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Abstract
Selecting optimal hyperparameters is a key challenge in machine learning. A recent approach
to this problem (PBT) showed it is possible to achieve impressive performance by updating
both weights and hyperparameters in a single training run of a population of agents.
Despite it’s success, PBT relies on heuristics to explore the hyperparameter space, thus
lacks theoretical guarantees, requires vast computational resources and often suffers from
mode collapse when this is not available. In this work we introduce Population-Based
Bandits (PB2), the first provably efficient PBT-style algorithm. PB2 uses a probabilistic
model to balance exploration and exploitation, thus it is able to discover high performing
hyperparameter configurations with far fewer agents than typically required by PBT.

1. Introduction

Neural networks have achieved remarkable success in a variety of fields (Silver et al., 2016;
Hochreiter and Schmidhuber, 1997; Krizhevsky et al., 2012), leading to widespread adoption
in both industry and academia. However, as with many machine learning algorithms, it is
often only after extensive trial-and-error that impressive, yet hard to reproduce (Bergstra
et al., 2013), headline results can be achieved.

This has led to a surge in popularity for Automated Machine Learning (AutoML, Hutter
et al. (2018)), which seeks to automate the training of machine learning models. A key
component in AutoML is automatic hyperparameter selection (Bergstra et al., 2011; Melis
et al., 2018). Popular solutions include Bayesian Optimization (BO, Brochu et al. (2010);
Hennig and Schuler (2012); Snoek et al. (2012)) and Evolutionary Algorithms (EAs).

A recent approach, Population Based Training (PBT, Jaderberg et al. (2017); Li et al.
(2019)), showed it is possible to achieve impressive performance by updating both weights and
hyperparameters during a single training run of a population of agents. PBT also benefits
from being highly scalable and is shown to be particularly effective in reinforcement learning
(Schmitt et al., 2018; Liu et al., 2019; Espeholt et al., 2018).

However, a key drawback of PBT is the reliance on heuristics for selecting new hyperparameter
configurations. This leads to two shortcomings: 1) it requires vast computational resources
to outperform a random baseline, since small populations will often collapse to a suboptimal
mode, 2) it lacks theoretical grounding, given that greedy exploration methods suffer from
unbounded regret.
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Figure 1: Population-Based Bandit Optimization: a population of agents is trained in parallel. Each agent
has weights (grey) and hyperparameters (blue). The agents are evaluated periodically (orange
bar), and if an agent is underperforming, it’s weights are replaced by randomly copying one of
the better performing agents, and its hyperparameters are selected using Bayesian Optimization.

Our key contribution is the first provably efficient PBT-style algorithm, Population-Based
Bandit Optimization, or PB2 (Fig. 1). We draw the connection of maximizing the reward
in PBT-style to the regret in bandit literature (Srinivas et al., 2010; Desautels et al., 2014).
This allows us to formalize the online hyperparameter selection problem as batch Gaussian
process bandit of a time-varying function. We derive a convergence analysis for the proposed
PB2, the first such result for a PBT-style algorithm. Furthermore, we show this translates
to impressive performance gain in tuning deep reinforcement learning agents.

2. Population-Based Bandits

2.1 Problem Statement

In this paper we consider the problem of selecting optimal hyperparameters, xit, from a
compact, convex subset D ∈ Rd. Here the index i refers to the ith agent in a population/batch,
and we use the subscript t to represent the number of timesteps/epochs/iterations elapsed
during the training of a neural network. The Population-Based Training (PBT, Jaderberg
et al. (2017)) algorithm trains a population (or batch) of B agents in parallel. Each agent
i ∈ B has both hyperparameters xit ∈ Rd and weights θit. At every tready step interval (i.e. if
t mod tready = 0), the agents are ranked and the worst performing agents are replaced with
members of the best performing agents (A ⊂ B) as follows:

• Weights (θit): copied from one of the best performing agents, i.e. θjt ∼ Unif{θjt}j∈A.

• Hyperparameters (xit): with probability ε it uses random exploration, and re-
samples from the original distribution, otherwise, it uses greedy exploration, and
perturbs one of the best performing agents, i.e {xj ∗ λ}j∈A, λ ∼ [0.8, 1.2].

We consider a reward for a deep RL agent under a given set of hyperparameters at timestep t,
Ft(xt). When training for a total of T steps, our goal is to maximize the final reward FT (xT ).
We formulate this problem as optimizing the black-box time-varying reward function ft, over
D. Every tready steps, we observe noisy observations, yt = ft(xt) + εt, where εt ∼ N (0, σ2I)
for some fixed σ2. The function ft represents the change in Ft after training for tready steps,
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i.e. Ft − Ft−tready . We define the best choice at each timestep as x∗t = arg maxxt∈D ft(xt),
and so the regret of each decision as rt = ft(x

∗
t )− ft(xt).

Lemma 1. Maximizing the reward FT for a deep RL agent for a given hyperparameter
schedule {xt}Tt=1 is equivalent to maximizing the time-varying black-box function ft(xt) and
minimizing the corresponding cumulative regret rt(xt),

maxFT (xT ) = max
T∑
t=1

ft(xt) = min
T∑
t=1

rt(xt). (1)

In subsequent sections, we present a time-varying bandit approach which is used to minimize
the cumulative regret RT =

∑T
t=1 rt. Lemma 1 shows this is equivalent to maximizing the

final performance/reward of a neural network model (see: Section 7 for the proof).

2.2 Gaussian Process Bandits for a Time-Varying Function

We model ft using a time-varying Gaussian Process (GP, Rasmussen and Williams (2005))
which is specified by a mean function µt : X → R and a kernel (covariance function) k : D ×
D → R. If ft ∼ GP (µt, k), then ft(xt) is distributed normallyN (µt(xt), k(xt, xt)) for all xt ∈
D. After we have observed T data points {(xt, f(xt))}Tt=1, the GP posterior belief at new
point x′t ∈ D, ft(x′t) follows a Gaussian distribution with mean µt(x′) and variance σ2t (x′) as:

µt(x
′) := kt(x′)T (Kt + σ2I)−1yt (2)

σ2t (x
′) := k(x′, x′)− kt(x′)T (Kt + σ2I)−1kt(x′), (3)

where Kt := {k(xi, xj)}ti,j=1 and kt := {k(xi, x
′
t)}ti=1. Equipped with (2) and (3), we can

select new samples by maximizing an acquisition function.
We cast the problem of optimizing our neural network parameters as time-varying bandit

optimization. We follow Bogunovic et al. (2016) to formulate this problem by modelling the
reward function under the time-varying setting as follows:

f1(x) = g1(x), ft+1(x) =
√

1− ωft(x) +
√
ωfgt+1(x) ∀t ≥ 2, (4)

where g1, g2, ... are independent random functions with g ∼ GP (0, k) and ω ∈ [0, 1] models
how the function varies with time, such that if ω = 0 we return to GP-UCB and if ω = 1
then each evaluation is independent. This model introduces a new hyperparameter (ω),
however, we note it can be optimized by maximizing the marginal likelihood for a trivial
additional cost compared to the expensive function evaluations (we include additional details
on this in the Appendix). This leads to the extensions of Eqs. (2) and (3) using the new
covariance matrix K̃t = Kt ◦Ktime

t where Ktime
t = [(1− ω)|i−j|/2]Ti,j=1 and k̃t(x) = kt ◦ ktimet

with ktimet = [(1− ω)(T+1−i)/2]Ti=1. Here ◦ refers to the Hadamard product.

2.3 Moving to a Population

In the PBT setting we need to consider an entire population of agents. This changes
the problem from a sequential to a batch blackbox optimization problem. This poses an
additional challenge, since we must select xt without full knowledge of all {(xi, yi)}t−1i=1. A
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key observation in Desautels et al. (2014) is that since a GP ’s variance (Eqn. 3) does not
depend on yt, the acquisition function can account for incomplete trials by updating the
uncertainty at the selected points. Concretely, we define xt,b to be the b-th point selected in
a batch, after t timesteps. This point may draw on information from t+ (b− 1) previously
selected points. In the single agent, sequential case, we set B = 1 and recover t, b = t− 1.
Thus, we can select the next sample by maximizing the following acquisition function:

xt,b = arg max
x∈D

µt,1(x) +
√
βtσt,b(x) (5)

for βt > 0. In Equation 5 we have the mean from the previous batch (µt,1(x)), but can
update the uncertainty using our knowledge of the agents currently training (σt,b(x)).

2.4 Population-Based Bandit Optimization (PB2) Algorithm

We now introduce Population-Based Bandit Optimization (PB2). In a similar fashion to
PBT, PB2 trains a population of agents in parallel, however, while we still copy weights from
superior models, the key difference comes in the selection of xit. We use the existing data
(Dt) to model the function ft with a GP. For the GP kernel we use = kSE ◦ ktime, and we
use the acquisition function in Eqn. 5. This allows us to efficiently make use of data from
previous trials when selecting new configurations.
Algorithm 1: Population-Based Bandit Optimization (PB2)
1 Initialize: Network weights {θi0}Bi=1, hyperparameters {xi0}Bi=1, dataset D0 = ∅
2 (in parallel) for t = 1, . . . , T − 1 do
3 1. Update Models: θit ← step(θit−1|xit−1) ;
4 2. Evaluate Models: yit = Ft(x

i
t)− Ft−1(xit−1) + εt for all i;

5 3. Record Data: Dt = Dt−1 ∪ {(yit, t, xit)}Bi=1 ;
6 4. If t mod tready = 0:

• Copy weights: Rank agents, if θi is in the bottom λ% then copy weights θj from
the top λ%.

• Select hyperparameters: Fit a GP model to Dt and select hyper-parameters xit by
maximizing equation (5).

7 Return best model.

Next we present our main theoretical result, showing that PB2 is able to achieve sublinear
regret. This is the first such result for a PBT-style algorithm.

Theorem 2. Let the domain D ⊂ [0, r]d be compact and convex where d is the dimension
and suppose that f ∼ GP (0, k) where the kernel k is almost surely continuously differentiable
and satisfies Lipschitz assumptions for some a, b. Let fix δ ∈ (0, 1) and set βT = 2 log π2T 2

2δ +

2d log rdbT 2
√

log daπ2T 2

2δ . By defining C1 = 32/ log(1 + σ2f ), the PB2 algorithm satisfies the
following regret bound after T time steps with probability at least 1− δ:

RTB =
T∑
t=1

ft(x
∗
t )− ft(xt) ≤

√
C1TβT

(
T

ÑB
+ 1

)(
γÑB +

[
ÑB

] 5
2
ω

)
+ 2

the bound holds for any block length Ñ ∈ {1, ..., T} and B � T .
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3. Experiments

We focus our experiments on the RL setting, since it is notoriously sensitive to hyperparameters
(Henderson et al., 2017). We focus on population sizes of B ∈ {4, 8}, which means the
algorithm can be run locally on most modern computers. We benchmark PB2 vs. PBT,
with identical configurations aside from the selection of xit. We also compare against a
random search (RS) baseline (Bergstra and Bengio, 2012). Random search is a challenging
baseline because it does not make assumptions about the underlying problem, and typically
achieves close to optimal performance asymptotically (Hutter et al., 2018). We also compare
our results against a recent state-of-the-art distributed algorithm (ASHA, Li et al. (2018)).
ASHA was shown to outperform PBT for supervised learning but remains untested for RL.
All experiments were conducted using the tune library (Liaw et al., 2018; Liang et al., 2018)1.

3.1 On Policy Reinforcement Learning

We consider optimizing a policy for continuous control problems from the OpenAI Gym
(Brockman et al., 2016). In particular, we seek to optimize the hyperparameters for Proximal
Policy Optimization (PPO, Schulman et al. (2017)), for the following tasks: BipedalWalker,
LunarLanderContinuous, Hopper and InvertedDoublePendulum.

Table 1: Median best performing agent across 10 seeds. The best performing algorithms are bolded.

B RS ASHA PBT PB2 vs. PBT

BipedalWalker 4 234 236 223 276 +24%
LunarLanderContinuous 4 161 213 159 235 +48%

Hopper 4 1638 1819 1492 2346 +57%
InvertedDoublePendulum 4 8094 7899 8893 8179 -8%

BipedalWalker 8 240 255 277 291 +5%
LunarLanderContinuous 8 175 231 247 275 +11%

For all experiments we use a neural network policy with two 32-unit hidden layers and tanh
activations. During training, we optimize the following hyperparameters: batch size, learning
rate, GAE parameter (λ) and PPO clip parameter (ε). We use the same fixed ranges across
all four environments (included in the Appendix Section 5). All experiments are conducted
for 106 environment timesteps, with the tready command triggered every 5× 104 timesteps.
For ASHA, we initialize a population of 18 agents to compare against B = 4 and 48 agents
for B = 8. These were chosen to achieve the same total budget with the grace period equal
to the tready criteria for PBT and PB2. We repeat each experiment with ten seeds, and show
the median best reward achieved from each run in Table 1.

In almost all cases we see performance gains from PB2 vs. PBT. In fact, 3/4 of cases
PBT actually underperforms random search with the smaller population size (B = 4),
demonstrating its reliance on large computational resources. This is confirmed in the original
PBT paper, where the smallest population size fails to outperform (see: Table 1, Jaderberg
et al. (2017)). One possible explanation for this is the greediness of PBT leads to prematurely
abandoning promising regions of the search space. Another is that the small changes in

1. An implementation of PB2 will be made public upon publication.
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parameters (multiple of 0.8 or 1.2) is mis-specified for discovering the optimal regions, thus
requiring more initial samples to sufficiently span the space. This may also be the case if
there is a shift later in the optimization process. Interestingly, PBT does perform well for
InvertedDoublePendulum, this may be explained by the relative simplicity of the problem.
For the larger population size PB2 outperforms all other methods, while PBT comes second.
This shows that PB2 is able to scale to larger computational budgets. Interestingly, the
state-of-the-art supervised learning performance of ASHA fails to translate to RL, where it
clearly performs worse than both PBT and PB2 for the larger setting, and performs worse
than PB2 for the smaller one.

3.2 Off Policy Reinforcement Learning

Figure 2: Left, median curves for seven seeds, with
inter-quartile range shaded. Right, all agent
configurations found by PB2.

We also evaluate PB2 in a larger setting,
optimizing three hyperparameters for
IMPALA (Espeholt et al., 2018) in
the space invaders environment from
the Arcade Learning Environment
(Bellemare et al., 2012). In the
original paper, the best results for
IMPALA come with the use of PBT
with a population size of B = 24.
Here we optimize the same three
hyperparameters as in the original
paper, but with a much smaller
population (B = 4), making it essential
to efficiently explore the hyperparameter space.

We train for 10 million timesteps, equivalent to 40 million frames, and set tready to 5×105

timesteps. PB2 achieves a median best reward of 614, only slightly less than the hand-tuned
performance reported in the rllib implementation implementation2. Meanwhile, PBT is only
able to achieve a median best reward of 479.

As we see on the right hand side in Fig 2, PB2 effectively explores the entire range of
parameters, which enables it to find optimal configurations even with a small number of
trials. More details are in the Appendix, Section 5.

4. Conclusion and Future Work

We introduced Population-Based Bandits (PB2), the first PBT-style algorithm with sublinear
regret guarantees. PB2 replaces the heuristics from the original PBT algorithm with
theoretically guided GP-bandit optimization. This allows it to balance exploration and
exploitation in a principled manner, preventing mode collapse to suboptimal regions of the
hyperparameter space and making it possible to find high performing configurations with
a small computational budget. Our algorithm complements the existing approaches for
optimizing hyperparameters for deep learning frameworks.

2. See “RLlib IMPALA 32-workers”, here: https://github.com/ray-project/rl-experiments
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Appendix

5. Experiment Details

For all experiments we set βt = c1 + log(c2t) with c1 = 0.2 and c2 = 0.4, as in the traffic
speed data experiment from Bogunovic et al. (2016).

Table 2: IMPALA: Fixed
Parameter Value

Num Workers 5
Num GPUs 0

Table 3: IMPALA: Learned
Parameter Value

Epsilon {0.01, 0.5}
Learning Rate {10−3, 10−5}
Entropy Coeff {0.001, 0.1}

Table 4: PPO: Fixed
Parameter Value

Filter MeanStdF ilter
SGD Iterations 10
Architecture 32-32
ready 5× 104

Table 5: PPO: Learned
Parameter Value

Batch Size {1000, 60000}
GAE λ {0.9, 0.99}
PPO Clip ε {0.1, 0.5}
Learning Rate η {10−3, 10−5}

Table 6: CIFAR: Fixed
Parameter Value

Optimizer Adam
Iterations 50
Architecture 3 Conv Layers
ready 5

Table 7: CIFAR: Learned
Parameter Value

Train Batch Size {4, 128}
Dropout-1 {0.1, 0.5}
Dropout-2 {0.1, 0.5}
Learning Rate {10−3, 10−4}
Weight Decay {10−3, 10−5}
Momentum {0.8, 0.99}

6. Additional Experiments

Supervised Learning We used PB2 to optimize six hyperparameters for a Convolutional
Neural Network (CNN) (architecture from https://zhenye-na.github.io/2018/09/28/
pytorch-cnn-cifar10.html) on the CIFAR-10 dataset (Krizhevsky, 2012). In each setting
we randomly sample the initial hyperparameter configurations and train on half of the dataset
for 50 epochs. We B = 4 agents for RS, PBT and PB2, with tready as 5 epochs. For ASHA
we have the same maximum budget across all agents but begin with a population size of 16.

In Table 6 we show the median best performing agent from each training run. As
we see, PB2 significantly outperforms both PBT and the Random baseline, while slightly
outperforming ASHA. This result is non trivial since ASHA was designed for SL and focused
on outperformance on this exact task in the original paper (see: Li et al. (2018)).
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Table 8: Median best performing agent across 5 seeds. The best performing methods are bolded.
RS ASHA PBT PB2

Test Accuracy 84.43 88.85 87.20 89.10

Figure 3: Median curves, IQR shaded.

Robustness to Hyperparameter Ranges
One key weakness of PBT is its reliance
on a large population size to explore the
hyperparameter space. This can be magnified
if the hyperparameter range is mis-specified
or unknown (the bounds placed on the
hyperparameters may require tuning). PB2
avoids this issue, since it is able to select a
point anywhere in the range, so does not rely
on random sampling or gradual movements to
get to optimal regions. We evaluate this by re-
running the BipedalWalker task with a batch size
drawn from {5000, 200000}. This means many agents are initialized in a very inefficient way,
since when an agent has a batch size of 200, 000 it is using 20% of total training samples for
a single gradient step. In Fig. 3 we see the performance for PBT is significantly reduced,
while PB2 is still able to learn good policies. While both methods perform worse than in
Table 1, PB2 still achieves a median best of 203, vs. -12 for PBT.

Additional Off Policy Results Here we include an additional off policy experiment, with
the same configuration as in Section 3.2. We test PB2 and PBT on the breakout environment,
where we see in Fig. 4 that once again PB2 is more sample efficient than PBT.

Figure 4: Left, median curves for seven seeds, with inter-quartile range shaded. Right, all agent
configurations found by PB2.
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7. Theoretical Results

We provide the proof for Lemma 1.

Proof. We have a reward at the starting iteration F1(x1) as a constant that allows us to
write the objective function as:

FT (xT )− F1(x1) = FT (xT )− FT−1(xT−1) + · · ·+ F3(x3)− F2(x2) + F2(x2)− F1(x1) (6)

Therefore, maximizing the left of Eqn (6) is equivalent to minimizing the cummulative
regret as follows:

max [FT (xT )− F1(x1)] = max
T∑
t=1

Ft(xt)− Ft−1(xt−1) = max
T∑
t=1

ft(xt) = min
T∑
t=1

rt(xt)

where we define ft(xt) = Ft(xt)− Ft−1(xt−1), the regret rt = ft(x
∗
t )− ft(xt) and ft(x∗t ) :=

max∀x ft(x) is an unknown constant.

7.1 Convergence Analysis

We minimize the cumulative regret RT by sequentially suggesting an xt to be used in each
iteration t. We shall derive the upper bound in the cumulative regret and show that it
asymptotically goes to zero as T increases, i.e., limT→∞

RT
T = 0. We make the following

smoothness assumption to derive the regret bound of the proposed algorithm.
Assumptions. We will assume that the kernel k is hold for some (a, b) and all L ≥ 0.

The joint kernel satisfies for k = 1, ...,K,

∀L ≥ 0, t ≤ T , p(sup

∣∣∣∣∂ft(β)

∂β(k)

∣∣∣∣ ≤ L) ≤ ae−(L/b)
2

. (7)

The assumption 1 is achieved by using a time-varying kernel ktime(t, t′) = (1− ω)
|t−t′|

2

(Bogunovic et al., 2016) while assumption 2 is from the smooth functions.

Lemma 3 (Srinivas et al. (2010)). Let Lt = b
√

log 3daπtδ ) where
∑T

t=1
1
πt

= 1, we have with
probability 1− δ

3 , ∣∣ft(x)− ft(x′)
∣∣ ≤ Lt||x− x′||1, ∀t,x,x′ ∈ D (8)

Lemma 4 (Srinivas et al. (2010)). We define a discretization Dt ⊂ D ⊆ [0, r]d of size (τt)
d

satisfying ||x − [x]t ||1 ≤
d
τt
, ∀x ∈ D where [x]t denotes the closest point in Dt to x. By

choosing τt = t2

Ltd
= rdbt2

√
log (3daπt/δ), we have

|ft(x)− ft([x]t)| ≤
1

t2
.

Lemma 5 (Srinivas et al. (2010)). Let βt ≥ 2 log 3πt
δ + 2d log

(
rdbt2

√
log 3daπt

2δ

)
where∑T

t=1 π
−1
t = 1, then with probability at least 1− δ

3 , we have

|ft(xt)− µt(xt)| ≤
√
βtσt(xt),∀t,∀x ∈ D.
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We use TB to denote the batch setting where we will run the algorithm over T
iterations with a batch size B. The mutual information is defined as Ĩ(fTB; yTB) =
1
2 log det

(
ITB + σ−2f K̃TB

)
and the maximum information gain is as γ̃T := max Ĩ(fTB;yTB)

where fTB := fTB(xTB) = (ft,b(xt,b), ..., fT,B(xT,B)) ,∀b = 1....B,∀t = t...T for the time
variant GP f .

We extend the result presented in (Bogunovic et al., 2016) into the parallel setting using

a population size of B. We will show that γ̃TB ≤
(

T
ÑB

+ 1
)(

γÑB + σ−2f

[
ÑB

]5/2
ω

)
. To

derive the bound over the maximum information gain, we shall split T × B observations
in time steps {1, ..., T} into T/Ñ blocks of length Ñ ×B, such that within each block the
function fi does not vary significantly. We assume for the time being that T/Ñ is an integer,
and then handle the general case.

Lemma 6. (Mirsky’s theorem [Horn and Johnson (2012), Cor. 7.4.9.3]). For any matrices
U and V of size Ñ × Ñ , and any unitarily invariant norm ||| · |||, we have

|||diag(λ1(U), ..., λÑ (U))− diag(λ1(V ), ..., λÑ (V ))||| ≤ |||U − V |||

where λi(·) is the i-th largest eigenvalue.

Lemma 7. (extended from Bogunovic et al. (2016)) Let ω be the forgetting-remembering
trade-off parameter and consider the kernel for time 1−Ktime(t, t

′) ≤ ω |t− t′|, we bound
the maximum information gain that

γ̃TB ≤
(

T

Ñ ×B
+ 1

)(
γÑ×B + σ−2f

[
Ñ ×B

]5/2
ω

)
.

Proof. Following the strategy in Bogunovic et al. (2016), we bound the mutual information
with time variations by connecting to the time-invariant case (Srinivas et al., 2010). We shall
split T ×B observations in time steps {1, ..., T} into T/Ñ blocks of length Ñ ×B, such that
within each block the function fi does not vary significantly.

We bound the time-varying maximum information gain for each i-th block as γ̃i :=
max Ĩi(f i;yi) where yi = [y1, ..., yÑ×B] contains the observations in the i-th blocks and
analogous design for f i. Our dataset is different from Srinivas et al. (2010); Bogunovic
et al. (2016) that we have Ñ × B in each block i as each evaluation has been done using
B simultaneous workers. For convenience in deriving the bound, we denote the covariance
matrix as

K̃i = Ki ◦Ki
time = Ki +Ai

where ◦ denotes the Hadamard product, Ki
time =

[
(1− ω)

|t−t′|
2

]
, Ai = Ki ◦

(
Ki
time − 1Ñ

)
and 1Ñ is the matrix of one of size Ñ . Each covariance matrix K̃i,Ki and Ki

time will have
the same dimension of

[
Ñ ×B

]
×
[
Ñ ×B

]
. We have each entry in Ki is bounded [0, 1] and

the absolute value of each entry in Ki
time − 1Ñ is bounded by 1 − (1− ω)

|i−j|
2 ≤ ω |i− j|.

12



Therefore, we can bound the Frobenius norm of

||Ai||F ≤
∑
i,j

(i− j)2 ω2 =
1

6

[
Ñ ×B

]2([
Ñ ×B

]2
− 1

)
ω2 ≤

[
Ñ ×B

]4
ω2.

Let U = Ki +Ai and V = Ki, we define ∆i
k = λk

(
K̃i
)
− λk

(
Ki
)
, we have

Ñ×B∑
j=1

(
∆i
j

)2
=

Ñ×B∑
j=1

(
λj

(
K̃i
)
− λj

(
Ki
))2

= ||diag
(
λ1

(
K̃i
)
, ..., λÑ×B

(
K̃i
))
− diag

(
λ1
(
Ki
)
, ..., λÑ×B

(
Ki
))
||2F

≤ ||AÑ×B||
2
F ≤

[
Ñ ×B

]4
ω2

where we have utilized Lem. 6. We now bound the maximum information gain defined in
each block γ̃i and connect it to the standard (time invariant) maximum information gain γi

shown in Srinivas et al. (2010):

γ̃i =
1

2
log det

(
IÑB×ÑB + σ−2

(
K̃i
))

=
Ñ×B∑
i=1

log
(
1 + σ−2λi

(
Ki +Ai

))
=
Ñ×B∑
i=1

log
(
1 + σ−2λi

(
Ki
)

+ σ−2∆i
k

)
≤

Ñ×B∑
i=1

log
(
1 + σ−2λi

(
Ki
))

+
Ñ×B∑
i=1

log
(
1 + σ−2∆i

k

)
(9)

=γÑ +

Ñ×B∑
i=1

log
(
1 + σ−2λi∆

i
k

)
≤ γÑ + Ñ ×B × log

1 + σ−2
1

Ñ ×B

Ñ×B∑
i=1

∆i
k

 (10)

≤γÑ + Ñ ×B × log

(
1 + σ−2

[
Ñ ×B

]3/2
ω

)
≤ γÑ + σ−2

[
Ñ ×B

]5/2
ω (11)

where Eqn (9) is by log(1 + a+ b) ≤ log(1 + a) + log(1 + b), for a, b > 0. Eqn (10) is using
Jensen inequality for log (1 + x). In Eqn (11), we utilize the inequality that

∑Ñ×B
i=1 ∆i

k ≤√
Ñ ×B

√∑Ñ×B
i=1 ∆i

k ≤
√
Ñ ×B

[
Ñ ×B

]2
ω and log(1 + x) ≤ x for ∀x > −1.

Using the chain rule for mutual information as discussed in Bogunovic et al. (2016), we
have ĨT (fT , yT ) ≤

∑T/Ñ
i=1 Ĩi

(
f i;yi

)
. Maximizing both sides γ̃T := max Ĩ(fT ;yT ), we have

γ̃TB ≤
T/Ñ∑
i=1

γ̃i ≤
(

T

Ñ ×B
+ 1

)(
γÑ + σ−2f

[
Ñ ×B

]5/2
ω

)

where the bounds are similar across blocks γ̃i ≤ γÑ×B + 1
σ2
f

[
Ñ ×B

]5/2
ω,∀i ≤ T

Ñ
and the

addition of one is for the case when T
Ñ

is not an integer.

13



Uncertainty Sampling (US). We next derive an upper bound over the maximum
information gain obtained from a batch xt,b,∀b = 1, ..., B. In other words, we want to
show that the information gain by our chosen points xt,b will not go beyond the ones by
maximizing the uncertainty. For this, we define an uncertainty sampling (US) scheme which
fills in a batch xUSt,b by maximizing the GP predictive variance. Particularly, at iteration t,
we select xUSt,b = arg maxx σt(x | Dt,b−1),∀b ≤ B and the data set is augmented over time to
include the information of the new point, Dt,b = Dt,b−1 ∪ xUSt,b . We note that we use xUSt,b to
derive the upper bound, but this is not used by our PB2 algorithm.

Lemma 8. Let xPB2
t,b be the point chosen by our algorithm and xUS

t,b be the point chosen by
uncertainty sampling (US) by maximizing the GP predictive variance xUS

t,b = arg maxx∈D σt(x |
Dt,b−1),∀b = 1, ...B and Dt,b = Dt,b−1 ∪ xt,b, We have

σt+1,1

(
xPB2
t+1,1

)
≤ σt+1,1

(
xUS
t+1,1

)
≤ σt,b

(
xUS
t,b

)
, ∀t ∈ {1, ..., T} ,∀b ∈ {1, ...B} .

Proof. The first inequality is straightforward that the point chosen by uncertainty sampling
will have the highest uncertainty σt+1,1

(
xPB2t+1,1

)
≤ σt+1,1

(
xUSt+1,1

)
= arg maxx σt(x | Dt,b−1).

The second inequality is obtained by using the principle of “information never hurts”
(Krause et al., 2008), we know that the GP uncertainty for all locations ∀x decreases with
observing a new point. Therefore, the uncertainty at the future iteration σt+1 will be smaller
than that of the current iteration σt, i.e., σt+1,b

(
xUSt+1,b

)
≤ σt,b

(
xUSt,b

)
,∀b ≤ B, ∀t ≤ T . We

thus conclude the proof σt+1,1

(
xUSt+1,1

)
≤ σt,b

(
xUSt,b

)
,∀t ∈ {1, ..., T} , ∀b ∈ {1, ...B}.

Lemma 9. The sum of variances of the points selected by the our PB2 algorithm σ(.) is
bounded by the sum of variances by uncertainty sampling σUS(.). Formally, w.h.p.,

T∑
t=2

σt,1 (xt,1) ≤
1

B

T∑
t=1

B∑
b=1

σt,b
(
xUS
t,b

)
.

Proof. By the definition of uncertainty sampling in Lem. 8, we have σt+1,1 (xt+1,1) ≤
σt,b

(
xUSt,b

)
, ∀t ∈ {1, ..., T} ,∀b ∈ {2, ...B} and σt,1 (xt,1) ≤ σt,1

(
xUSt,1

)
where xt,1 is the point

chosen by our PB2 and xUSt,1 is from uncertainty sampling. Summing all over B, we obtain

σt,1 (xt,1) + (B − 1)σt+1,1 (xt+1,1) ≤ σt,1
(
xUSt,1

)
+

B∑
b=2

σt,b
(
xUSt,b

)
T∑
t=1

σt,1 (xt,1) + (B − 1)

T∑
t=1

σt+1,1 (xt+1,1) ≤
T∑
t=1

B∑
b=1

σt,b
(
xUSt,b

)
by summing overT

T∑
t=2

σt,1 (xt,1) ≤
1

B

T∑
t=1

B∑
b=1

σt,b
(
xUSt,b

)
.

The last equation is obtained because of σ1,1 (x1,1) ≥ 0 and (B − 1)σT+1,1 (xT+1,1) ≥ 0.
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Lemma 10. Let C1 = 32
log(1+σ−2

f )
, σ2f be the measurement noise variance and γ̃TB := max Ĩ

be the maximum information gain of time-varying kernel, we have
T∑
t=1

B∑
b=1

σ2t,b(x
US
t,b ) ≤ C1

16
γ̃TB

where xUS
t,b is the point selected by uncertainty sampling (US).

Proof. We show that σ2t,b(x
US
t,b ) = σ2f

(
σ−2f σ2t,b(x

US
t,b )
)
≤ σ2fC2 log

(
1 + σ−2f σ2t,b

(
xUSt,b

))
,∀b ≤

B, ∀t ≤ T where C2 =
σ−2
f

log(1+σ−2
f )
≥ 1 and σ2f is the measurement noise variance. We have

the above inequality because s2 ≤ C2 log
(
1 + s2

)
for s ∈

[
0, σ−2f

]
and σ−2f σ2t,b

(
xUSt,b

)
≤

σ−2k
(
xUSt,b ,x

US
t,b

)
≤ σ−2f . We then use Lemma 5.3 of Desautels et al. (2014) to have the

information gain over the points chosen by a time-varying kernel

Ĩ =
1

2

T∑
t=1

B∑
b=1

log
(

1 + σ−2f σ2t,b
(
xUSt,b

))
.

Finally, we obtain
T∑
t=1

B∑
b=1

σ2t,b(x
US
t,b ) ≤ σ2fC2

T∑
t=1

B∑
b=1

log
(

1 + σ−2f σ2t,b
(
xUSt,b

))
= 2σ2fC2Ĩ =

C1

16
γ̃TB

where C1 = 2
log(1+σ−2

f )
and γ̃TB := max Ĩ is the definition of maximum information gain

given by T ×B data points from a GP for a specific time-varying kernel.

Theorem 11. Let the domain D ⊂ [0, r]d be compact and convex where d is the dimension
and suppose that f ∼ GP (0, k) where the kernel k is almost surely continuously differentiable
and satisfies Lipschitz assumptions for some a, b. Let fix δ ∈ (0, 1) and set βT = 2 log π2T 2

2δ +

2d log rdbT 2
√

log daπ2T 2

2δ . By defining C1 = 32/ log(1 + σ2f ), the PB2 algorithm satisfies the
following regret bound after T time steps with probability at least 1− δ:

RTB =
T∑
t=1

ft(x
∗
t )− ft(xt) ≤

√
C1TβT

(
T

ÑB
+ 1

)(
γÑB +

[
ÑB

] 5
2
ω

)
+ 2

the bound holds for any block length Ñ ∈ {1, ..., T} and B � T .

Proof. Let x∗t = arg max∀x ft(x) and xt,b be the point chosen by our algorithm at iteration t
and batch element b, we define the (time-varying) instantaneous regret as rt,b = ft(x

∗
t )−ft(xt,b)

and the (time-varying) batch instantaneous regret over B points is as follows

rBt = min
b≤B

rt,b = min
b≤B

ft(x
∗
t )− ft(xt,b),∀b ≤ B

≤ ft(x∗t )− ft(xt,1) ≤ µt(x∗t ) +
√
κtσt(x

∗
t ) +

1

t2
− ft(xt,1) byLem. 4

≤ µt(xt,1) +
√
κtσt(xt,1) +

1

t2
− ft(xt,1) ≤ 2

√
κtσt(xt,1) +

1

t2
(12)
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where we have used the property that µt(xt,1) +
√
βtσt(xt,1) ≥ µt(x

∗
t ) +

√
βtσt(x

∗
t ) by the

definition of selecting xt,1 = arg maxx µt(x) +
√
βtσt(x). Next, we bound the cumulative

batch regret as

RTB =
T∑
t=1

rBt ≤
T∑
t=1

(
2
√
κtσt(xt,1) +

1

t2

)
byEqn (12)

≤ 2
√
κTσ1(x1,1) +

2
√
κT
B

T∑
t=1

B∑
b=1

σt,b
(
xUSt,b

)
+

T∑
t=1

1

t2
byLem. 8 andκT ≥ κt, ∀t≤ T

≤
4
√
κT
B

T∑
t=1

B∑
b=1

σt,b
(
xUSt,b

)
+

T∑
t=1

1

t2
(13)

≤ 4

B

√√√√κT × TB
T∑
t=1

B∑
b=1

σ2t,b(x
US
t,b ) + 2 ≤

√
C1
T

B
κT γ̃TB + 2 (14)

≤

√√√√C1
T

B
κT

(
T

Ñ ×B
+ 1

)(
γÑB +

1

σ2f

[
Ñ ×B

]5/2
ω

)
+ 2. (15)

where C1 = 32/ log(1+σ2f ), xUSt,b is the point chosen by uncertainty sampling – used to provide
the upper bound in the uncertainty. In Eqn (13), we take the upper bound by considering
two possible cases: either σ1(x1,1) ≥ 1

B

∑T
t=1

∑B
b=1 σt,b

(
xUSt,b

)
or 1

B

∑T
t=1

∑B
b=1 σt,b

(
xUSt,b

)
≥

σ1(x1,1). It results in 2
B

∑T
t=1

∑B
b=1 σt,b

(
xUSt,b

)
≥ 1

B

∑T
t=1

∑B
b=1 σt,b

(
xUSt,b

)
+ σ1(x1,1). In

Eqn (14) we have used
∑∞

t=1
1
t2
≤ π2/6 ≤ 2 and ||z||1 ≤

√
T ||z||2 for any vector z ∈ RT . In

Eqn (15), we utilize Lem. 7.

Finally, given the squared exponential (SE) kernel defined, γSE
ÑB

= O(
[
log ÑB

]d+1
),

the bound is RTB ≤

√
C1

T
BβT

(
T
ÑB

+ 1
)(

(d+ 1) log
(
ÑB

)
+ 1

σ2
f

[
Ñ ×B

]5/2
ω

)
+ 2 where

Ñ ≤ T and B � T . We refer to Theorem 5 in Srinivas et al. (2010) for the bound of other
common kernels including linear, Mattern and squared exponential.

In our time-varying setting, if the time-varying function is highly correlated, i.e., the
information between f1(.) and fT (.) does not change significantly, we have ω → 0 and
Ñ → T . Then, the regret bound grows sublinearly with the number of iterations T , i.e.,
limT→∞

RTB
TB = 0. This bound suggests that the gap between ft(xt) and the optimal ft(x∗t )

vanishes asymptotically using PB2. In addition, our regret bound is tighter and better with
increasing batch size B.

On the other hand in the worst case, if the time-varying function is not correlated, such
as Ñ → 1 and ω → 1, then PB2 achieves the linear regret (Bogunovic et al., 2016).
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