STABILIZING BI-LEVEL HYPERPARAMETER OPTIMIZATION USING MOREAU-YOSIDA REGULARIZATION

Sauptik Dhar, Unmesh Kurup, Mohak Shah America Research Lab, LG Electronics, Santa Clara, CA 95054

Introduction

Focus: Improving stability of Bi-level Hyperparamet Optimization for ill conditioned problems.

Hyperparameter Optimization (HPO)

□ HPO is indispensable for optimal ML model building.

Broadly two generic approaches,

- Algorithm independent approaches: Grid Search Random Search, Bayesian Optimization, Bandit-Base Search.
- Direct Optimization approaches: Bi-Level optimizatio Analytic Bound based model selection.

Bi-Level Hyperparameter Optimization

Casts HPO as bi-level optimization,

$oldsymbol{\lambda}^* \in \operatorname*{argmin}_{oldsymbol{\lambda}} L_V(oldsymbol{\lambda}, \operatorname*{argmin}_{oldsymbol{w}} L_T(oldsymbol{w}, oldsymbol{\lambda}))$		(1)
$L_V =$ Validation Loss	$oldsymbol{\lambda}=~$ Hyper parameters	
$L_T = $ Training Loss	$\mathbf{w}=$ Model Parameters	

Popular approach SHO [1] use best-response function,

$$\lambda^* \in \underset{\lambda}{\operatorname{argmin}} L_V(\lambda, G_{\phi}(\lambda)) \text{ s.t. } G_{\phi}(\lambda) \in \underset{\mathbf{w}}{\operatorname{argmin}} L_T(\mathbf{w}, \lambda)$$
(2)
where, $G_{\phi}(\lambda) = \lambda \phi_1 + \phi_0$; $\phi \in \underset{\theta}{\operatorname{argmin}} L_T(\Lambda \ \theta, \lambda)$
Solved through alternating gradients (see SHO [1])

□ Suffer from instabilities for ill-conditioned problems.

	Contributions	Intuition
er	 Propose to stabilize alternating gradient based bi-level HPOs through our Moreau-Yosida regularized algorithm. Provide convergence analysis for MY-HPO algorithm. Provide empirical results in support of our method. 	 □ MY regularization of f is f_{1/ρ}(·) := min f(x) + ^ρ/₂ · - x ₂ □ Steps 2, 3 minimize Moreau-Yosida regularized L_T, L_V which adds stability under ill-conditioned settings. □ Step 4 lends to additional stability by ensuring the primal constraint w = Λ φ is not considerably violated.
	Moreau-Yosida Regularized bi-level HPO (MYHPO)	Results
h, ed	$\square \text{ Reformulate the HPO problem to solve,} \min_{\lambda, \mathbf{w}} L_T(\mathbf{w}, \lambda^*) + L_V(\lambda, G_{\phi^*}(\lambda)) $ (3)	German Traffic Sign `30' vs. `80' Recognition Data: - Validation Loss: $L_V = \frac{1}{N_V} \sum_{\mathbf{x}_i \in \mathcal{V}} \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i})$ - Training Loss: $L_T = \frac{1}{N_T} \sum_{\mathbf{x}_i \in \mathcal{T}} \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i}) + e^{\lambda} \mathbf{w} _2^2$
	where, $\mathbf{w} = G_{\boldsymbol{\phi}_{-}^{*}}(\lambda) = \lambda \boldsymbol{\phi}_{1}^{*} + \boldsymbol{\phi}_{0}^{*} = \Lambda \ \boldsymbol{\phi}^{*}, \Lambda = [\lambda \mathbf{I} \mathbf{I}]$	– Train (N_T) ,Val (N_V) , Test set size = 1000. Dimension = 1568 (HOG)
n,	$\lambda^*, oldsymbol{\phi}^* = \left[egin{array}{c} oldsymbol{\phi}_1^* \ oldsymbol{\phi}_0^* \end{array} ight]$ - is an optimal solution given by oracle.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$lacksquare$ Proposition 1 shows solving (3) \Rightarrow (2)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
(1)	$ \begin{array}{l} \square \text{ (MY-HPO Algorithm) Solving (3) involves the steps,} \\ \text{[Step 1]: } \phi_0^{k+1} = \overline{\mathbf{v}^{k+1}} = \sum_{j} v_j^{k+1}; \phi_1^{k+1} = \frac{\mathbf{v}^{k+1} - \overline{\mathbf{v}^{k+1}}}{\lambda^k} \\ \text{where } \mathbf{v}^{k+1} = \operatorname*{argmin}_{\mathbf{v}} L_T^j(\mathbf{v}, \lambda^k) \end{array} $	$\left(\begin{array}{c} U_{1} \\ U_{1} \\ U_{1} \\ U_{1} \\ U_{2} \\ U_{2$
	[Step 2]: $\mathbf{w}^{k+1} = \operatorname{argmin} L_T(\mathbf{w}, \lambda^k) + (\mathbf{u}^k)^T (\mathbf{w} - \Lambda^k \boldsymbol{\phi}^{k+1})$	Fig.1 Convergence behavior of SHO vs. MY-HPO for different step-sizes.
() 2)	$\begin{aligned} \mathbf{w} &+ \frac{\rho}{2} \mathbf{w} - \Lambda^k \boldsymbol{\phi}^{k+1} _2^2 \\ \mathbf{Step 3}]: \lambda^{k+1} = \underset{\lambda}{\operatorname{argmin}} L_V(\lambda, G_{\boldsymbol{\phi}^{k+1}}(\lambda)) \\ &+ (\mathbf{u}^k)^T (\mathbf{w}^{k+1} - \Lambda \boldsymbol{\phi}^{k+1}) + \frac{\rho}{2} \mathbf{w}^{k+1} - \Lambda \boldsymbol{\phi}^{k+1} _2^2 \end{aligned}$	 MY-HPO algorithm outperforms the baseline algorithms. SHO destabilizes for higher step sizes (Fig. 1) MY-HPO accommodates higher step-size and improves convergence. Additional results available in paper.
		Summary
	[Step 4]: $\mathbf{u}^{k+1} = \mathbf{u}^k + \rho(\mathbf{w}^{k+1} - \Lambda^{k+1}\boldsymbol{\phi}^{k+1})$	 Proposed MY-HPO algorithm to stabilize bi-level HPO. Provide convergence guarantees for MY-HPO algorithm.
	Theoretical convergence analysis are provided in Prop. 2 and Claim 1.	Provide empirical results in support of our method. REFERENCES
	We take gradient updates for Steps 2 and 3 (for Results).	1. "Stochastic hyperparameter optimization through hypernetworks" arXiv:1802.09419, 2. Auptimizer an extensible, open-source framework for hyperparameter tuning, arXiv:1911.0252

- outperforms the baseline algorithms.
- higher step sizes (Fig. 1)
- ates higher step-size and improves convergence.
- ailable in paper.

Summary

- ence guarantees for MY-HPO algorithm.
- al results in support of our method.

REFERENCES timization through hypernetworks" arXiv:1802.09419, 2. Auptimizer an extensible, open-source framework for hyperparameter tuning, arXiv:1911.02522