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Abstract

Zero-shot hyperparameter optimization (HPO) is a simple yet effective use of transfer
learning for constructing a small list of default hyperparameter (HP) configurations that
complement each other. That is to say, for any given dataset, at least one of them is
expected to perform well. We provide an overview of the approach and introduce a novel
multi-fidelity technique that decreases the number of model evaluations, and thus cost and
time, required to compute zero-shot configurations. This speedup is vital in environments
where the space of HPs is regularly changing due to new algorithms being introduced. We
benchmark our algorithm experimentally on two different tasks and in both cases show
an improvement in accuracy compared to standard zero-shot HPO with the same offline
evaluation budget.

1. Introduction

Hyperparameter tuning can be described as a blackbox optimization problem, where the
goal is to minimize an expensive to evaluate blackbox function ` : Θ→ R, with ` mapping
any hyperparameter configuration θ ∈ Θ to its generalization loss `(θ), and Θ representing
the search space of all configurations that are being considered. Typically we do not have
access to gradient information and desire evaluating ` a small number of times, as each
evaluation corresponds to a costly training of a machine learning model.

Most state-of-the-art HPO tools use Bayesian Optimization (BO) as the core component
of their algorithms (Hutter et al., 2010, 2009; Falkner et al., 2018; Das et al., 2020). In
BO the blackbox function ` is modelled by a probabilistic surrogate model. After each
evaluation, the returned value is incorporated into the surrogate model, which is then used
to determine the next hyperparameter configuration to evaluate.

This approach has room for improvement in two aspects. First, if the surrogate model
is trained from scratch, this leads to poor behavior in the initial stages, where not much is
learned, and we are essentially querying random configurations. This is a problem either
when the HPO budget, meaning the number of queries for `, is low, or when the HP space Θ
is very rich, and it takes time to learn a reasonable surrogate for `. The second issue is that
the BO approach is by definition sequential; this poses a problem when we wish to speed up
the HPO process by using multiple machines. Although there are several adaptations of BO
in the literature aimed to solve both of these issues, zero-shot HPO is a natural fit to address
both. It requires learning a set of HP configurations offline based on a meta-collection of
datasets, thus taking advantage of external information. Furthermore, by having a pre-
determined set of configurations, the HPO procedure becomes embarrassingly parallel.
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To obtain the set of configurations, previous papers (Wistuba et al., 2015a,b; Pfisterer
et al., 2018) run an offline meta-training job of the following nature. Given a collection of
D datasets, choose n configurations and evaluate them on all D datasets. Configurations
can be picked randomly or according to some heuristic such as eps-net. This offline process
produces a performance table, (i, j) entry of which represents the loss of i-th configuration on
j-th dataset. This performance table is used to find a set of K configurations that jointly
minimize the loss over the dataset collection. In order to aggregate the losses over the
datasets, it is common to normalize the scores and minimize the average normalized score.

Notice that the offline procedure requires querying the function ` at nD points, meaning
it requires nD training jobs. This might seem reasonable because it is a one-time procedure.
However, we claim that that a more efficient procedure would be highly beneficial. First,
algorithms have new versions with new hyper-parameters being introduced. Second, even
for a one-time job, the budget is limited, meaning that we have to compromise on our
choice of number of datasets D or configurations n. With that in mind we design a novel
multi-fidelity algorithm solving the offline subset selection problem in a budget-efficient way.
Given a fixed evaluation budget B our results greatly outperform the techniques mentioned
above using nD evaluations.

2. Related work

A number of previous works attempt to use evaluations of related tasks to speed up BO.
Feurer et al. (2015) and Brazdil et al. (2003) propose to start the search from configurations
that performed well on similar datasets and accomplish this by computing a distance metric
on meta-data of the datasets. Although the results presented in the papers are positive,
it is not always clear how to collect meta-data, which explicit meta-data features would
be useful, and how to automatically get the correct distance metric relevant to the specific
setting being solved.

Wistuba et al. (2015a) are the first to frame zero-shot HPO as an optimization problem
minimizing the meta-loss over a set of datasets. Differentiable surrogate models are used to
decrease the required evaluations on the meta-datasets. This, in combination with a discrete
relaxation of the minimization problem, allows the authors to optimize the meta-loss using
gradient descent. They show that using their method as an initialization strategy followed by
standard single task BO methods matches the performance of state-of-the-art meta-learning
algorithms, as well as initialization strategies that make use of meta-data based distances.

In a second paper (Wistuba et al., 2015b), the same authors use a greedy incremental
algorithm to find a set of zero-shot HPO configurations, giving similar results. In this case,
a full grid search is performed on all datasets, thus not requiring any surrogate model.

Pfisterer et al. (2018) frame the zero-shot HPO problem as one of finding multiple
default configurations. They combine both of the above ideas, by limiting the search space
to a discrete set of random configurations (as opposed to the grid search used in (Wistuba
et al., 2015b)) and use an iterative greedy algorithm for finding a sequence of zero-shot
configurations, but use a surrogate model for evaluations. They provide details about
neither the type of surrogate model nor the amount of savings it brought.

A different line of work attempts to use the evaluations of related tasks directly in the
modeling of the surrogate function (Yogatama and Mann, 2014; Perrone et al., 2018). How-
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ever, developing modeling techniques that robustly and effectively apply transfer learning on
real-world tasks has proven challenging, and thus is still an area under active research. See
chapter 2 of Hutter et al. (2019) for a broader review of such transfer learning techniques. We
note that (1) our technique is quite different and likely complementary to that line of work,
and (2) these works provide outside information, but the problem of parallelism remains.

3. Multi-fidelity Approach For the Optimization Procedure

Let us start by describing the computationally efficient algorithm, known as the greedy
procedure, used by previous works.

The naive procedure

We have a collection of D datasets, and a (possibly infinite) collection Θ of configurations.
In the naive approach, we select n configurations θ1, . . . , θn ∈ Θ, typically by sampling.

For each configuration θ and dataset d, we run a training job to compute the validation
loss `(d, θ). Given these values, we run an optimization procedure finding K configurations
that jointly obtain the best performance on the dataset collection, by minimizing L(S) =
D−1

∑D
d=1 mini∈S{`(d, θi)}.

Finding the optimal subset of size K is known to be NP-hard. This was already pointed
out in Pfisterer et al. (2018). Fortunately, there is a very simple approximation algorithm
using the greedy approach. We note that L is monotone decreasing, meaning for any S and
i, L(S ∪ {i}) ≤ L(S) and L is supermodular, where S is a subset of [n] of size K. As such,
we know that the greedy algorithm choosing elements for S in the way that minimizes L
the most in every step provides an e-approximation (see Algorithm 1 in Appendix D).

The multi-fidelity approach

We are now ready to discuss a way to reduce the query cost of the above algorithm. Let’s be-
gin with the setting of K = 1. Here, the problem has a straightforward reduction to the best
arm identification task in multi-armed bandits. A query to a configuration consists of select-
ing a random dataset and computing the loss `(d, θ). This is an unbiased estimator of the
mean over all datasets. In our setting, we have a fixed budget of queries to `. As such, a first
attempt would be to use the techniques provided by Karnin et al. (2013) in their “successive
halving” algorithm, proven to be highly efficient in the best arm identification task. Unfor-
tunately, we have three added complications. First, we have a finite set of datasets, meaning
that there is a maximum to the number of arm pulls. Second, when choosing an aggregation
function other than mean, the confidence bounds become less trivial. This is mitigated by
the analysis of Jamieson and Talwalkar (2016), showing that the successive halving algo-
rithm works well as the estimates converge to a single value. Lastly, the number n of possible
configurations θ is not pre-determined as we can choose to explore either many configura-
tions in a shallow manner or a few but exhaustively. This is exactly the problem dealt with
by HyperBand (Li et al., 2017), where they build upon the successive halving algorithm.

We conclude that for the setting of K = 1 the problem fits the framework of HyperBand
(HB) exactly. Therefore we can use either HB or an extension of it, making use of surrogate
functions such as BOHB (Falkner et al., 2018). This solution for K = 1 suggests a solution
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for K > 1. We aim to find a set S of K configurations and will do it sequentially, finding the
elements of S one after the other, as in the naive greedy approach. We use the term location
for a chosen item in S to denote its location in the sequential greedy process. With this
term, the algorithm chooses the item in location 1 based on the ` values, then chooses an
item for location 2 based on its improvement over the ` value already achieved by location
1. It moves on to the other locations sequentially in the same way it handled location 2.
Since we get an approximately optimal configuration for each location, the same analysis
above will show that we obtain an approximation to the truly optimal subset S of size K.

Although this method is sensible at a high level there are a few key issues to be dealt
with, that require a non-trivial solution.

Information reuse: Consider a setting where we wish to evaluate the performance of
a configuration θ as the second configuration in our set. If θ happened to perform well as
a first element, we queried its performance on many datasets, and the evaluation actually
comes for free. In general, when we start the process of discovering the configuration for
location > 1 in the set, we already have information from previous locations. We design
the HyperBand instance to reuse this information.

Resource Balancing: It is unclear how we should balance the resources among the K
locations. Realistically, most of the value comes from the first locations. This can be made
formal by noticing the magnitude of the losses and their variances become smaller as the
location grows.

The issue of resource balancing brings a major challenge. If we only start exploring
location j once we fixed locations j′ < j, we cannot be adaptive. Moreover, even if we do
not wish to be adaptive, by splitting the resources in advance, for example equally, we cannot
control whether we end up actually using equal resources or, due to information reuse, end
up with remaining resources and an unclear way to use them. The only straightforward way
would be using them for the last location, but that is hardly a choice we would have done
knowingly. To this end, we modify our HyperBand implementations in a way that allows
exploring all locations simultaneously.

The closest previous work we are aware of is that of Streeter and Golovin (2009). The
authors provide an online algorithm that sequentially selects different sets of size K and,
on average, competes with the optimal set in hindsight. Their technique provably works
for any monotone decreasing supermodular function. This is a slightly different setting as
the objective is to minimize regret rather than identifying the best subset. In order to
handle the fact that a change in location j changes the losses observed at locations j′ > j,
they require the algorithm for selecting each location to be very robust, and indeed they use
EXP3.P (Auer et al., 2002), which is a multi-arm bandit algorithm for the regret setting, for
adversarial realizations and a high probability guarantee. This algorithm is indeed robust
enough to provide rigorous guarantees but not very practical for our setting. In particular,
it is aimed for a regret guarantee rather than best arm identification. Due to this, we still
have a HyperBand instance for every location with the following modifications:

• Each HyperBand (HB) instance does not know its budget in advance. Due to this we
adapt the algorithm in Li et al. (2018) that provides an anytime asynchronous version
of successive halving. We modify their algorithm to be an anytime asynchronous
version of HyperBand.
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• We invoke the instances of the different locations via an orchestrator. This orches-
trator makes sure that (1) location j is invoked only after all locations j′ < j have
at least one candidate whose performance is known on all datasets, (2) the ratios
of the budget used, excluding information reuse, are roughly proportional to some
agreed-upon proportion vector.

• Once location j modified its top configuration, we change the loss scores associated
with all full and partial runs in the HyperBand instance of locations j′ > j.

We provide a more detailed description of the used algorithm in Appendix D.

4. Relative error difference (RED)

Zero-shot HPO can be used with any loss ` and any aggregate loss L. However, as we
average losses computed over different datasets, one should be careful to choose a loss that
can be meaningfully averaged across datasets.

The loss we use in our experiments is what we call relative error difference (RED),
computed comparing to a reference loss rd that we first compute for each dataset d. Thus,
if ˜̀(d, θ) is an unnormalized error metric for dataset d, such as misclassification rate, we
normalize this metric by taking

`(d, θ) =
˜̀(d, θ)− rd

max(˜̀(d, θ), rd)

where we define 0/0 to be equal to 0. As an example, if one dataset has a reference error
rate of 40%, and a second dataset has a reference error rate of 4%, this metric considers
a reduction of the former to 30% equivalent to a reduction of the latter to 3%. RED
provides us with robust aggregation thanks to its desirable properties compared to other
normalization schemes, as described in more detail in Appendix A.

5. Experimental setup

We test our approach on two of the most commonly used general purpose supervised learning
algorithms: XGBoost and multi layer perceptron (MLP). For simplicity, we focus only on
classification for tabular data.

For XGBoost (Chen and Guestrin, 2016) we randomly sample 9 hyperparameters, and
generate 4000 random configurations which we evaluate on 65 tabular datasets.

All datasets have at least 3000 rows and originate from publicly available repositories,
such as Kaggle, OpenML, and UCI. Minimal standard preprocessing, such as TF-IDF, and
one hot encoding, were applied to transform the input into purely numeric matrices. To
assure high generalization accuracy estimates, we use .5/.25/.25 sized splits for training,
validation and test sets, respectively.

In the MLP case we use the precomputed data released by Zimmer (2020). This dataset
includes evaluations of 2000 random hyperparameter configurations of a funnel shaped MLP,
evaluated on 35 classification datasets.

In all our experiments our loss is the average RED as described above. The unnormalized
error metric we use is the misclassification rate, and our reference metric is obtained by
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averaging the test metric of the 10 models with the lowest validation error in our discrete
set of random configurations.

To use the limited number of datasets efficiently we evaluate our method in a leave-one-
dataset-out fashion: when computing the performance of using zero-shot configurations on
any given datasets we use all other datasets as source tasks. We always report the test
metric of the hyperparameter configuration with the best validation error up to any given
number of evaluations.

For our multi-fidelity procedure we evaluate two settings, using total budgets of 500 and
10000 evaluations, respectively. We use η = 3, K = 5 and each random candidate is taken
from the table described above.

6. Results

To evaluate the multi-fidelity algorithms we compare its results with the standard zero-shot
HPO algorithm using an equal number of meta-evaluations. This is done by applying the
baseline zero-shot algorithm on a table with a reduced number of configurations, but retain-
ing all datasets, such that nD becomes equal to the desired offline budget. For reference we
also include the results of random search Bergstra and Bengio (2012), and of the ideal zero-
shot HPO scenario, where we use the full table that we compiled. As can be seen in Figure 1,
the multi-fidelity algorithm makes a more efficient use of our evaluations budget, thus allow-
ing us to find better configurations with the same budget in all of the settings that we tested.
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Figure 1: Results of multi-fidelity (green) and standard naive zero-shot HPO (orange), compared
with random search (blue). Plotted is the average test RED of the configuration with the best
validation RED, after having evaluated the number of evaluations reported on the horizontal axis,
either evaluating the zero-shot configurations found, or, in the case of random search by selecting
configurations at random. The style indicates the number of offline training jobs performed for each
curve. The shaded areas cover one standard error in each direction.

These results clearly show that our method is beneficial both as a stand alone tool,
as well as an initialization strategy to speed up BO. We hope that this will help machine
learning practitioners reach state-of-the-art model performance more quickly, freeing them
from some of the costly and time consuming hyperparameter tuning effort normally required.
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Appendix A. Comparison of RED to other metrics

In this section we motivate our use of RED as an objective when computing the zero-shot
candidates, as well as when analyzing our results by aggregating the metric across multiple
datasets. In particular, we motivate the use of RED over the following normalization
schemes that have been used in the literature:

• No normalization. We denote the unnormalized misclassification rate of the con-
figuration θ on dataset d with ˜̀(d, θ).

• Rank normalization. The rank normalized score is defined as the rank among Θ,
and can be normalized to be between 0 and 1:

`(d, θ) =
|{θ̃ ∈ Θ | ˜̀(d, θ̃) < ˜̀(d, θ)}|

|Θ|

• Min-max normalization. Linearly rescales the scores to keep the range between 0
and 1.

• Stddev normalization. Linearly rescales the scores to have mean zero and standard
deviation one.

• RED. The relative error difference metric described in the previous section.

Wistuba et al. (2015a) use min-max normalization, while in Wistuba et al. (2015b) min-
max normalization is used only when evaluating the results, but rank normalization is used
in the objective. And finally, Pfisterer et al. (2018) use stddev normalization.

It is not immediately obvious what the trade-offs of different metrics are. We thus
looked at the following two properties that we deem important when averaging metrics
across datasets, and show that only RED has both:

Robust to rescaling. When comparing metrics averaged over multiple datasets, without
using any normalization, typically only the metrics with the largest range will meaningfully
affect the results. While often the true utility of any improvement depends on the use case
at hand, we intuitively want—all other things being equal—that an halving of the error
metric always contributes the same value. Any of the normalization schemes described
above, except for no normalization, are invariant under linear rescaling.

Robust to simple datasets. There are some datasets for which in fact we do not want
the results to affect the aggregate metric. These are datasets where the performance of
the best configurations is very similar to the performance of the worst configuration. It is
important to note that here we are talking about similarity in relative terms, not absolute
terms. Reducing the error rate from 0.1% to 0.001% can be very valuable and will likely
require a much better model. Conversely, reducing an error rate from 32% to 31% is, in
most cases, not as impressive. All normalization schemes except RED and no normalization
will magnify any difference in the case where all configurations perform very closely.

Here we focused our discussion on the per dataset metric `, such that the values from
different datasets can be aggregated. For the aggregation itself we use the average, as this
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Table 1: Metric normalization comparison.

Normalization type none rank stddev min-max RED

Robus to rescaling no yes yes yes yes
Robust to simple datasets yes no no no yes

Table 2: Zero-shot candidates found for XGBoost.

zero-shot1 zero-shot2 zero-shot3 zero-shot4 zero-shot5

colsample bytree 5.70e-01 5.45e-01 8.99e-01 7.07e-01 7.43e-01
gamma 6.30e-05 1.43e-02 3.35e-06 7.6e+00 1.16e-04
learning rate 1.41e-01 1.21e-01 4.19e-02 1.43e-02 2.87e-01
max depth 6 5 31 15 16
min child weight 1 1 1 6 1
n estimators 124 488 281 414 179
reg alpha 5.61e-05 3.52e-04 5.39e-06 1.12e-02 1.28e+00
reg lambda 3.57e-03 4.69e-06 1.30e-06 4.56e-04 8.65e-01
subsample 8.12e-01 8.68e-01 8.55e-01 8.03e-01 8.68e-01

zero-shot6 zero-shot7 zero-shot8 zero-shot9 zero-shot10

colsample bytree 9.59e-01 7.40e-01 4.62e-01 6.66e-01 9.34e-01
gamma 1.18e-03 2.31e+00 1.58e-04 4.5e-02 9.12e-06
learning rate 2.66e-01 4.36e-01 1.51e-02 1.07e-01 1.46e-01
max depth 5 16 24 3 2
min child weight 3 1 2 1 1
n estimators 502 19 335 398 435
reg alpha 1.00e+00 3.62e-05 2.60e-05 1.63e-02 2.66e-04
reg lambda 2.66e-05 1.5e-06 9.08e-05 1.05e-06 2.67e-06
subsample 9.19e-01 9.27e-01 9.39e-01 9.36e-01 7.35e-01

gives us a principled way to approximate the expected metric on new datasets. There are
however two cases where it might be desirable to explore alternative aggregation functions.
The fist case is when we expect the new dataset to not come from (approximately) the same
distribution as the meta datasets used to learn the zero-shot configurations. The second
case is when we are not interested in the expected metric, for example if even in a single
dataset the metric can vary by many orders of magnitude not proportional to the actual
utility of the results. In such cases different aggregation functions such as median or p90
can be warranted.

Appendix B. Zero-shot Hyperparameter Candidates

In tables 2 and 3 we report the zero-shot candidates found for XGBoost and MLP. In
addition to be used to quickly tune new models, the reader can use these to easily reproduce
our results.
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Table 3: Zero-shot candidates found for MLP.

zero-shot1 zero-shot2 zero-shot3 zero-shot4 zero-shot5

batch size 23 21 122 44 24
max dropout 1.76e-01 9.80e-01 1.48e-02 2.45e-01 1.74e-01
max units 141 76 169 261 118
num layers 3 3 4 4 4
learning rate 4.81e-03 1.56e-03 5.57e-02 5.59e-02 2.06e-02
momentum 7.60e-01 2.26e-01 8.33e-01 4.15e-01 5.56e-01
weight decay 9.96e-04 7.11e-03 5.53e-03 7.47e-02 1.95e-02

zero-shot6 zero-shot7 zero-shot8 zero-shot9 zero-shot10

batch size 16 68 120 128 22
max dropout 1.65e-01 9.21e-01 4.93e-01 6.37e-01 1.90e-01
max units 996 164 647 87 213
num layers 4 4 4 4 4
learning rate 8.41e-04 6.43e-03 7.09e-04 1.28e-03 2.12e-04
momentum 7.46e-01 8.63e-01 1.06e-01 2.67e-01 2.9e-01
weight decay 4.24e-03 9.87e-02 9.46e-02 2.98e-02 6.78e-02

Appendix C. Additional results

Figure 2: Ablation study of number of datasets used in optimization. We compare using different
number of datasets for optimization by randomly subsampling already acquired data to 1/2 and 1/4
of it. Subsampled data include 33 and 16, 17 and 8, and 25 and 12 datasets for XGBoost, MLP and
preprocessing pipelines, respectively. We repeat random subsampling 16 times.

Number of datasets. Figure 2 show the results of the ablation study comparing the
number of datasets. Almost all variants match the random search baseline after using
only a budget between 2 and 8 evaluations, which results in a more than 50-fold speedup.
We observe that it is possible to run the offline prodecure of zero-shot HPO even with
a small number of datasets and obtain considerably better performance compared to the
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Figure 3: Ablation study of number of random candidates used in optimization. We randomly
subsample random candidates to 1/4 and 1/16 of them. Subsampled data include 1000 and 250,
500 and 125, and 375 and 93 random candidates for XGBoost, MLP and preprocessing pipelines,
respectively. We repeat random subsampling 10 times

Figure 4: Ablation study of optimization strategies for varying number of zero-shot candidates used
in optimization.

random search. Having more datasets however always appear to improve the quality of the
configurations found.

Number of random candidates. We report the results of the ablation study comparing
the number of random candidates in Figure 3. We mainly observe the effect of decreased
number of random candidates when choosing the first several zero-shot candidates and the
performance gap reduces as we move to more zero-shot candidates. From this we can say
that it is possible to compensate running less random configurations in the offline process
of zero-shot HPO by trying more zero-shot candidates.

Optimization strategies. We studied the effect of the optimization strategy used in zero-
shot HPO, by running a variation of the greedy algorithm. In particular, we considered
a non-incremental greedy local optimization. In this version, we start with k randomly
chosen candidates and greedily optimize one of them at a time until we cannot improve in
this manner anymore. We also restart the optimization several times from different set of
random candidates. We compare the mentioned non-incremental optimization strategy for
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varying k values to the simpler incremental approach. Note that, in the non-incremental
version, one needs to rerun the optimization for different k values. We observe (Figure 4)
that the non-incremental approach appears to perform consistently worse or equal than the
incremental one, although this might be due to noise. This is a further indication of the
simple greedy incremental approach working well in practice.

Additional results on a larger number of bigger lookup tables are provided in Winkel-
molen et al. (2020), which extends the current work.

Appendix D. Details of the multi-fidelity algorithm

Algorithm 1: Greedy Optimization with Full Information

Input: number of desired zero-shot parameters K, search space Θ containing n
configurations

Output: θ1, ..., θK , where θi ∈ Θ
for j = 1, 2, . . . ,K do

set θj = arg minθ∈Θ L({θ1, . . . , θj−1, θ})
end

Algorithm 2 contains the pseudo-code for our anytime HB. Recall that the term resource
used in the HB algorithm is the number of datasets. We always set the minimal resource to
be 1, as our experiments showed that it gives superior results. Also, since we are choosing
a random dataset, this is a very crude but unbiased estimator of the mean. Querying a
configuration with resource level r means taking the average of training jobs of the HP
configuration over r datasets from our collection. We split the possible resource into rungs,
in an exponential scale. That is, for rung s = 0, the resource level is r = 1, for s = 1, it
is r = η (default 3), for 2 it is r = η2, until s = smax for which it is r = D, the number
of datasets. To avoid technical complications and cumbersome notations we simply assume
D is a power of η. Algorithm 2 describes the anytime HyperBand variant. Promoting a
configuration to rung s means running the HP configuration on r = ηs datasets, or rather
ηs − ηs−1 if we account for information reuse, in order to get a better estimate of its true
value. The algorithm will initially query configurations in rung 0, and when it can, it will
promote configurations to larger rungs. Unlike the ASHA algorithm in Li et al. (2018),
that is an anytime parallel implementation of the simpler successive halving algorithm,
Algorithm 2 will once in a while choose not to promote a candidate from rung s to rung
s+1 but instead draw a new candidate and start it directly from rung s+1. This is exactly
the idea of HyperBand that overcomes issues with regions in the configuration space that
are ‘unlucky’ in that they are misrepresented as high loss configurations when running with
low resources. The exact ratio determining when a new configuration should be chosen
rather than an old one to be promoted is set so that the overall resources used by each
rung towards configurations that start in that rung (as opposed to being promoted to it)
are equal1. In other words, if we partition the configurations explored throughout the run
of the algorithm according to the first rung they were launched (these are called brackets in

1. The expression of the ratio
∑s−1

m=0
smax−s
smax−m

in Algorithm 2 can be shown to provide an equal balance of
resources. Since this is a trivial exercise we do not prove it in this manuscript
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HB), the sum of resources used by the configurations in a partition in the rung they started
in should be the same.

Algorithm 2: Anytime HyperBand

Input: Configuration Selector Θ, number of datasets D, elimination ratio η
(default value 3)

Output: Configuration θ
smax = logη(D);

for t ∈ 1, 2, . . . do
for s = smax − 1, smax − 2, . . . , 0 do

if There exists a non-promoted candidate θ in rung s that is in the top 1/η
of performers then

If we promoted over
∑s−1

m=0
smax−s
smax−m items from rung s, reset the counter

of number of promoted items from rung s, select a new configuration
θnew from Θ, and promote it to rung s+ 1 ;

Otherwise, promote θ to rung s+ 1 ;

end

end
If no item was promoted above, select a new configuration θnew from Θ and run
it in rung 0;

The best configuration θ at any time t is the one with the minimal loss among
those that ran with the full resources

end

Algorithm 2 above is the building block for the main algorithm given in Algorithm 3.
This algorithm provides a set of size K of default configurations that jointly minimize the
loss over a collection of datasets. It acts as a coordinator over K locations of the set.
For each location j we invoke an instance of Algorithm 2 to find the best configuration
to improve the aggregated loss score over that obtained by the configurations found for
locations 1, 2, . . . , i. The losses provided to location i are computed by the improvement
over the configurations chosen for the smaller locations. Once the best configuration for
location i is modified, we update the observed losses of all larger locations for the jobs
previously run.

In order to select which location gets to query a configuration, we keep tabs of the
resources used by it, in terms of number of (dataset,configuration) pairs that issued a
training job, rather than a memory lookup in a query posted by the instance in charge of
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the location. We balance the resources used by the different locations according to an input
ratio vector ρ. For simplicity, assume ρ is the all 1 vector.

Algorithm 3: Anytime Combinatorial HyperBand

Input: Number of parameters K, Configuration Selector Θ, number of datasets D,
elimination ratio η, resource ratio vector ρ

Output: A set of K configurations θ1, . . . , θK
Initialize an anytime HyperBand algorithm for each location 1, . . . ,K ;
for t ∈ 1, 2, . . . do

Let locmax be the smallest location index whose HB instance does not have a
ready candidate, or K if no such index exists. For each location in i ≤ locmax,
let ri be the resource used by the HyperBand instance of location i. Choose
loc as the location minimizing ri · ρi ;

Run the next query issued by the HyperBand instance of location loc. The loss
value observed is the (negative) improvement of losses on compared to those
already achieved by the leading candidates of locations 0, 1, . . . , loc− 1 ;

If location loc changed the leading configuration based on the query, update all
internal loss values for HyperBand instances of locations loc + 1, loc + 2, . . . ;

end

Appendix E. XGBoost performance tables and datasets

Table 4: XGBoost hyper parameters distribution.

Hyper parameter Range Distribution

n estimators [4, 512] log-uniform
learning rate [10−6, 1] log-uniform
gamma [2−20, 64] log-uniform
min child weight [1, 32] log-uniform
max depth [2, 32] log-uniform
reg lambda [2−20, 1] log-uniform
reg alpha [2−20, 1] log-uniform
subsample [0.5, 1] uniform
colsample bytree [0.3, 1] uniform

For performance tables we include a JSON file with the description of hyper param-
eters for each configuration and two 4000 × 65 CSV files: for validation and test metrics
correspondingly.

We randomly selected 4000 configurations, each configuration consists of 9 hyper pa-
rameters, ranges and distributions are identified Table 4. All configurations were evaluated
on 65 datasets selected from open source repositories, such as Kaggle, OpenML, UCI and
AutoML Challenge, for detailed a list refer to the Table 5.

As mentioned earlier, we brake every dataset in ratios 50/25/25 for training, validation
and test respectively. Many datasets contain missing values and non-numeric imputs, we
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apply basic feature type detection (numeric, categorical and text) and preprocessing (one
hot encode categorical features and apply TF-IDF transform to text features).

Table 5: XGBoost hyper parameters distribution.

UCI : Abalone, Avila, BankMarketing, BlogFeedback, ChessKingRookvsKing,
ConditionBasedMaintenanceofNavalPropulsionPlants,
DatasetforSensorlessDriveDiagnosis, Diabetes130UShospitalsforyears19992008,
Dota2GamesResults, ElectricalGridStabilitySimulatedData,
FacebookCommentVolumeDataset, Gisette, HTRU2, IDA2016Challenge,
InsuranceCompanyBenchmarkCOIL2000, InternetAdvertisements, LetterRecognition,
MoCapHandPostures, Nursery, OnlineShoppersPurchasingIntentionDataset,
ParkinsonsTelemonitoring, PenBasedRecognitionofHandwrittenDigits,
PhysicalUnclonable, PhysicochemicalPropertiesofProteinTertiaryStructure,
PokerHand, SGEMMGPUkernelperformance, Spambase, StatlogLandsatSatellite,
SuperconductivtyData, TurkiyeStudentEvaluation, UJIIndoorLoc,
WeightLiftingExercisesmonitoredwithInertialMeasurementUnits, YearPredictionMSD, p53Mutants

AutoML Challenge : adult, albert, cadata, christine, digits, dilbert, dionis, fabert, helena,
jannis, madeline, philippine, robert, sylvine, volkert, yolanda

Kaggle : blastchar/telco-customer-churn, burakhmmtgl/energy-molecule,
contactprad/bike-share-daily-data, greenwing1985/housepricing,
harlfoxem/housesalesprediction, jsphyg/weather-dataset-rattle-package,
lodetomasi1995/income-classification, loveall/appliances-energy-prediction,
lpisallerl/air-tickets-between-shanghai-and-beijing, muonneutrino/us-census-demographic-data,
olgabelitskaya/classification-of-handwritten-letters, shrutimechlearn/churn-modelling,
umairnsr87/predict-the-number-of-upvotes-a-post-will-get

OpenML : mushroom (24), optdigits (28), kr-vs-kp (3), pendigits (32), letter (6)
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