
7th ICML Workshop on Automated Machine Learning (2020)

Stabilizing Bi-Level Hyperparameter Optimization using
Moreau-Yosida Regularization

Sauptik Dhar sauptik.dhar@lge.com
America Research Lab, LG Electronics

Unmesh Kurup unmesh.kurup@lge.com
America Research Lab, LG Electronics

Mohak Shah mohak.shah@lge.com

America Research Lab, LG Electronics

Abstract

This research proposes to use the Moreau-Yosida envelope to stabilize the convergence
behavior of bi-level Hyperparameter optimization solvers, and introduces the new algo-
rithm called Moreau-Yosida regularized Hyperparameter Optimization (MY-HPO) algo-
rithm. Theoretical analysis on the correctness of the MY-HPO solution and initial conver-
gence analysis is also provided. Our empirical results show significant improvement in loss
values for a fixed computation budget, compared to the state-of-art bi-level HPO solvers.

1. Introduction

Successful application of any machine learning (ML) algorithm heavily depends on the
careful tuning of its hyper-parameters. However, hyper-parameter optimization (HPO) is
a non-trivial problem and has been a topic of research for several decades. Most existing
works broadly adopt one of the following two approaches, a) Black-Box optimization or, b)
Direct optimization. The Black-Box optimization approach is agnostic of the underlying
ML model and adopts an advanced search algorithm to select the hyper-parameters that
minimizes the validation error. Popular examples include, Random search, Grid search,
Bayesian Optimization based approaches (Bergstra et al., 2013; Snoek et al., 2012) or other
advanced exploration techniques like (Li et al., 2017) etc. The advantage is that it is ap-
plicable to any machine learning problem. However, it does not utilize the structure of the
underlying ML model, which can be exploited for faster solutions. The Direct Optimization
utilizes the underlying ML algorithm structure by parameterizing the validation error as
a function of the hyper-parameters, and directly optimizes it. Typical examples include,
bi-level hyper-parameter optimization (Lorraine and Duvenaud, 2018; MacKay et al., 2019;
Pedregosa, 2016; Franceschi et al., 2017; Maclaurin et al., 2015; Franceschi et al., 2018;
Mehra and Hamm, 2019) and bound based analytic model selection (Chapelle et al., 2002;
Dhar et al., 2019; Cortes et al., 2017) etc. Such approaches can provide significant com-
putation improvements for HPO. However the limitations of these approaches include, a)
the gradients of the validation error w.r.t the hyperparameters must exist and b) instability
of the optimization problem under ill-conditioned settings. In this paper we address this
unstable convergence behavior of the bi-level HPO approaches for ill-conditioned problems,
and propose a new framework to improve it. The main contributions of this work are,
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1. We propose a new algorithm called Moreau-Yosida regularized Hyperparameter Op-
timization (MY-HPO) to stabilize bi-level HPO for ill-conditioned problems.

2. We provide theoretical analysis on the correctness of the proposed MY-HPO algorithm
and also provide some initial convergence analysis.

3. Finally, we provide extensive empirical results in support of our proposed approach.

The paper is structured as follows. Section 2 introduces the bi-level formulation for
HPO and discusses the existing issues of the state-of-art bi-level HPO solvers (Lorraine and
Duvenaud, 2018; MacKay et al., 2019) under ill-conditioned settings. Section 3 introduces
the Moreau-Yosida regularized Hyperparameter Optimization (MY-HPO) algorithm as a
solution to stabilize bi-level HPO for such settings. Additional theoretical analysis of its
solution’s correctness and convergence behavior is also provided. Empirical results and
discussions are provided in section 4.

2. Bi-Level Hyperparameter Optimization (HPO)

The standard bi-level formulation for hyperparameter optimization (HPO) is given as,

λ∗ ∈ argmin
λ

LV (λ, argmin
w

LT (w,λ)) (1)

Here, LV = Validation loss, LT = Training loss, λ = Hyperparameters, w = Model
parameters. A popular approach involves introducing a best-response function (Lorraine
and Duvenaud, 2018; MacKay et al., 2019) to rather solve,

λ∗ ∈ argmin
λ

LV (λ, Gφ(λ)) s.t. Gφ(λ) ∈ argmin
w

LT (w,λ) (2)

Gφ(λ) is the best-response function parameterized by the hyperparameters λ. For simplic-
ity we limit our discussion to only scalar (single) λ. Of course, it can be easily extended to
multiple hyperparameters. The work on Stochastic Hyperparameter Optimization (SHO)
(Lorraine and Duvenaud, 2018) use a hypernetwork to model the best-response function as

Gφ(λ) = λφ1 + φ0 = Λ φ, where φ =

[
φ1

φ0

]
and Λ = [λI|I]; with φ ∈ argmin

θ
LT (Λ θ, λ);

and adopts an alternate minimization of the training loss LT w.r.t φ (hypernetwork param-
eters), and validation loss  LV w.r.t λ (hyperparameters) to solve the HPO problem. Their
proposed algorithm is provided in Appendix B. MacKay et al. (2019) adopts a similar al-
ternating gradient approach but modifies the algorithm hypothesis class (by scaling and
shifting the network hidden layers) and adds additional stability through adaptively tuning
the degree of stochasticity (i.e. perturbation scale) for the gradient updates. In this work
we adopt the SHO algorithm 2 as a representative for such alternating gradients approaches
for solving the bi-level HPO.

One major limitation of these alternating gradient based bilevel HPO algorithms is that,
the convergence behavior heavily depends on the conditioning of the problem. Basically, for
ill-conditioned settings, the step-size used for gradient updates need to be sufficiently small
to ensure stability of such algorithms. This in turn leads to poor convergence rates (also
see in our results section 4). To alleviate this instability and ensure improved convergence
we introduce our Moreau-Yosida regularized Hyperparameter Optimization (MY-HPO) al-
gorithm. For simplicity we will assume unique solutions for (2) in the rest of the paper.
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3. Moreau-Yosida regularized HPO

First we reformulate the problem in (2). Given, φ∗ ∈ argmin
θ

LT (Λ∗ θ, λ∗) we solve,

min
λ,w

LT (w, λ∗) + LV (λ,Gφ∗(λ)) (3)

s.t. w = Gφ∗(λ) = λφ∗1 + φ∗0 = Λ φ∗ ; where φ∗ =

[
φ∗1
φ∗0

]
and Λ = [λI|I]

Here, we assume that λ∗ and φ∗ are provided to us by an oracle satisfying∇φLT (Λ∗ φ, λ∗) =
0 at solution Λ∗ = [λ∗I|I]. Proposition 1 justifies solving (3) in lieue of (2).

Proposition 1 For a bijective mapping w = Gφ∗(λ), the stationary points (w∗, λ∗) of (3)
are also stationary points of (2) with ∇wLT (w∗, λ∗) = 0 and ∇λLV (λ∗, Gφ∗(λ∗)) = 0.

The problem (3) is a sum of two functions parameterized by different arguments con-
nected through an equality constraint. Such formulations are frequently seen in machine
learning problems and popularly solved through variants of Alternating Direction Method of
Multipliers (Boyd et al., 2011; Goldstein et al., 2014), Alternating Minimization Algorithm
(Tseng, 1991) or Douglas Rachford Splitting (Eckstein and Bertsekas, 1992) etc. However,
a major difference in (3) is that the oracle solution λ∗ and φ∗ ∈ argmin

θ
LT (Λ∗ θ, λ∗) ⇒

∇θLT (Λ∗ φ∗, λ∗) = 0 is not available a priori. Hence, we cannot directly apply these
existing approaches to solve (3). This leads to our new algorithm called Moreau-Yosida
regularized Hyperparameter Optimization (MY-HPO) to solve (3). At iteration k + 1 we
take the steps,
Step 1. Update φk+1 = [φk+1

1 |φk+1
0 ]

vk+1 = argmin
v

LT (v, λk); φk+1
0 = vk+1 =

∑
j

vk+1
j ; φk+1

1 =
vk+1 − vk+1

λk
(4)

Step 2. wk+1 = argmin
w

LT (w, λk) + (uk)T (w − Λkφk+1) +
ρ

2
||w − Λkφk+1||22 (5)

Step 3. λk+1 = argmin
λ

LV (λ,Gφk+1(λ)) + (uk)T (wk+1 − Λφk+1) +
ρ

2
||wk+1 − Λφk+1||22

(6)

Step 4. Update consensus uk+1 = uk + ρ(wk+1 − Λk+1φk+1) (7)

The complete algorithm is provided in Appendix C (Algorithm 3). Step 1, ensures a
unique solution for given λk i.e. φk+1 = argmin

θ
LT (Λk θ, λk). In Steps 2 and 3 rather than

taking the gradient updates of LT , LV (as in SHO); we take the gradient of the Moreau-
Yosida (MY) regularized functions. The Moreau-Yosida (MY) regularization of a function
is defined as f1/ρ(·) := min

x
f(x) + ρ

2 ||· − x||2 and serves as a smooth approximate for f(·).
Note that (5) and (6) transforms to gradient updates of the MY regularized LT and LV in
its scaled form (Boyd et al., 2011). This lends to better stability of these updates in Steps
2− 3; and is highly desirable for ill-conditioned problems. Another aspect of this algorithm
is that now w and λ updates are not agnostic of each other. The w− Λφ terms constrains
against larger steps in a direction detrimental to either of the loss functions LT , LV . In
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Algorithm 1: Simplified MY-HPO Algorithm

Input: MaxIters = Total iterations, εTOL = convergence error tolerance.
α, β, δ = step size for gradient updates.

Output: λ,w
Initialize: λ← −1 and v← 0,w← 0,u← 0
while (k + 1 ≤ MaxIters ) and ( convergence error ≥ εTOL ) do

vk+1 = vk − α∇vLT ; φk+1
0 = vk+1; φk+1

1 =
vk+1 − vk+1

λ
and φk+1 = [φk+1

1 |φk+1
0 ]

wk+1 = wk − β[∇vLT + uk + ρ(wk − Λkφk+1)]

λk+1 = λk − δ∇λ[LV (λ,Gφ(λ)) + (uk)T (wk+1 − Λφk+1) +
ρ

2
||wk+1 − Λφk+1||22]

uk+1 = uk + ρ(wk+1 − Λk+1φk+1)
end

essence these additional terms maintain consensus between the updates while minimizing
LT w.r.t w, and LV w.r.t λ separately. Any deviation from this consensus is captured in
u-update and fed back in the next iteration. The user-defined, ρ ≥ 0 controls the scale of
these augmented terms and hence convergence of the algorithm. The proposed algorithm
has the following convergence properties,

Proposition 2 (Convergence Criteria) The necessary and sufficient conditions for Steps
1−4 to solve (3) are, rk+1 = wk+1−Λk+1φk+1 → 0 and sk+1 = ρ(Λk+1φk+1−Λkφk+1)→ 0.

Further we make the following claim on the algorithm’s convergence to its stationary points.

Claim 1 (Convergence Guarantee) Under the assumptions that LT , LV are proper, closed
and convex; with LT strongly convex and {φk} is bounded ∀k. The steps 1 − 4 converges
to a stationary point. Further at stationary point we have rk+1 = 0 and sk+1 = 0.

All proofs are provided in Appendix. To maintain same per-step iteration cost as the
SHO algorithm we simplify the steps 1-4 further and rather take single gradient updates in
Steps 1-3. This results to the simplified MY-HPO Algorithm 1 which is used throughout
our experiments. For simplicity we call this simplified Algorithm 1 as MY-HPO through
out the paper. Additionally, to ensure descent direction we also add a backtracking (BT) of
step-size scaled by a factor of 0.5 (see chapter 4 in (Beck, 2014)). The refer to the algorithm
with backtracking as MY-HPO(BT) and without it i.e. constant step-size as MY-HPO (C).

4. Results and Summary

4.1 Experimental Settings

We provide analysis for both regression and classification problems using the loss functions,

– Least Square: LV = 1
2NV

∑
xi∈V(yi −wTxi)

2, LT = 1
2NT

∑
xi∈T (yi −wTxi)

2 + eλ||w||22
– Logistic: LV = 1

NV

∑
xi∈V log(1 + e−yiw

T xi), LT = 1
NT

∑
xi∈T log(1 + e−yiw

T xi) + eλ||w||22
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Table 1: Datasets and Experimental Settings

.

Data Sets Training/Validation size Test size Dimension (d)

COOKIE (Osborne et al., 1984) 34/17 (50%/25%) 19 (25%) 699 (NIR)
MNIST Regression (LeCun, 1998) 1000 (100 per digit) 5000 (500 per digit) 784 (Pixel)
MNIST Classification (LeCun, 1998) 500 (250 per class) 1000 (500 per class) 784 (Pixel)
GTSRB (Stallkamp et al., 2012) 1000 (500 per class) 1000 (500 per class) 1568 (HOG)

Here, xi ∈ <d, and y ∈ < (regression) or {−1, 1} (classification), d = dimension of the
problem, T = Training data, NT = number of training samples and V = Validation Data,
NV = number of validation samples. The experimental details are provided in Table 1. Here,
for regression, we use the MNIST data to regress on the digit labels ‘0’ - ‘9’ (Park et al.,
2020) and the Cookie to predict the percentage of ‘fat’ w.r.t the ‘flour’ content using near
infrared region (NIR) values (Osborne et al., 1984). For classification, we classify between
digits ‘0’ vs. ‘1’ for MNIST, and the traffic signs ‘30’ vs. ‘80’ for GTSRB.

4.2 Results

Table 2 provides the average (± standard deviation) of the loss values on training,validation
and a separate test data, over 10 runs of the experiments. Here, for each experiment we
partition the data sets in the same proportion as shown in Table 1. For regression we scale
the output’s loss with the variance of y − values. This is a standard normalization technique
which illustrates the proportion of un-explained variance by the estimated model. For the
SHO and MY-HPO algorithms we only report the performance of the models using the best
performing step-sizes. A detailed ablation study using different step-sizes for the algorithms
is provided in Appendix D. In addition we also provide the results for popular black-box
algorithms publicly available through the Auptimizer toolbox (Liu et al., 2019). Here for
all the algorithms we maintain a fixed budget of gradient computations. Additional details
on the various algorithm’s parameter settings are provided in Appendix D.

Table 2 shows that for both the classification and regression problems MY-HPO al-
gorithm significantly outperforms all the baseline algorithms. The dominant convergence
behavior of the bi-level formulations (i.e. MY-HPO and SHO) compared to black-box ap-
proaches is well known from previous studies (Lorraine and Duvenaud, 2018; MacKay et al.,
2019). This is also seen in our results. Of course, increasing the number of gradient com-
putations allows the black-box approaches achieve similar loss values (see Appendix D).
However, a non-trivial observation is that MY-HPO significantly outperforms the SHO al-
gorithm. To further analyze this improved convergence behavior of the MY-HPO algorithm;
we provide the convergence curves of these algorithms for Logistic loss using GTSRB data
in Fig 1. Here, MY-HPO (BT) involves back-tracking to ensure descent direction; whereas
MY-HPO (C) uses constant step updates. Fig 1 shows that the SHO algorithm obtains best
results with the step-size fixed to α = 0.01. Increasing it further to α = 0.05 destabilizes
the updates and results to sub-optimal SHO solution. On the other hand, using the Moreau
Yosida regularized updates we can accomodate for larger step-sizes and hence achieve better
convergence rates. Additional improvement can be expected by using back-tracking as it
ensures descent directions which adds to the stability of the algorithm. This behavior is
persistently seen for both the classification and regression problems for all the data sets (see
Appendix D).
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Table 2: Loss values of different HPO algorithms using fixed computation budget.
Data SHO MyHPO (C) MyHPO (BT) Random Grid HyperOpt Spearmint

Regression Problems
Cookie No. of gradient computations = 5000

Train (×10−2) 71.5± 66.9 7.7± 2.7 5.4± 2.5 89.1± 10.3 6.7± 2.2 58.1± 7.9 6.7± 2.2
Val. (×10−2) 63.1± 72.8 17.6± 13.4 6.2± 4.8 93.4± 26.4 16.7± 12.9 49.7± 19.5 16.7± 12.9
Test (×10−2) 75.3± 98.7 17.4± 15.8 6.9± 7.3 85.6± 28.9 16.1± 14.7 47.2± 23.5 16.1± 14.7

MNIST No. of gradient computations = 6000
Train(×10−2) 26.7± 2.7 22.6± 0.6 22.6± 0.6 22.3± 0.6 17.4± 0.5 22.8± 5.7 17.4± 0.5
Val. (×10−2) 24.6± 1.4 23.7± 1.0 23.7± 1.0 25.6± 2.8 26.3± 2.4 25.0± 2.5 26.3± 2.5
Test (×10−2) 23.4± 1.1 22.3± 0.55 22.3± 0.55 24.6± 2.8 24.8± 2.2 23.8± 2.1 24.8± 2.2

Classification Problems
MNIST No. of gradient computations = 1000

Train (×10−2) 5.58± 2.1 2.94± 1.6 2.87± 1.6 35.7± 71.4 0.3± 0.1 5.18± 0.35 0.3± 0.1
Val. (×10−2) 4.9± 1.96 4.4± 1.89 4.3± 1.91 19.1± 37.8 5.31± 2.7 4.9± 1.46 5.31± 2.7
Test (×10−2) 5.32± 1.6 5.1± 1.84 5.0± 1.79 19.4± 38.6 6.22± 2.8 5.19± 1.44 6.22± 2.8

GTSRB No. of gradient computations = 1000
Train (×10−2) 6.83± 1.04 3.26± 2.5 4.31± 1.2 47.48± 117.3 0.09± 0.01 11.9± 30.5 0.09± 0.01
Val. (×10−2) 14.35± 2.34 14.35± 2.38 13.98± 2.3 39.85± 75.4 23.5± 6.6 18.9± 11.7 23.5± 6.6
Test (×10−2) 14.04± 1.82 13.8± 2.25 13.59± 1.9 38.6± 70.6 21.8± 5.2 17.6± 8.5 21.8± 5.2

Figure 1: Convergence behavior of SHO vs. MY-HPO for different step-sizes for GTSRB
data using Logistic loss. For MY-HPO we show the ρ(α, β, δ) values.

4.3 Summary

In summary our results confirm the effectiveness of Moreau-Yosida (MY) regularized up-
dates for bi-level HPO under (ill-conditioned) limited data settings. Here rather than taking
alternating gradient updates as in SHO (Lorraine and Duvenaud, 2018) or STN (MacKay
et al., 2019); we propose a modified algorithm MY-HPO by taking gradient updates on the
Moreau-Yosida envelope and maintaining a consensus variable. The proposed MY-HPO al-
gorithm provides added stability and enables us to use larger step sizes which inturn leads to
better convergence rates. Under a fixed computation budget MY-HPO significantly outper-
forms the SHO algorithm (a popular representative for alternating gradient based bi-level
HPO solvers); and the widely used black-box HPO routines. Owing to space constraints
details regarding the algorithm parameters for reproducing the experimental results are
provided in Appendix D.
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Appendix A. Proofs

A.1 Proof of Proposition 1

The proof follows from analyzing the KKT equations. Note that the lagrangian of the
problem 2 is,

L(w, λ,u) = LT (w, λ∗) + LV (λ,Gφ∗(λ)) + uT (w −Gφ∗(λ)) (8)

KKT system,

∇wLT (w, λ∗) + u = 0 (9)

∇λLV (λ,Gφ∗(λ))− uT∇λGφ∗(λ) = 0 (10)

w −Gφ∗(λ) = 0 (11)

∇φLT (Gφ∗(λ), λ) = 0 (12)

At the solution of the KKT System (w∗, λ∗,u∗) for a bijective mapping w∗ = Gφ∗(λ∗) =
Λ∗φ∗ we have eq. (12) ⇒ ∇wLT (w∗, λ∗) = 0. This in turn indicates, u∗ = 0 ⇒
∇λLV (λ∗, Gφ∗(λ∗)) = 0. Hence at solution, ∇wLT (w∗, λ∗) = 0 and ∇λLV (λ∗, Gφ∗(λ∗)) = 0

A.2 Proof of Proposition 2

Assume the conditions rk+1 = 0 and sk+1 = 0, are satisfied at iteration k + 1. Then the
steps 1− 4 gives,

∇wLT (wk+1, λk) + uk + ρ(wk+1 − Λkφk+1) = 0 (13)

⇒∇wLT (wk+1, λk) + uk+1 + ρ(Λk+1φk+1 − Λkφk+1) = 0 (14)

∇λLV (λk+1,Λk+1φk+1)− (uk)Tφk+1
1 − ρ(φk+1

1 )T (wk+1 − Λk+1φk+1) = 0 (15)

uk+1 = uk + ρ(wk+1 − Λk+1φk+1) (16)

Under the conditions rk+1 = 0, sk+1 = 0 the updates in eq. (13) - (16) becomes,

∇wLT (wk+1, λk) + uk+1 = 0

∇λLV (λk+1,Λk+1φk+1)− (uk+1)Tφk+1
1 = 0 (17)

uk+1 = uk

In addition at iteration k + 1 we also have from eq. (4) a unique solution for

(φk+1
1 ,φk+1

0 ) = argmin
θ1,θ0

LT (λkθ1 + θ0, λ
k)

Also we have from our assumptions,

rk+1 = 0⇒ wk+1 = λkφk+1
1 + φk+1

0 ⇒ ∇wLT (wk+1, λk) = 0 (18)

sk+1 = 0⇒ λkφk+1
1 = λk+1φk+1

1 ⇒ ∇wLT (wk+1, λk+1) = 0 (19)
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Using e.q. (18) and (19) into (17) gives,

∇w LT (wk+1, λk+1) = 0 (⇒ uk+1 = 0)

∇λLV (λk+1,Λk+1φk+1) = 0 (∵ uk+1 = 0)

⇒ ∇λLV (λk+1,wk+1) = 0 (for bijective Λφ→ w)

Next for the necessary part if rk+1 6= 0, the primary constraint in (3) is not satisfied. Hence
rk+1 = 0 is a necessary condition. To establish the necessary condition sk+1 = 0, consider
∇λLV (λk+1,wk+1) = 0 and ∇w LT (wk+1, λk+1) = 0.

Now, rk+1 = 0 ⇒ wk+1 = φk+1Λk+1 ⇒ ∇φ LT (φk+1Λk+1, λk+1) = 0 (from above as-
sumption). Finally, Step 1 of Algorithm 3 ensures, ∇φ LT (φk+1Λk, λk) = 0. Hence
φk+1Λk = φk+1Λk+1 ⇒ sk+1 = 0.

A.3 Proof for Claim 1

For the first part of the proof observe that the steps 2− 4 are exactly the ADMM updates
for a given φk+1. This allows us to re-utilze the Proposition 4 in (Giselsson and Boyd, 2016)
and claim that the operator equivalent to the steps 2− 4 is contractive. The exact form of
this new operator and the equivalent convergence rates will be analyzed in a longer version
of this work.
For the second part observe that the state of the system is determined by the variables
(λk,uk)→ (λk+1,uk+1). At stationary points the states remain the same. This gives,

From (16), wk+1 − Λk+1φk+1 = 0⇒ rk+1 = 0

Further, ρ(Λk+1φk+1 − Λkφk+1) = 0 (∵ Λk = Λk+1and φ is bounded )

Appendix B. Stochastic Hyperparameter Optimization using
Hypernetworks (SHO)

There are several versions (global vs. local) of the SHO algorithm introduced in (Lorraine
and Duvenaud, 2018). The representative local version of the SHO algorithm is provided
below in Algorithm 2.

10
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Algorithm 2: SHO Algorithm (Local)

Input:
α =learning rate of training loss gradient update w.r.t model parameters.

β =learning rate of validation loss gradient update w.r.t hyperparameters.

Output: λ,Gφ(λ)
Data: T = Training Data , V = Validation Data
Initialize: φ, λ and, define: w = Gφ(λ) = Λ φ ;
while not converged do

λ̂ ∼ P (λ̂|λt−1) // typically modeled as Normal Distribution

φt ← φt−1 − α∇GφLT (Gφ(λ̂), λ̂,x ∈ T ) · ∇φGφ(λ̂)
=Λ̂

;

λt ← λt−1 − β∇λGφ(λ)
=φT

· ∇GφLV (Gφ(λ),x ∈ V)

end

Appendix C. Moreau Yosida regularized (MY)-HPO Algorithm

Algorithm 3: MY-HPO algorithm

Input: MaxIters = Total iterations, εTOL = convergence error tolerance.
Output: λ,w
Data: T = Training Data , V = Validation Data
Initialize: λ← −1 and u← 0
while (k + 1 ≤ MaxIters ) and ( convergence error ≥ εTOL ) do

Step 1. Update φ

vk+1 = argmin
v

LT (v, λk)

φk+1
0 = vk+1 ; φk+1

1 =
vk+1 − vk+1

λk
and φk+1 = [φk+1

1 |φk+1
0 ]

Step 2. Update w

wk+1 = argmin
w

LT (w, λk) + (uk)T (w − Λkφk+1) +
ρ

2
||w − Λkφk+1||22

Step 3. Update λ

λk+1 = argmin
λ

LV (λ,Gφk+1(λ)) + (uk)T (wk+1 − Λφk+1) +
ρ

2
||wk+1 − Λφk+1||22

Step 4. Update consensus uk+1 = uk + ρ(wk+1 − Λk+1φk+1)

end

Connection with ADMM : The MY-HPO updates are closely connected to the Alter-
nating Direction Method of Multipliers (ADMM) algorithm (Boyd et al., 2011). In fact,
for a given φk the steps 2 − 4 are exactly the ADMM updates. However, the algorithm is
fundamentally different from ADMM. For example, unlike ADMM, interchanging the steps
2 and 3 completely changes the stationary points. Moreover, the updates do not transform

11
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Table 3: Performance of MY-HPO Algorithm 3 for the regression problems in Table 2
Data Train Loss Val. Loss Test Loss No. of Iterations (k) MaxIters

Cookie 0.31± 0.20 0.22± 0.21 0.26± 0.25 80± 18.68 100

MNIST 8.85± 0.35 9.85± 0.47 9.32± 0.35 364± 124.3 500

to the Douglas Rachford splitting operator as traditionally seen for ADMM (Giselsson and
Boyd, 2016). Still, the similarities of MY-HPO with ADMM enables us to modify previous
convergence analyses in (Giselsson and Boyd, 2016) to obtain Proposition 2 and Claim 1.

Relaxation to simplified MY-HPO algorithm 1 : Algorithm 1 simplifies the above
algorithm 3 by taking one gradient update rather than solving the minimization problems
above. This reduces the per-step iteration cost of the algorithm 1 to be the same as the
SHO algorithm in 2. Now, both the Algorithms 1 and 2 incurs 2-gradient steps per outer
iteration. This simplification however deteriorates the convergence rate of the algorithm.
We provide the convergence comparison between the Algorithms 1 vs. 3 in Table 3.

Appendix D. Algorithm Parameters and Additional Results

For all the black-box approaches we match the number of outer-iterations of the bi-level
formulations i.e. nT to train the model for any given parameter. Further, we train the
models using gradient updates with step size (αtrain). This parameter is set specific to
each problems reported below, and helps us achieve similar training gradient as the bi-level
formulations. In addition, we set the following parameters using the Auptimizer tool-box
for each of the following algorithms.

Random Search: We select the random seed same as that used to generate the data. Ad-
ditionally, we search in the range [−10, · · · , 5]. We report the performance of the algorithm
for varying number of search parameters nS .

Grid Search: We select the range of search as, [−10, · · · , 5]. We report the performance of
the algorithm for varying number of search parameters nS .

HyperOpt: We select the random seed same as that used to generate the data. We select
the range of search as, [−10, · · · , 5] and the engine = ‘tpe’. We report the algorithm’s
performance for varying values of nS .

Spearmint: We select the range of search as, [−10, · · · , 5] , engine = ‘GPEIOptChooser’
and grid size = 20000. We report the algorithm’s performance for varying values of nS .

The parameters specific to the problems and the respective data-sets are provided below.

D.1 Regression using Cookie Data

D.1.1 Experiment Parameters

Stochastic Hypernetwork Optimization (SHO): We keep the following parameter fixed (to

default values), β = 0.01, noise variance λ̂ ∼ N (λ, σ), σ = 10−4. Changing these values
for our experiments did not result in significant improvements. We report the performance

12



Stabilizing Bi-Level Hyperparameter Optimization using Moreau-Yosida Regularization

of SHO for varying values of α. The code is publicly available at: https://github.com/

lorraine2/hypernet-hypertraining

Moreau Yosida Regularized HPO (MY-HPO): We keep the following parameter fixed, ρ =
1.0 and report the results for varying α, β, δ. It is well-known in ADMM literature that the
selection of ρ− parameter greatly impacts the convergence behavior. Such analyses will be
explored in a longer version of the paper.

Further we fix nT (i.e. MaxIters in Algorithm 3) = 2500, and step size for training the
model used for black-box approaches as αtrain = 0.001.

D.1.2 Additional Results

The complete set of results with all the parameter settings are provided in Table 4. As
seen from the results increasing the budget (number of gradient computations ng) to al-
most 5× that of the bi-level counterparts allows the black-box approaches achieve similar
performance.

Figure 2: Convergence behavior of SHO vs. MY-HPO for different step-sizes for Cookie
data using Least Square loss. For MY-HPO we show the ρ(α, β, δ) values.

The figure 2 illustrate the convergence curve of the algorithms. Fig. 2 illustrates the
unstable behavior of SHO as the step size increases. Note that, for larger step sizes the
SHO algorithm fails to converge. As the step size gets smaller the algorithm converges;
but demonstrate a very slow convergence rate. This is also seen for the other experiments
used in this paper. On the contrary MY-HPO can accomodate higher step size and results
to better convergence. Additionally, 2 also provides a comparison between the MY-HPO
algorithm in 3 vs. the simplified version of algorithm 1. As seen in the figure (also confirmed
in Table 3), the simplified algorithm provides better per-step iteration cost but incurs much
higher overall iterations to convergence.
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Table 4: Comparison between different HPO algorithms for regression problem using Cookie
data.

Method
Train Loss
(×10−2)

Validation Loss
(×10−2)

Test Loss
(×10−2)

ng

(nT , nS)

SHO (α = 5× 10−2) 125.18± 17.08 157.99± 33.43 143.32± 40.32
5000

(2500, 2)

SHO (α = 1× 10−2) 86.7± 56.08 80.76± 62.36 85.97± 88.78
5000

(2500, 2)

SHO (α = 5× 10−3) 71.6± 66.96 63.18± 72.85 75.31± 98.78
5000

(2500, 2)

MyHPO (C) (α = 0.005, β = 0.01, δ = 0.1) 22.9± 15.51 28.27± 19.94 30.6± 29.05
5000

(2500, 2)

MyHPO (C) (α = 0.005, β = 0.01, δ = 0.5) 7.8± 2.68 17.64± 13.41 17.42± 15.82
5000

(2500, 2)

MyHPO (BT) (α = 0.005, β = 0.01, δ = 0.5) 7.8± 2.68 17.64± 13.41 17.42± 15.82
5000

(2500, 2)

MyHPO (BT) (α = 0.01, β = 0.01, δ = 0.5) 6.85± 5.68 9.74± 6.6 11.31± 13.54
5000

(2500, 2)

MyHPO (BT) (α = 0.1, β = 0.1, δ = 0.5) 5.41± 2.53 6.28± 4.82 6.91± 7.25
5000

(2500, 2)

Random (nS = 2) 89.02± 10.36 93.44± 26.4 85.69± 28.97
5000

(2500, 2)

(nS = 10) 22.7± 4.18 22.56± 15.03 21.96± 17.05
25000

(2500, 10)

Grid (nS = 2) 6.7± 2.21 16.71± 12.91 16.15± 14.76
5000

(2500, 2)

(nS = 10) 6.7± 2.21 16.71± 12.91 16.15± 14.76
25000

(2500, 10)

HyperOpt (nS = 2) 58.11± 7.97 49.77± 19.57 47.29± 23.54
5000

(2500, 2)

(nS = 10) 6.89± 2.19 16.75± 12.94 16.20± 14.79
25000

(2500, 2)

Spearmint (nS = 2) 6.70± 2.21 16.71± 12.91 16.15± 14.76
5000

(2500, 2)

(nS = 10) 6.70± 2.21 16.71± 12.91 16.15± 14.76
25000

(2500, 10)

D.2 Regression using MNIST Data

D.2.1 Experiment Parameters

Stochastic Hypernetwork Optimization (SHO): We fix the parameters same as in D.1.1.
We vary the α parameter as shown in Table 5.

Moreau Yosida Regularized HPO (MY-HPO): We fix the parameters same as in D.1.1. We
vary the α, β, δ parameters as shown in Table 5.

Further for this data we fix nT (i.e. MaxIters in Algorithm 3) = 3000, and step size for
training the model used for black-box approaches as αtrain = 0.001.

14
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Table 5: Comparison between different HPO algorithms for regression problem using
MNIST data.

Method
Train Loss
(×10−2)

Validation Loss
(×10−2)

Test Loss
(×10−2)

ng

(nT , nS)

SHO (α = 1× 10−2) 32.67± 1.83 32.27± 6.13 32.33± 7.46
6000

(3000, 2)

SHO (α = 5× 10−3) 27.28± 3.69 25.26± 1.22 24.22± 0.98
6000

(3000, 2)

SHO (α = 1× 10−3) 26.7± 2.79 24.63± 1.37 23.45± 1.11
6000

(3000, 2)

MyHPO (C) (α = 0.001, β = 0.001, δ = 0.001) 23.13± 0.66 23.67± 0.97 22.31± 0.48
6000

(3000, 2)

MyHPO (C) (α = 0.001, β = 0.001, δ = 0.005) 22.63± 0.63 23.69± 1.02 22.32± 0.55
6000

(3000, 2)

MyHPO (BT) (α = 0.001, β = 0.001, δ = 0.005) 22.63± 0.63 23.69± 1.02 22.32± 0.55
6000

(3000, 2)

MyHPO (BT) (α = 0.01, β = 0.01, δ = 0.05) 22.43± 0.61 23.69± 1.11 22.53± 0.72
6000

(3000, 2)

MyHPO (BT) (α = 0.1, β = 0.1, δ = 0.5) 21.75± 0.77 24.16± 1.18 22.85± 0.89
6000

(3000, 2)

Random (nS = 2) 22.28± 6.04 25.59± 2.86 24.13± 2.85
6000

(3000, 2)

Grid (nS = 2) 17.44± 0.52 26.3± 2.48 24.79± 2.17
6000

(3000, 2)

HyperOpt (nS = 2) 22.84± 5.75 25.02± 2.48 23.85± 2.15
6000

(3000, 2)

Spearmint (nS = 2) 17.44± 0.52 26.30± 2.48 24.79± 2.17
6000

(3000, 2)

Figure 3: Convergence behavior of SHO vs. MY-HPO for different step-sizes for MNIST
data using Least Square loss. For MY-HPO we show the ρ(α, β, δ) values.
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D.2.2 Additional Results

Note that, here further increasing the computation budget (i.e. nS = 10) does not pro-
vide additional improvement for the black-box approaches. The results provide similar
conclusions,

1. MY-HPO accomodates for higher step sizes and results to better convergence.
2. Back-tracking further ensures descent direction (in each iteration) and leads to better

convergence.
3. Increasing the budget (number of gradient computations ng) to almost 5× that of the

bi-level counterparts allows the black-box approaches achieve similar performance.

D.3 Classification using MNIST Data

D.3.1 Experiment Parameters

Stochastic Hypernetwork Optimization (SHO): We fix the parameters same as in D.1.1.
We vary the α parameter as shown in Table 6.

Moreau Yosida Regularized HPO (MY-HPO): We fix the parameters same as in D.1.1. We
vary the α, β, δ parameters as shown in Table 6.

Further for this data we fix nT (i.e. MaxIters in Algorithm 3) = 500, and step size for
training the model used for black-box approaches as αtrain = 0.5.

D.3.2 Additional Results

Figure 4: Convergence behavior of SHO vs. MY-HPO for different step-sizes for MNIST
data using Logistic loss. For MY-HPO we show the ρ(α, β, δ) values.
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Table 6: Comparison between different HPO algorithms for classification problem using
MNIST data.

Method
Train Loss
(×10−2)

Validation Loss
(×10−2)

Test Loss
(×10−2)

ng

(nT , nS)

SHO (α = 5× 10−2) 47.46± 74.13 31.19± 71.85 31.56± 72.45
1000

(500, 2)

SHO (α = 1× 10−2) 5.58± 2.14 4.98± 1.96 5.32± 1.6
1000

(500, 2)

SHO (α = 1× 10−3) 6.58± 1.93 5.59± 1.75 5.68± 1.80
1000

(500, 2)

MyHPO (C) (α = 0.05, β = 0.1, δ = 0.1) 5.17± 0.97 4.91± 1.65 5.23± 1.49
1000

(500, 2)

MyHPO (C) (α = 0.05, β = 0.1, δ = 0.5) 2.99± 1.57 4.42± 1.89 5.06± 1.83
1000

(500, 2)

MyHPO (BT) (α = 0.05, β = 0.1, δ = 0.5) 2.94± 1.60 4.40± 1.89 5.06± 1.84
1000

(500, 2)

MyHPO (BT) (α = 0.1, β = 0.1, δ = 0.5) 3.17± 1.47 4.40± 1.88 5.02± 1.72
1000

(500, 2)

MyHPO (BT) (α = 0.1, β = 0.5, δ = 0.75) 2.87± 1.68 4.35± 1.94 5.06± 1.85
1000

(500, 2)

Random (nS = 2) 35.733± 71.443 19.07± 37.81 19.49± 38.62
1000

(500, 2)

(nS = 25) 2.17± 0.93 4.46± 2.03 5.05± 1.89
12500

(500, 25)

Grid (nS = 2) 0.3± 0.1 5.31± 2.71 6.22± 2.82
1000

(500, 2)

(nS = 25) 2.53± 1.23 4.37± 1.88 5.05± 1.84
12500

(500, 25)

HyperOpt (nS = 2) 5.18± 0.35 4.91± 1.46 5.19± 1.44
1000

(500, 2)

(nS = 25) 2.44± 1.43 4.40± 1.88 4.18± 1.97
12500

(500, 25)

Spearmint (nS = 2) 0.30± 0.10 5.31± 2.71 6.22± 2.82
1000

(500, 2)

(nS = 25) 1.89± 1.55 4.63± 2.19 5.36± 2.27
12500

(500, 25)

D.4 Classification using GTSRB Data

D.4.1 Experiment Parameters

Stochastic Hypernetwork Optimization (SHO): We fix the parameters same as in D.1.1.
We vary the α parameter as shown in Table 6.

Moreau Yosida Regularized HPO (MY-HPO): We fix the parameters same as in D.1.1. We
vary the α, β, δ parameters as shown in Table 6.

Further for this data we fix nT (i.e. MaxIters in Algorithm 3) = 500, and step size for
training the model used for black-box approaches as αtrain = 0.5.

D.4.2 Additional Results
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Table 7: Comparison between different HPO algorithms for classification problem using
GTSRB data.

Method
Train Loss
(×10−2)

Validation Loss
(×10−2)

Test Loss
(×10−2)

ng

(nT , nS)

SHO (α = 5× 10−2) 27.48± 20.54 25.38± 19.09 25.61± 20.27
1000

(500, 2)

SHO (α = 1× 10−2) 6.83± 1.04 14.35± 2.34 14.04± 1.82
1000

(500, 2)

SHO (α = 5× 10−3) 6.89± 1.13 14.44± 2.41 14.14± 1.85
1000

(500, 2)

MyHPO (C) (α = 0.05, β = 0.1, δ = 0.1) 7.98± 0.74 14.81± 2.2 14.53± 1.61
1000

(500, 2)

MyHPO (C) (α = 0.05, β = 0.1, δ = 0.75) 3.26± 2.50 14.14± 2.38 13.80± 2.25
1000

(500, 2)

MyHPO (BT) (α = 0.05, β = 0.1, δ = 0.75) 3.26± 2.50 14.14± 2.38 13.80± 2.25
1000

(500, 2)

MyHPO (BT) (α = 0.1, β = 0.5, δ = 0.75) 4.37± 2.11 14.09± 2.36 13.77± 2.11
1000

(500, 2)

MyHPO (BT) (α = 0.5, β = 0.5, δ = 0.75) 4.31± 1.22 13.98± 2.33 13.59± 1.98
1000

(500, 2)

Random (nS = 2) 47.48± 117.38 39.85± 75.38 38.60± 70.63
1000

(500, 2)

(nS = 10) 4.01± 2.07 14.19± 2.24 13.63± 1.91
5000

(500, 10)

Grid (nS = 2) 0.09± 0.01 23.55± 6.60 21.81± 5.23
1000

(500, 2)

(nS = 10) 3.53± 0.49 13.87± 2.34 13.40± 2.03
5000

(500, 10)

HyperOpt (nS = 2) 11.91± 30.50 18.9± 11.7 17.62± 8.52
1000

(500, 2)

(nS = 10) 3.3± 1.46 13.94± 2.40 13.58± 2.17
5000

(500, 10)

Spearmint (nS = 2) 0.09± 0.01 23.55± 6.60 21.81± 5.23
1000

(500, 2)

(nS = 10) 2.81± 5.63 19.73± 6.28 19.20± 5.59
5000

(500, 10)
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