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Abstract
Deep (reinforcement) learning systems are sensitive to hyperparameters which are notoriously ex-
pensive to tune, typically requiring running iterative processes over multiple epochs or episodes.
Traditional tuning approaches only consider the final performance of a hyperparameter, ignoring
intermediate information from the learning curve. In this paper, we present a Bayesian optimization
approach which exploits the iterative structure of learning algorithms for efficient hyperparameter
tuning. First, we transform each training curve into numeric scores representing training success
as well as stability. Second, we selectively augment the data using the information from the curve.
This augmentation step enables modeling efficiency. We demonstrate the efficiency of our algo-
rithm by tuning hyperparameters for the training of deep reinforcement learning agents and convo-
lutional neural networks. Our algorithm outperforms all existing baselines in identifying optimal
hyperparameters in minimal time.

1. Introduction

Deep learning (DL) and deep reinforcement learning (DRL) have lead to impressive breakthroughs
in a broad range of applications such as game play (Mnih et al., 2013; Silver et al., 2016), motor
control (Todorov et al., 2012), and image recognition (Krizhevsky et al., 2012). To maintain general
applicability, these algorithms expose sets of hyperparameters to adapt their behavior to any partic-
ular task at hand. This flexibility comes at the price of having to tune an additional set of parameters
– poor settings lead to drastic performance losses or divergence (Smith, 2018; Henderson et al.,
2018). The training process for DL and DRL is typically conducted in an iterative manner, such
as based on stochastic gradient descent and carried out using multiple episodes. The knowledge
accumulated during these training iterations can be useful to inform BO. However, most existing
BO approaches (Shahriari et al., 2016) may have ignored the useful information contained in the
preceding training steps.

In this paper, we present a Bayesian optimization approach for tuning algorithms where iterative
learning is available – the cases of deep learning and deep reinforcement learning. First, we consider
the joint space of input hyperparameters and number of training iterations to capture the learning
progress at different time steps in the training process. We then propose to transform the whole
training curve into a numeric score according to user preference. To learn across the joint space
efficiently, we introduce a data augmentation technique leveraging intermediate information from
the iterative process. By exploiting the iterative structure of training procedures, we encourage our
algorithm to consider running a larger number of cheap (but high-utility) experiments, when cost-
ignorant algorithms would only be able to run a few expensive ones. We demonstrate the efficiency
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of our algorithm on training DRL agents on several well-known benchmarks as well as the training
of convolutional neural networks. In particular, our algorithm outperforms existing baselines in
finding the best hyperparameter in terms of wall-clock time. Our main contributions are: (1) an
algorithm to optimize the learning curve of a ML algorithm by using training curve compression;
(2) an approach to learn the compression curve from the data and data augmentation technique for
increased sample-efficiency; (3) demonstration on tuning DRL and convolutional neural networks.

2. Bayesian Optimization for Iterative Learning (BOIL)

Problem setting. We consider training a machine learning algorithm given a d-dimensional hy-
perparameter x∈X ⊂Rd for t iterations. This process has a training time cost c(x, t) and produces
training evaluations r(. | x, t) for t iterations, t ∈ [Tmin,Tmax]. These could be episode rewards in DRL
or training accuracies in DL. An important property of iterative training is that we know the whole
curve at preceding steps rt ′(x, t), ∀t ′ ≤ t.

Given the raw training curve r(. | x, t), we assume an underlying smoothed black-box function
f , defined in Sec. 2.3. Formally, we aim to find x∗ = argmaxx∈X f (x,Tmax); at the same time, we
want to keep the overall training time, ∑

N
i=1 c(xi, ti), of evaluated settings [xi, ti] as low as possible.

We summarize our variables in Table 1 in the supplement for ease of reading.

2.1 Selecting a next point using iteration-efficient modeling

We follow the popular designs in Krause and Ong (2011); Swersky et al. (2013); Song et al. (2019)
to model the black-box function f (x, t) and the cost c(x, t) using two independent GPs to capture the
correlation across hyperparameter x and iteration t as f (x, t)∼GP(0,K([x, t], [x′, t ′])) and c(x, t)∼
GP(0,Kc([x, t], [x′, t ′])) where [x, t] ∈ Rd+1; K and Kc are the respective covariance functions. In
both models, we choose the covariance kernel as a product k ([x, t], [x′, t ′]) = k(x,x′)× k(t, t ′) to
induce similarities over parameter and iteration space. We estimate the predictive mean and uncer-
tainty of both GPs at any input z∗ = [x∗, t∗] as

µ (z∗) =k∗
[
K+σ

2
y I
]−1 y (1)

σ
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]−1 kT

c∗ (4)
where σ2

y is the noise variance for f and σ2
c is the noise variance for cost.

Our intuition is to select a point with high function value (exploitation), high uncertainty (explo-
ration) and low cost (cheap). At each iteration n, we query the input parameter xn and the number
of iteration tn using the simple form (Snoek et al., 2012; Wu et al., 2019):

zn = [xn, tn] = arg max
x∈X ,t∈[Tmin,Tmax]

α(x, t)/µc(x, t). (5)

where α() is the acquisition function and µc is the estimated cost defined in Eq. (3).

2.2 Augmentation with intermediate observations from a curve

When evaluating a parameter x over t iterations, we obtain not only a final score but also all reward
sequences r(t ′ | x, t),∀t ′ = 1, ..., t. The auxiliary information from the curve can bring useful infor-
mation for BO. Therefore, we propose to augment the information from the curve into the sample
set of our GP model.
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Ill-conditioned issue with a full curve. A naïve approach for augmentation is to add a full curve
of points {[x, j],y j}t

j=1 where y j is computed using Eq. (7). However, this approach imposes serious
issues in the conditioning of the GP covariance matrix.
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Figure 1: The condition number of GP co-
variance matrix goes badly if we add the
whole curve of points into a GP. The large
condition number measures the nearness to
singularity.

As we cluster more evaluations closely, the condi-
tioning of the GP covariance degrades further, as dis-
cussed in McLeod et al. (2018). This conditioning
issue is especially serious in our noisy DRL settings.
We highlight this effect in Fig. 1 where the natural
log of condition number goes above 25 if we aug-
ment the whole curve.

Selecting subset of points from the curve. It is
essential to selectively augment the observations
from the learning curve. We can mitigate such con-
ditioning issue by discouraging the addition of sim-
ilar points close to each other. For this purpose, we
can utilize several approaches, such as active learn-
ing (Osborne et al., 2012; Gal et al., 2017). We propose to use the simple, but effective, uncertainty
sampling approach. We select a sample at the maximum of the GP predictive uncertainty. Formally,
we sequentially select a set Z = [z1, ...zM], zm = [x, tm], by varying tm while keeping x fixed as

zm =argmax
∀t ′≤t

σ([x, t ′] | D′),∀m≤M s.t. lnof cond(K)≤ δ (6)

where D′ = D∪ {z j = [x, t j]}m−1
j=1 . This sub-optimisation problem is done in a one-dimensional

space of t ′ ∈ {Tmin, ..., t}, thus it is cheap to estimate using a gradient descent (the derivative of GP
predictive variance is available (Rasmussen, 2006)).

These generated points Z will be used to calculate the output r(zm) and augmented into the
observation set (X ,Y ) for fitting the GP. The number of samples M will be adaptively chosen such
that the natural log of the condition number of the covariance matrix is less than a threshold. We
illustrate the augmented observations and estimated scores in Fig. 2.

2.3 Training curve compression and estimating the transformation function

Existing BO approaches (Brochu et al., 2010; Chen et al., 2018; Li et al., 2018; Nguyen and
Osborne, 2020) typically define the objective function as an average loss over the final learning
episodes. However, this does not take into consideration how stable performance is or the training
stage at which it has been achieved. We argue that averaging learning losses is likely misleading
due to the noise and fluctuations of our observations (learning curves) – particularly during the
early stages of training. We propose to compress the whole learning curve into a numeric score via
a preference function representing the user’s desired training curve. In the following, we use the
Sigmoid function parameterized by a growth g0 defining a slope and the middle point of the curve
m0 to compute the utility score as

y = ŷ(r,m0,g0) = r(. | x, t)• l(. | m0,g0) =
t

∑
u=1

r(u | x, t)
1+ exp(−g0 [u−m0])

(7)

where • is a dot product. The Sigmoid preference has a number of desirable properties. As the
early weights are small, less credit is given to fluctuations at the initial stages. However, as weights
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Figure 2: Left: the score in pink box is a convolution of the reward curve r(. | x = 0.9, t = 500)
and a Sigmoid function up to this time step. Bottom: observations are selected to augment the data
set (red dots). The heatmap indicates the GP predictive mean µ for f across number of episode t
used to train an agent. Tmin and Tmax are two user-defined thresholds of number of used episodes for
training. x is a hyperparameter to be tuned. Right: we learn the optimal parameter g∗0 and m∗0 for
each experiment respectively.

monotonically increase, hyperparameters for improving performance are preferred. As weights sat-
urate over time, stable, high performing configurations is preferred over short “performance spikes”
characteristic of unstable training. Lastly, this utility score assigns higher values to the same perfor-
mance if it is being maintained over more episodes.

Learning the transformation function from data. Different compression curves l(), parameter-
ized by different choices of g0 and m0 in Eq. (7), may lead to different utilities y and thus affect
the performance. Therefore, we propose to learn the suitable parameter g∗0 and m∗0 directly from the
data. Our intuition is that the ‘optimal’ compression curve l(m∗0,g

∗
0) will lead to better fitting for

the GP. This better GP surrogate model, thus, will result in better prediction as well as optimization
performance. We parameterize the GP log marginal likelihood L (Rasmussen, 2006) as the function
of m0 and g0:

L(m0,g0) =
1
2

ŷT (K +σ
2
y I
)−1 ŷ− 1

2
ln
∣∣K +σ

2
y I
∣∣+ const (8)

where ŷ is the function of m0 and g0 defined in Eq. (7). We optimize m0 and g0 (jointly with other
GP hyperparameters) using gradient-based approach. We derive the derivative ∂L

∂m0
= ∂L

∂ ŷ
∂ ŷ

∂m0
and

∂L
∂g0

= ∂L
∂ ŷ

∂ ŷ
∂g0

which can be computed analytically as:

∂L
∂ ŷ

=
(
K +σ

2
y IN

)−1
ŷ;

∂ ŷ
∂m0

=
−g0× exp(−g0 [u−m0])

[1+ exp(−g0 [u−m0])]
2 ;

∂ ŷ
∂g0

=
−m0× exp(−g0 [u−m0])

[1+ exp(−g0 [u−m0])]
2 .
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Algorithm 1 Bayesian Optimization with Iterative Learning (BOIL)

Input: #iter N, initial data D0, z = [x, t]. Output: optimal x∗ and y∗ = max∀y∈DN y
1: for n = 1....N do
2: Fit two GPs to calculate µ f (),σ f () and µc() from Eqs. (1,2,3).
3: Select zn = argmaxx,t α(x, t)/µc(x, t) and observe a curve r and a cost c from f (zn)
4: Compressing the learning curve r(zn) into numeric score using Eq. (7).
5: Sample augmented points zn,m,yn,m,cn,m,∀m≤M given the curve and Dn in Eq. (6)
6: Augment the data into Dn and estimate Logistic curve hyperparameters m0 and g0.
7: end for

The estimated compression curves are illustrated in Right Fig. 2. We summarize the overall
algorithm in Alg. 1.

3. Experiments

We demonstrate our proposed model by tuning hyperparameters for two deep reinforcement learn-
ing agents on three environments and a convolutional neural networks on two datasets. We provide
additional illustrations and experiments in the supplement.

Experimental setup. We use square-exponential kernels for the GPs in our model and estimate
their parameters by maximizing the marginal likelihood. We set the maximum number of augmented
points to be M = 15 and a threshold for a natural log of GP condition number δ = 20. We note that
the optimization overhead is much less than the black-box function evaluation time. We follow
Wang and de Freitas (2014) to use a slight modification of the expected improvement, i.e., using the
incumbent µmax

n which is the maximum of GP mean to deal with noise.

Baselines. We extend the discrete (Swersky et al., 2013) to the continuous multi-task BO – which
can also be seen as continuous multi-fidelity BO (Kandasamy et al., 2017; Song et al., 2019) be-
cause in our setting they both consider cost-sensitive and in the iteration-efficient manner. We,
therefore, label the two baselines as continuous multi-task/fidelity BO (CM-T/F-BO). We have an-
other comparison with a CM-T/F-BO using time kernel in Freeze-thaw (Swersky et al., 2014) in the
supplement. We do not compare with Fabolas (Klein et al., 2017a) because Fabolas is designed for
varying dataset sizes, not iteration axis. We have considered the ablation study in the appendix using
a time kernel as the exponential decay proposed in Freeze-thaw method (Swersky et al., 2014).

Learning the compression function. We first illustrate the estimated compression function l(m∗0,g
∗
0)

in Right Fig. 2 from different experiments. These Logistic parameters g∗0 and m∗0 are estimated by
maximizing the GP marginal likelihood in Eq. (8) and used for compressing the curve. We show
that the estimated curve from CartPole tends to reach the highest performance much earlier than
Reacher because CartPole is somewhat easier to train than Reacher.

Ablation study of curve compression. To demonstrate the impact of our training curve com-
pression, we compare BOIL to vanilla Bayesian optimization (BO) and with compression (BO-L)
given the same number of iterations at Tmax. We show that using the curve compression will lead
to stable performance, as opposed to the existing technique of averaging the last iterations. We plot
the learning curves of the best hyperparameters identified by BO, BO-L and BOIL. Fig. 3 shows
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Figure 3: The best found learning curves. The curves show that BO-L and BOIL reliably identify
parameters leading to stable training. BOIL takes only half total time to find this optimal curve.
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Figure 4: Comparison over BO evaluations (Left) and real-time (Right).

the learning progress over Tmax episodes for each of these. The curves are smoothed by averaging
over 100 consecutive episodes for increased clarity. We first note that all three algorithms eventu-
ally obtain similar performance at the end of learning. However, since BO-L and BOIL take into
account the preceding learning steps, they achieve higher performance more quickly. Furthermore,
they achieve this more reliably as evidenced by the smaller error bars (shaded regions).

Tuning DRL and CNN. We now optimize hyperparameters for deep reinforcement learning al-
gorithms; in fact, this application motivated the development of BOIL. The combinations of hyper-
parameters to be tuned, target DRL algorithm and environment are detailed in the supplement.

Fig. 4 illustrates the performance of different algorithms against the number of iterations as
well as real-time. The performance is the utility score of the best hyperparameters identified by
the baselines. Across all three tasks, BOIL identifies optimal hyperparameters using significantly
less computation time than other approaches. The plots show that other approaches such as BO and
BO-L can identify well-performing hyperparameters in fewer iterations than BOIL. However, they
do so only considering costly, high-fidelity evaluations resulting in significantly higher evaluation
times. Hyperband (Li and Jamieson, 2018) exhibits similar behavior in that it uses low fidelity
(small t) evaluations to reduce a pool of randomly sampled configurations before evaluating at high
fidelity (large t). This puts Hyperband at a disadvantage particularly in the noisy DRL tasks. Since
early performance fluctuates hugely, Hyperband can be misled in where to allocate evaluation effort.
In contrast to this, BOIL is more flexible than Hyperband in that it can freely explore-exploit the
whole joint space. The GP surrogate hereby allows BOIL to generalize across hyperparameters and
propagate information through the joint space.
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f (x, t) function a black-box function which is compressed from the above f ()
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Appendix

We summarize all of the notations used in our model in Table 1 for ease of reading.
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Appendix A. Related Work in Iteration-Efficient Bayesian Optimization

The first category employs stopping criteria to terminate some training runs early and allocate re-
sources towards more promising settings. These criteria typically involve projecting a final score
using earlier training stages. Freeze-thaw BO (Swersky et al., 2014) models the training loss over
time using a GP regressor under the assumption that the training loss roughly follows an exponen-
tial decay. Based on this projection, training resources are allocated to the most promising settings.
Hyperband (Li and Jamieson, 2018; Falkner et al., 2018) dynamically allocates the computational
resources (e.g., training epochs or dataset size) through random sampling and eliminates under-
performing hyperparameter settings by successive halving.

Attempts have also been made to improve the epoch efficiency of other hyperparameter opti-
mization algorithms, including (Domhan et al., 2015; Klein et al., 2017b; Dai et al., 2019) which
predict the final learning outcome based on partially trained learning curves to identify hyperparam-
eter settings that are predicted to under-perform and early-stop it. In the context of DRL, however,
these stopping criteria, including the exponential decay assumed in Freeze-thaw BO (Swersky et al.,
2014), may not be applicable, due to the unpredictable fluctuations of DRL reward curves. In the
supplement, we illustrate the noisiness of DRL training.

The second category (Swersky et al., 2013; Klein et al., 2017a; Kandasamy et al., 2017; Li and
Jamieson, 2018; Wu et al., 2019) aims to reduce the resource consumption of BO by utilizing low-
fidelity functions which can be obtained by using a subset of the training data or by training the ML
model for a small number of iterations. Multi-task BO (Swersky et al., 2013) requires the user to
define a division of the dataset into pre-defined and discrete subtasks. Multi-fidelity BO with con-
tinuous approximation (BOCA) (Kandasamy et al., 2017) and its hierarchical partition (Sen et al.,
2018) extends this idea to continuous settings. Specifically, BOCA first selects the hyperparameter
input and then the corresponding fidelity to be evaluated at. The fidelity in this context refers to the
use of different number of learning iterations. Analogous to BOCA’s consideration of continuous
fidelities, Fabolas (Klein et al., 2017a) proposes to model the joint space of input hyperparameter
and dataset size. Then, Fabolas optimizes them jointly to select the optimal input and dataset size.

The above approaches typically identify performance of hyperparameters via the average (either
training or validation) loss of the last learning iterations. Thereby, they do not account for potential
noise in the learning process (e.g., they might select unstable settings that jump to high performance
in the last couple of iterations).

Appendix B. Algorithm Illustration and Further Experiments

Fig. 5 illustrates the behavior of our proposed algorithm BOIL for optimizing the discount factor
γ of Dueling DQN (Wang et al., 2016) on the CartPole problem. The inclusion of augmented
observations in BOIL is also illustrated.

In both cases, we plot the GP predictive mean in Eq. (1), GP predictive variance in Eq. (2),
the acquisition function, the predicted function and the final decision function in Eq. (5). These
equations are defined in the main manuscript.

As shown in the respective figures the final decision function balances between utility and cost of
any pair (γ, t) to achieve iteration efficiency. Especially in situations where multiple locations share
the same utility value, our decision will prefer to select the cheapest option. Using the augmented
observations in Fig. 5, our joint space is filled quicker with points and the uncertainty (GP variance)
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Figure 5: Illustration of BOIL on a 2-dimensional optimization task of DDQN on CartPole. The
augmented observations fill the joint hyperparameter-iteration space quickly to inform our surro-
gate. Our decision balances utility against cost for iteration-efficiency. Especially in situations of
multiple locations sharing the same utility value, our algorithm prefers to select the cheapest option.

Table 2: Dueling DQN algorithm on CartPole problem (left) and CNN for SVHN model (right).

Variables Min Max Best Found x∗

discount factor 0.8 1 0.95586
learning rate 1e−6 0.01 0.00589
#Episodes 300 800 -

Variables Min Max Best Found x∗

filter size 1 8 5
pool size 1 5 5
batch size 16 1000 8

learning rate 1e−6 0.01 0.000484
momentum 0.8 0.999 0.82852

decay 0.9 0.999 0.9746
#epoch 30 150 -

Table 3: A2C algorithm on Reacher (left) and InvertedPendulum (right).

Variables Min Max Best Found x∗

γ discount factor 0.8 1 0.8
learning rate actor 1e−6 0.01 0.00071
learning rate critic 1e−6 0.01 0.00042

#Episodes 200 500 -

Min Max Best Found x∗

0.8 1 0.95586
1e−6 0.01 0.00589
1e−6 0.01 0.00037
700 1500 -
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Table 4: Further specification for DRL agents

Hyperparameter Value

A2C
Critic-network architecture [32,32]
Actor-network architecture [32,32]

Entropy coefficient 0.01

Dueling DQN
Q-network architecture [50,50]

ε-greedy (start, final, #steps) (1.0,0.05,10000)
Buffer size 10000
Batch size 64

PER-α Schaul et al. (2016) 1.0
PER-β (start, final, #steps) (1.0,0.6,1000)
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Figure 6: DDQN on CartPole. The number of augmented observations is reducing over time.

across it reduces. A second advantage of having augmented observations is that the algorithm is
discouraged to select the same hyperparameter setting at lower fidelity than a previous evaluation.
We do not add the full curve as this will make the conditioning problem of the GP covariance matrix.

B.1 Experiment settings

Task descriptions. We consider three DRL settings including a Dueling DQN (DDQN) (Wang
et al., 2016) agent in the CartPole-v0 environment and Advantage Actor Critic (A2C) (Mnih et al.,
2016) agents in the InvertedPendulum-v2 and Reacher-v2 environments. In addition to the DRL
applications, we tune 6 hyperparameters for training a convolutional neural network (LeCun et al.,
1998) on the SVHN dataset and CIFAR10.

We summarize the hyperparameter search ranges for A2C on Reacher and InvertedPendulum in
Table 3, CNN on SHVN and DDQN on CartPole are in Table 2. Additionally, we present the best
found parameter x∗ for these problems. Further details of the DRL agents are listed in Table 4.

B.2 The Number of Augmented Points Over Time

We examine the count of augmented observations generated per iteration in Fig. 6. Although this
number is fluctuating, it tends to reduce over time. BOIL does not add more augmented observations
at the later stage when we have gained sufficient information and GP covariance conditioning falls
below our threshold δ = 20.
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Figure 7: To highlight the robustness, we examine the results using different preference functions
such as Sigmoid curve, Log curve, and Average curve on Reacher experiments.

B.3 Robustness over Different Preference Functions

We next study the learning effects with respect to different choices of the preference functions.
We pick three preference functions including the Sigmoid, Log and Average to compute the utility
score for each learning curve. Then, we report the best found reward curve under such choices. The
experiments are tested using A2C on Reacher-v2. The results presented in Fig. 7 demonstrate the
robustness of our model with the preference functions.

B.4 Visualizing Logistic Function with Different Parameters

We present the Logistic curve l(u | m0,g0) =
1

1+exp(−g0[u−m0])
using different choices of g0 and m0

in Fig. 8. We then learn from the data to get the optimal choices g∗0 and m∗0 presented in Fig. 2.

B.5 Ablation Study using FreezeThraw Kernel for Time

In the joint modeling framework of hyperparameter and time (iteration), we can replace the kernel
either k(x,x) or k(t, t) with different choices. We, therefore, set up a new baseline of using the
time-kernel k(t, t ′) in FreezeThaw approach Swersky et al. (2014) which encodes the monotonously
exponential decay from the curve. Particularly, we use the kernel defined as

k(t, t ′) =
β α

(t + t ′+β )α

for parameters α,β > 0 which are optimized in the GP models.
We present the result in Fig. 9 that CM-T/F-BO is still less competitive to BOIL using this

specific time kernel. The results again validate the robustness our approach cross different choices
of kernel.

B.6 Additional Results for Tuning DRL and CNN

We present the additional experiments for tuning DRL model on InvertedPendulum and Reacher
environment; and CNN model on SHVN and (subset of) CIFAR10 in Fig. 10. Again, we show
that the proposed model clearly gain advantages again the baselines in tuning hyperparameters for
model with iterative learning available.
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Figure 8: Examples of Logistic function l(u | m0,g0) =
1

1+exp(−g0[u−m0])
with different values of

middle parameter m0 and growth parameter g0.
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Figure 9: Comparison using freezethaw kernel for time component.
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Figure 10: Tuning hyperparameters of a DRL on InvertedPendulum, Reacher and a CNN on CI-
FAR10 and SVHN.
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Figure 11: Examples of reward curves using A2C on InvertedPendulum-v2. Y-axis is the reward
averaged over 100 consecutive episodes. X-axis is the episode. The noisy performance illustrated
is typical of DRL settings and complicates the design of early stopping criteria. Due to the property
of DRL, it is not trivial to decide when to stop the training curve. In addition, it will be misleading
if we only take average over the last 100 iterations.

B.7 Examples of Deep Reinforcement Learning Training Curves

Finally, we present examples of training curves produced by the deep reinforcement learning al-
gorithm A2C in Fig. 11. These fluctuate widely and it may not be trivial to define good stopping
criteria as done for other applications in previous work Swersky et al. (2014).
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