable for optimisation (e.g., valid ranges for parameter values,
different strategies to evaluate).
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from autogoal.ml import AutoML

from autogoal.datasets import haha

# import lines for semantic datatypes

automl = AutoML(

# problem -specific input and output (semantic datatypes)

input=List(Sentences ()),

output=CategoricalVector ()

# additional parameters for timeout , memory , iterations , etc.

)

X, y = haha.load() # load problem -specific dataset

automl.fit(X, y) # run optimisation

Figure 1: Example source code for running AutoGOAL on a specific dataset, in this case an
NLP problem.

High-Level API (non-experts): This API allows AutoGOAL to be used as a black-
box classification or regression algorithm with an interface similar to the scikit-learn
library (Pedregosa et al., 2011). Behind this interface, a complete process including
preprocessing, feature selection, dimensionality reduction, and learning is performed.
The user must define a dataset for training and evaluation, a metric to optimise (which
defaults to accuracy) and the type of input and output data. In many cases AutoGOAL
can automatically infer the input and output type from the dataset. Input and output
types can vary from tabular data to complex types such as images, natural language
text with different semantic structures, and combinations thereof. Figure 1 shows
an illustrative example source code, specifically in the context of a text classification
problem.

Low-Level API (experts): This API is designed for users with more experience that need
control over the AutoML process. For this type of user, AutoGOAL provides a simple
language for defining a grammar that describes the solution space. This is done using
an object oriented approach were the user defines a Python class for each component
of the solution (e.g., each algorithm) and annotates the parameters of these classes
with attributes that describe the space of possible values, which can be primitive value
types (i.e., numeric, string, etc.) and instances of other classes, recursively. Based on
the annotations, AutoGOAL can automatically construct all possible ways in which
the user classes can be instantiated. An example code of this process is available in
Appendix A.

3. Implementation details

This section presents the overall architecture of the AutoGOAL library. For reference
purposes, Figure 2 illustrates the most relevant components of AutoGOAL, ranging from the
High-Level API down to the actual implementation of algorithm adapters and the interfaces
to external resources and back-end libraries.
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Figure 2: Overall architecture of the AutoGOAL framework.

The core of the AutoGOAL library is the Low-Level API, composed of the following
elements (see Figure 2): a probabilistic context-free grammar module (Grammar); a sampling
and optimisation module (Optimisation); and, a pipeline discovery module (Pipelines). This
Low-Level API allows users to: provide their own implementations of machine learning
algorithms; declare their optimisable elements (e.g., hyperparameters); and, define how they
can be connected in complex multi-step pipelines.

The Grammar module provides a set of type annotations that are used for defining the
hyperparameter space of an arbitrary technique or algorithm. Each technique is represented
as a Python class, and the corresponding hyperparameters are represented as annotated
arguments of the __init__ method, either primitive values (e.g., numeric, string, etc.) or
instances of other classes, recursively annotated. Given a collection of annotated classes, this
module automatically infers a context-free grammar that describes the space of all possible
instances of those classes.

The Optimisation module provides sampling strategies that traverse a context-free
grammar and recursively construct one specific instance following the annotations. Two
optimisation strategies are implemented: random search and probabilistic grammatical
evolution (O’Neill and Ryan, 2001). The latter performs a sampling/update cycle that
selects the best performing instances according to some predefined metric (e.g., accuracy on
a development set) and iteratively updates the internal probabilistic model of the sampler.

The Pipelines module provides an abstraction for algorithms to communicate with each
other via an Facade pattern, i.e., the implementation of a method run with type-annotated
input and output. Classes implementing this pattern are automatically connected in a
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graph of algorithms where each path represents a possible pipeline for solving a specific
problem (defined by the input and output datatypes).

The High-Level API that provides the AutoML class (see Listing 1) and the Semantic
Datatypes (see Appendix A) is built on top of this architecture, knitting together all the
components of AutoGOAL. Users can interact with the High-Level API for a black-box
AutoML solution, or can directly interact with the internal components for a more fine-
grained control or when requiring custom-made AutoML solutions.

AutoGOAL also provides an Algorithms Library of pre-made adapters for existing
machine learning technologies from External Libraries and Resources. A total of 133
algorithms from 7 different back-end libraries2 are provided, several of which are semi-
automatically created by code introspection, and the rest are manually added by the library
developers. This library is undergoing continuous expansion. AutoGOAL can be installed as
a Python package independently of any machine learning library. As such, it is a lightweight
framework that provides all the construction blocks but none of the predefined adapters.
Users can optionally install any one of the supported back-end libraries and AutoGOAL will
automatically discover it and register the corresponding adapters, which will be available for
use under the High-Level API. Additionally, a Docker image is provided with all optional
dependencies and back-end libraries already installed3.

4. Evaluation

AutoGOAL has been evaluated in different domains and compared to other AutoML tools,
including Auto-Weka (Thornton et al., 2013), TPOT (Olson and Moore, 2016), Auto-
Sklearn (Feurer et al., 2015), and ML-Plan (Mohr et al., 2018), see Table 1. AutoGOAL
is compared with other AutoML approaches in classic datasets (Dua and Graff, 2017) but
can applied to more complex domains such as text classification in HAHA (Chiruzzo et al.,
2019) and entity recognition in MEDDOCAN (Lara-Clares and Garcia-Serrano, 2019).

In terms of performance, AutoGOAL achieves comparative results with other AutoML
tools in classic datasets. However, AutoGOAL’s main strength lies in its ability to combine
different tools for solving complex problems beyond structured supervised learning. In
addition to structured datasets, AutoGOAL can be applied seamlessly to natural language
processing, using virtually the same code, by specifying the input and output datatypes. In
these domains AutoGOAL performs comparable to state-of-the-art solutions hand-crafted
by human experts, while requiring considerably less expertise and effort.

5. Demo description

To show the simplicity and versatility of AutoGOAL, an online demo application is provided4.
It is important to bear in mind that AutoGOAL is a source code library and not an application
with a user interface. The application shown in this section is simply a demonstrative example
of the sort of systems that could be easily built on top of AutoGOAL, and at the same time
serves as an interactive introduction to the library’s main concepts and use cases.

2. Including scikit-learn, nltk, gensim, spacy, keras, pytorch, among others.
3. https://hub.docker.com/repository/docker/autogoal/autogoal
4. https://autogoal.github.io/demo
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ML-Plan (Weka) 1.27 25.54 73.72 0.01 39.37 6.49 2.92 - -
Auto-WEKA 0.66 26.50 73.46 0.12 39.72 - 3.90 - -
ML-Plan (Sklearn) 0.34 24.56 73.77 0.02 39.52 8.69 2.76 - -
Auto-Sklearn-v 1.38 25.95 82.92 0.02 40.51 6.32 2.56 - -
Auto-Sklearn-we 1.26 25.39 80.59 0.02 38.99 6.02 2.24 - -
TPOT 0.37 23.91 73.14 0.02 38.47 - - - -

AutoGOAL 0.60 27.01 74.33 0.11 39.94 5.97 2.25 21.1 3.99

Table 1: Comparison of AutoGOAL and other AutoML systems for 9 classic machine
learning datasets in terms of accuracy except for MEDDOCAN (F1). Values for
other systems were obtained from Mohr et al. (2018).

The demo is divided in two different sections. To illustrate how to apply AutoGOAL as
a black box AutoML solution in a variety of problems, the first section shows how to apply
AutoGOAL to each of the machine learning problems described in section 4. The second
section shows several internal details of AutoGOAL, allowing the researcher to explore
the array of built-in custom implementations in the library and understand their internal
structure. Due to space restrictions, screenshots of the demo are available in Appendix C.

6. Conclusion

In this paper we presented AutoGOAL, a new tool for AutoML that allows resources from
different machine learning libraries to be combined and applied to different domains with
little effort. AutoGOAL greatly simplifies the application of machine learning for non-expert
users while providing powerful low-level components for experts to effectively optimise
complex machine learning pipelines. The framework has been designed with extensibility as
a priority, enabling the addition of new algorithms from any conceivable machine learning
library by conforming to a simple interface. To demonstrate its usefulness, AutoGOAL is
applied to different domains —including classic numeric datasets, text classification, and
entity recognition— achieving competitive results with the state of the art. The software is
provided freely for the research community along with a vast library of algorithms already
implemented.
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Appendix A. Example usage of the Low-Level API

This section illustrates how to use the Low-Level API to define new adapters that can be
automatically used by AutoGOAL.

The Low-Level API provides utilities to annotate the types of parameters in class
constructors and methods, thus indicating the valid range for their values. The user defines
class adapters for a back-end component to AutoGOAL’s API, e.g., an algorithm from
scikit-learn. As an example, the following listing shows the definition of classes that wrap
scikit-learn algorithms and define the hyperparameter search space by annotating the
parameters of interest in the class constructor.

class LR(sklearn.linear_model.LogisticRegression):

def __init__(

self ,

penalty: Categorical("l1", "l2"),

C: Continuous (0.1, 10)

):

super().__init__(penalty=penalty , C=C)

# TODO: Implementation of the ‘run ‘ method

# ...

class SVM(sklearn.svm.SVC):

# ...

class DecisionTree(sklearn.tree.DecisionTreeClassifier):

# ...

Additionally, each class must define a run method, where the input and output values are
annotated with semantic types (see Appendix B). This allows AutoGOAL to detect which
components can be connected. Supervised learning algorithms from scikit-learn receive as
input both the feature matrix and the classes (during training). The run methods in these
classes act as an adapter between AutoGOAL’s API and the scikit-learn API. A simplified
implementation is shown in the following listing.

class LR(sklearn.linear_model.LogisticRegression):

# ...

def run(self , input: Tuple(MatrixContinuous , CategoricalVector))

-> CategoricalVector:

# code to account for training vs. evaluation mode

# not shown for simplicity

if training:

X, y = input

self.fit(X, y)

return y

else:

return self.predict(X)

This API can be used at any level of detail. For example, an algorithm for obtaining
word2vec representations from individual words, using gensim, can be implemented in the
same manner. Notice that this algorithm runs at the level of tokens, contrary to the
scikit-learn adapters, which run at the level of a complete dataset.
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class Word2VecEmbedding:

def __init__(self):

# load word2vec model from gensim API

self.model = gensim.downloader.load("glove -twitter -25")

def run(self , input: Word) -> ContinuousVector:

try:

return self.model.get_vector(input)

except:

return np.zeros (25)

As a final example, this API can also represent feature extraction techniques that use
external resources, such as Wikipedia, WordNet, etc. The following listing shows the
implementation of a Wikipedia summary extractor, which uses a Python library to access
Wikipedia, search for a word and return the summary of the first match.

class WikipediaSummary:

def run(self , input: Word)-> Summary:

try:

return wikipedia.summary(input)

except:

return ""

The previous examples are just illustrative of the variety of tasks that can be represented
in AutoGOAL via the Low-Level API. AutoGOAL contains hundreds of implementations
similar to the ones shown in the previous examples. A pipeline for a specific problem is
constructed by connecting several algorithms with compatible input/output types, where
compatibility is determined by the inheritance relationship in the Semantic Datatype
hierarchy (see Appendix B).

If all the intermediate components are available, AutoGOAL can automatically find
pipelines for a variety of input/output types. The AutoML class can be customised to define a
list of possible classes (which adhere to the run protocol) to use, instead of defaulting to using
the entire library of AutoGOAL’s adapters. This allows the user to exclude some algorithms
and include novel adapters implemented from custom back-end libraries. AutoGOAL also
allows the specification of a resource budget (i.e., time and memory) for each pipeline and
for the whole optimisation process, different score metrics, and other parameters.

automl = AutoML(

input= # ....

output= # ...

# explicitely define the list of available algorithms

registry = [

LR, SVM , DecisionTree , Word2VecEmbedding , # ...

]

# fine -grained configuration of the experimental setup

score_metric=f1_score , # custom evaluation metric

search_kwargs=dict(

search_timeout =3600,

evaluation_timeout =60,

memory_limit =1024 ** 3,

)

)
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One of the most powerful characteristics of AutoGOAL is that it can automatically
perform tuple and list construction and deconstruction. To illustrate the importance of
this feature, consider that scikit-learn-based adapters require feature matrices defined at
a dataset level, but tokenizers work at sentence level and the word2vec encoder works at
token level. This is however not a problem since AutoGOAL is capable of automatically
“lifting” an algorithm with input Tin and output Tout to an algorithm of input List(Tin)
and output List(Tout). Hence, if the input is List(Sentence), then algorithms that work
on sentence level, such as tokenizers, will be automatically lifted to work on lists of sentences,
obtaining as output a List(List(Word)). Each internal token can then be converted to a
word2vec representation and the lists of vectors can be automatically assembled into feature
matrices. This mechanism is completely transparent to the user.

Appendix B. Semantic datatypes

The Semantic Datatype hierarchy is a collection of Python classes that represent all possible
input and output types in AutoGOAL. The collection is extensible, allowing the user to
define new semantic types when necessary. These classes don’t hold any data and are not
instantiated. They are only used to annotate the input and output types of run methods,
allowing the Pipeline module (see Figure 2) to detect valid pipelines. Compatibility among
types is determined by the inheritance relationship in this hierarchy. For example, if an
algorithm A produces MatrixContinousDense and another algorithm B receives Matrix,
then the output of A can be passed to the input of B, which means that those two algorithms
can be used in a pipeline. Figure 3 shows the current hierarchy.

Document

Summary

Stem

DataType

Text

Chunktag Entity Synset List Matrix Category Tensor3 Postag Sentiment

Tuple

Vector

MatrixContinuous

MatrixContinuousDense MatrixContinuousSparse

Sentence Word DiscreteVector

SparseMatrixDenseMatrix

CategoricalVector ContinuousVector

Figure 3: Diagram of Semantic Datatypes in the AutoGOAL framework.

Appendix C. Screenshots of the demo application

The demo presented with this paper is a showcase of AutoGOAL’s main characteristics. The
following images show screenshots of different features of the demo. Figure 4 shows the first
section of the demo, where the user can select one of several included datasets and apply the
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black-box AutoML solver. Figure 5 shows the optimisation process during execution. Figure 6
shows the second section where the user can browse the Algorithms Library. Finally, Figure 7
shows a graph representing all the pipelines for a specific input/output combination.

Figure 4: Screenshot of the AutoGOAL demo, selecting datasets.

Figure 5: Screenshot of the AutoGOAL demo, optimisation process.
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Figure 6: Screenshot of the AutoGOAL demo, exploring the Algorithms Library.

Figure 7: Screenshot of the AutoGOAL demo, exploring a graph of pipelines.
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