
7th ICML Workshop on Automated Machine Learning (2020)

Learning to Prune Deep Neural Networks
via Reinforcement Learning

Manas Gupta MANAS GUPTA@I2R.A-STAR.EDU.SG
I2R, ASTAR Singapore

Siddharth Aravindan SIDDHARTH.ARAVINDAN@COMP.NUS.EDU.SG
National University of Singapore

Aleksandra Kalisz† KALISZ.OLA@GMAIL.COM
I2R, ASTAR Singapore

Vijay Chandrasekhar† VIJAY@I2R.A-STAR.EDU.SG
I2R, ASTAR Singapore

Lin Jie LIN-J@I2R.A-STAR.EDU.SG

I2R, ASTAR Singapore

Abstract
This paper proposes PuRL - a deep reinforcement learning (RL) based algorithm for pruning neural
networks. Unlike current RL based model compression approaches where feedback is given only
at the end of each episode to the agent, PuRL provides rewards at every pruning step. This enables
PuRL to achieve sparsity and accuracy comparable to current state-of-the-art methods, while hav-
ing a much shorter training cycle. PuRL achieves more than 80% sparsity on the ResNet-50 model
while retaining a Top-1 accuracy of 75.37% on the ImageNet dataset. Through our experiments
we show that PuRL is also able to sparsify already efficient architectures like MobileNet-V2. In
addition to performance characterisation experiments, we also provide a discussion and analysis of
the various RL design choices that went into the tuning of the Markov Decision Process underly-
ing PuRL. Lastly, we point out that PuRL is simple to use and can be easily adapted for various
architectures.

1. Introduction

Neural network efficiency is important for specific applications, e.g., deployment on edge devices
and climate considerations Strubell et al. (2019). Weight pruning has emerged as a viable solution
methodology for model compression Han et al. (2016), but pruning weights effectively remains a
difficult task — the search space of pruning actions is large, and over-pruning weights (or pruning
them the wrong way) leads to deficient models Frankle et al. (2019); Deng et al. (2009).

In this work, we approach the pruning problem from a decision-making perspective, and propose
to automate the weight pruning process via reinforcement learning (RL). RL provides a principled
and structured framework for network pruning, yet has been under-explored. There appears to be
only one existing RL-based pruning method, namely AutoML for Model Compression (AMC) He
et al. (2018). Here, we build upon AMC and contribute an improved framework: Pruning using
Reinforcement Learning (PuRL).

Compared to AMC, PuRL rests on a different Markov Decision Process (MDP) for pruning.
One key aspect of our model is the provision of “dense rewards” — rather than rely on the “sparse”

†For contributions made in 2019

c©2020 M. Gupta, S. Aravindan, A. Kalisz, V. Chandrasekhar and L. Jie.

GUPTA, ARAVINDAN, KALISZ, CHANDRASEKHAR, JIE

rewards (given only at the end of each episode), we shape the reward function to provide reward
feedback at each step of the pruning process. This results in a far shorter training cycle and decreases
the number of training episodes required by as much as 85%. The remaining design changes are
informed by ablation-style experiments; we discuss these changes in detail and elucidate the trade-
offs of different MDP configurations.

2. Related Work

Various techniques have been proposed for compressing neural networks Cheng et al. (2017). Prun-
ing comes out as a general approach not having restrictions in terms of the tasks it is applicable
to. However, pruning too has a large search space size and hence, traditionally, human expertise
has been relied upon to do pruning. But with the advent of new search techniques like deep re-
inforcement learning, we can now automate the process of pruning. In Runtime Neural Pruning,
Lin et al. (2017) demonstrate one early approach for using RL to do pruning. They use RL to do
a sub-network selection during inference. Thus, they actually don’t really prune the network, but
select a sub-network to do inference. He et al. (2018) demonstrate the first use of RL for pruning.
However, they only reward the agent at the end of an episode (sparse rewards) and don’t give it any
reinforcement at each step in the episode. This slows down the learning process of the RL agent.

We improve upon this by creating a novel training procedure that rewards the agent at each step
of the episode (dense rewards) and achieves faster convergence. Our approach is also general in
nature and can be easily adapted for different architectures. We compare and report our performance
with regards to AMC and other state-of-the-art pruning algorithms on the ImageNet dataset.

3. Pruning using Reinforcement Learning (PuRL)

This section details PuRL, our reinforcement learning method for network pruning. We formalize
network pruning as an MDP; we specify the constituent elements, along with intuitions underlying
their design.

3.1 Pruning as a Markov Decision Problem

We model the task of pruning a neural network as a Markov Decision Problem (MDP). We formulate
and construct each element of the MDP tuple i.e. 〈S,A,R, T , γ〉 to enable us to use RL for pruning.
In the below subsections, we elaborate on each of the tuple elements.

3.1.1 STATE REPRESENTATION

We represent the network state s through a tuple of features. We experiment with two different
kind of representations. The first is a simple representation scheme consisting of three features,
s = 〈l, a, p〉, where l is the index of the layer being pruned, a is the current accuracy achieved on
the test set (after retraining) and p corresponds to the proportion of weights pruned thus far. The
attributes serve as indicators of the network state. The second representation is a higher dimen-
sional representation aimed at capturing more granular information on the state of the network. It is
formulated as, s = 〈a1, p1, a2, p2, .., an, pn〉, where ai is the test accuracy after pruning layer i and
doing retraining and pi is the sparsification percentage of layer i. s is a tuple of zeros at the start of

2

LEARNING TO PRUNE DEEP NEURAL NETWORKS VIA REINFORCEMENT LEARNING

every episode. Each tuple element is updated progressively as layer i is pruned. We report results
from both state representations in the ablation experiments.

3.1.2 ACTION SPACE

The action space consists of actions where each action corresponds to an α value which decides
the amount of pruning. We use a magnitude threshold derived from the standard deviation of the
weights of a layer as our pruning criteria. We prune all weights smaller than this threshold in
absolute magnitude. The set of weights that get pruned when an Actioni(α) is taken for layer i are
given by Equation 1.

Weights Prunedi(α) = {w | |w| < ασ(wi)} (1)

where σ(wi) is the standard deviation of weights in layer i. To further reduce the search complexity,
we also experiment with increasing the step size of our actions from 0.1 to 0.2, to sample less actions
but still achieve same target pruning rates. We report results in the ablation experiments. We use the
same action space for all layers in the network i.e. α ∈ {0.0, 0.1, 0.2, · · · , 2.2}. This is in contrast
to current approaches like AMC and State of Sparsity which set a different pruning range for initial
layers, in order to prune them by a lesser amount. Our approach is hence more general in this aspect.

3.1.3 REWARD FUNCTION

Since, the RL agent learns the optimal sparsification policy based on the objective of maximiza-
tion of total reward per episode, reward shaping helps in faster convergence Ng et al. (1999). We
formulate the total reward to be an accumulation of sub-rewards depending upon test accuracy and
sparsification achieved. The reward function corresponding to a state s is given in Equation 2.
Here, A(s) and P (s) denote the test accuracy and sparsity at state s, TA and TP denote the desired
accuracy and sparsity target set by the user, and β corresponds to a fixed scaling factor of 5.

R(s) = −β(max(1−A(s)/TA, 0) + max(1− P (s)/TP , 0)) (2)

The reward design ensures that the agent jointly optimises for the desired sparsity and accuracy.

3.2 The PuRL Algorithm

We design the PuRL algorithm, to be fast and efficient, when solving the above-mentioned MDP.
The first aspect of this is the choice of a good RL agent. The second and more important considera-
tion is the rewards scheme i.e. sparse vs. dense rewards. We elaborate on each of these in the below
subsections.

3.2.1 CHOICE OF RL AGENT

To solve the MDP we choose amongst various available RL algorithms. Our primary focus is on
sample efficiency and accuracy. Deep Q-Network (DQN) Mnih et al. (2013), a form of Q-learning,
does a very fast exploration, however, it is not very stable. Through careful design of our reward
structure, we make DQN stable and hence, utilise it for doing pruning.

3

GUPTA, ARAVINDAN, KALISZ, CHANDRASEKHAR, JIE

Figure 1: A high level view of the PuRL algorithm with dense rewards. PuRL assigns a unique compression
ratio α to each layer. It then gets feedback on the test accuracy and sparsity achieved, after pruning that layer.
This is in contrast to current approaches which only give feedback at the end of pruning the whole network.
As a result, PuRL learns the optimal sparsity policy 85% faster than current approaches

3.2.2 MAKING RL FAST: DENSE REWARDS

The pruning procedure consists of pruning the weights in a layer based on their magnitude first. The
remaining weights are then retrained to get back the accuracy. Retraining is an important aspect of
this process.

By setting a different α for each layer, we try to prune away the maximum redundancy specific
to each layer. As mentioned in section 2, one way this has been done is to 1) assign alphas to each
layer 2) prune each layer and 3) retrain the pruned network in the end. While this method works, as
shown by He et al. (2018), it may not be the fastest since it does not directly ascribe accuracy to the
α of each layer. In other words, since retraining is only conducted after pruning all the layers and
not after each layer (sparse rewards), the network cannot directly infer how accuracy is linked to α
of each layer. This might elongate the training period since more samples are required to deduce
effect of α of each layer to the network’s final accuracy.

We try to mitigate this by giving rewards after pruning each layer as opposed to giving them at
the end of the episode (dense rewards). We retrain the network after pruning each layer to get a test
accuracy value. We do retraining by using only a small training set of 1000 images in the case of
ImageNet experiments, so as not to add training overhead. We measure accuracy after each layer is
pruned and pass it to the agent through the reward and state embedding. As mentioned in section
4, this method of giving dense rewards helps achieve convergence much faster compared to giving
sparse rewards. A high level view of the PuRL algorithm is presented in Figure 1.

4. Experiments & Analysis

In this section, we describe computational experiments comparing PuRL to ablated variants, as well
as baseline and state-of-the-art methods. Our primary goal was to clarify the effect of different
design choices (described in section 4.1) to the pruning performance. Secondly, we demonstrate

4

LEARNING TO PRUNE DEEP NEURAL NETWORKS VIA REINFORCEMENT LEARNING

that PuRL achieves comparable results to state-of-the-art while using a 85% shorter RL training
cycle by testing it on CIFAR-100 and ImageNet datasets and different architectures like ResNet-
50, MobileNet-V2 and WideResNet-28-10 (refer to section 4.2 and B.3). Lastly, we showcase
the generalization ability of PuRL by using the exact same settings to prune all architectures on
ImageNet.

4.1 Understanding the RL Design Space

We conduct a series of ablation experiments to understand what components of the RL design
space help make a good RL agent. The choices that give superior result over the baseline are then
eventually used. Due to space constraints, we elaborate on some choices in Appendix B.1. We
experiment on the ResNet-50 architecture trained on the CIFAR-10 dataset. We set a target sparsity
of 60% and target accuracy of 95% for our agent (via the reward function), in all experiments.

Experiment State Action Reward Space Accuracy% Sparsity%

Space Size Prune
Penalty

Acc.
Penalty

Acc.
Upside

Cubic
Upside

Sparse Rewards 3 0.1 X X 68.0±13.9 66.1±12.7
Dense Rewards (Base-
line) 3 0.1 X X 91.8±2.0 70.1±2.3

Baseline + Magnitude
Target 3 0.1 X X 86.6±3.9 60.3±0.8

Baseline + Reward 2 3 0.1 X X X 91.4±0.7 68.3±2.2
Baseline + Reward 3 3 0.1 X X X X 90.7±0.2 69.4±2.9
Baseline + Action 2 3 0.2 X X 92.2±0.5 70.6±0.6
Baseline + State 2 108 0.1 X X 78.9±8.6 72.2±4.5

Table 1: Ablation results on perturbing State, Action and Reward spaces for the PuRL algorithm on the
CIFAR-10 dataset. Error denotes standard error as measured on 3 trials. Dense rewards outperform sparse
rewards by a huge margin on accuracy (rows 1 & 2). Stepping the action space by 0.2 (row 6) leads to a
Pareto dominant solution over the baseline (row 2)

4.1.1 ARE DENSE REWARDS BETTER THAN SPARSE REWARDS?

We compare sparse rewards i.e. rewards given to the agent only at the end of the episode and dense
rewards i.e. rewards at each step of the episode, and try to answer which is better. Referring to
Table 1, we compare sparse rewards (row 1) to dense rewards (row 2). Our dense rewards approach
outperforms the sparse rewards by a huge margin, 4% on sparsity and 24% on accuracy. Dense
rewards help the agent learn much faster by guiding the agent at each step instead of only at the end
of the episode. We then use dense rewards as our baseline to conduct all further ablations.

4.1.2 ARE FEWER ACTIONS BETTER?

In the experiment using Action 2 (row 6), we modify the action space to cover the same breadth of
actions but have lesser number of actions. So the range remains the same but the step size between
the actions increases. So instead of the actions being (0.0, 0.1, .. , 2.2), we now have (0.0, 0.2,
.. , 2.2). We see that this experiment Pareto dominates the baseline i.e. it exceeds the baseline in

5

GUPTA, ARAVINDAN, KALISZ, CHANDRASEKHAR, JIE

Method ResNet-50

Sparsity Starting Acc. Pruned Acc. RL Episodes Fine-tuning
Epochs

State of Sparsity 80% 76.69% 76.52% NA 153
AMC 80% 76.13% 76.11% 400 120
PuRL 80.27% 76.13% 75.37% 55 120

Table 2: We compare PuRL against the global state-of-the-art pruning results, not just for RL but for all
pruning algorithms, and report the Top-1 accuracy performance on ImageNet. PuRL uses 85% less RL
episodes than AMC.

both sparsity and accuracy. This is likely because with less number of actions to try, the agent is
able to sample each action more and gain better knowledge of each action vis-a-vis the resultant
performance metrics. Hence, it picks out better actions i.e. learns a better pruning policy given a
particular layer in the network.

4.2 Generalization across ImageNet

To evaluate the performance of our agent on large scale tasks we experiment with the ImageNet
dataset. We prune a pretrained ResNet-50 model using an iterative pruning scheme as mentioned
in Han et al. (2015) to preserve accuracy by providing gradual pruning targets for the network. We
compare our performance with the state-of-the-art pruning algorithms AMC: AutoML for Model
Compression He et al. (2018) and State of Sparsity Gale et al. (2019). We prune more than 80% and
achieve comparable accuracy to state-of-the-art methods (see Table 2 for full results).

Furthermore, PuRL finishes each RL training cycle in just 55 episodes, compared to 400 episodes
required by AMC, due to the dense reward training procedure. We also conduct experiments on
other state-of-the-art efficient architectures like MobileNet-V2 Sandler et al. (2018) and EfficientNet-
B2 Tan and Le (2019). Referring to supplementary document, PuRL achieves more than 1.5x
sparsity compared to AMC without much loss in accuracy. At the same time, PuRL achieves this
performance on MobileNet-V2 without any changes in the underlying hyper-parameters compared
to ResNet-50. Thus, PuRL can be easily used across architectures without the requirement of mod-
ifying the underlying MDP.

5. Conclusion

In this paper, we present PuRL - a fully autonomous RL algorithm for doing large scale compression
of neural networks. By improving the rewards structure compared to current approaches, we shorten
the training cycle of the RL agent from 400 to 55 episodes. We further do a detailed set of ablation
experiments to determine the impact of each MDP component to the final sparsity and accuracy
achieved by the agent. We achieve results comparable to current state-of-the-art pruning algorithms
on the ImageNet dataset, sparsifying a ResNet-50 model by more than 80% and achieving a Top-
1 accuracy of 75.37%. We also benchmark PuRL on other architectures like WideResNet-28-10
including already efficient architectures like MobileNet-V2 and EfficientNet-B2. Lastly, our al-
gorithm is simple to adapt to different neural network architectures and can be used for pruning
without a search for each MDP component.

6

LEARNING TO PRUNE DEEP NEURAL NETWORKS VIA REINFORCEMENT LEARNING

Acknowledgments

This research is supported by the Agency for Science, Technology and Research (A*STAR) under
its AME Programmatic Funds (Project No.A1892b0026 and No.A19E3b0099).

References

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pages 1135–
1143, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 784–800, 2018.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/∼kriz/cifar.html.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 2181–2191. Curran Associates, Inc., 2017.
URL http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. NIPS Deep Learning
Workshop, 2013.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, volume 99, pages 278–287, 1999.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4510–4520, 2018.

7

http://www.cs.toronto.edu/~kriz/cifar.html
http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf

GUPTA, ARAVINDAN, KALISZ, CHANDRASEKHAR, JIE

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. 57th Annual Meeting of the Association for Computational Linguistics (ACL),
2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. Proceedings of the 36th International Conference on Machine Learning, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine Vision Confer-
ence (BMVC), pages 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi:
10.5244/C.30.87. URL https://dx.doi.org/10.5244/C.30.87.

8

https://dx.doi.org/10.5244/C.30.87

LEARNING TO PRUNE DEEP NEURAL NETWORKS VIA REINFORCEMENT LEARNING

Appendix A. PuRL Algorithm

Algorithm 1 describes a DQN procedure which learns to select the sparsity threshold for each layer
in the model. At the start of each episode, the original model with pre-trained weights is loaded.
The agent then takes an action and the layer is pruned by that amount. The model is then retrained
for one epoch on a small subset of training data (1000 images out of the 1.2million images in
ImageNet). After that, the validation accuracy is calculated, to effect the state transition and the
reward is then calculated using the validation accuracy and the pruning percentage. The training is
done for max episodes episodes. Once, training is completed, the model is pruned using the trained
agent and then fine-tuned on the full ImageNet dataset.

Algorithm 1 The PuRL Algorithm

1: Stage 1: Train DQN agent
2: episodes← 0
3: while episodes ≤ max episodes do
4: model← load original model
5: for each layer t in the model do
6: at← Sample action from DQN agent
7: Prune layer t using at
8: Retrain model on small subset of data for 1 epoch
9: Calculate reward rt and new state st based on resultant sparsity and accuracy achieved

10: Return rt and st to agent
11: episodes← episodes + 1
12:

13: Stage 2: Prune and fine-tune model
14: model← load original model
15: Prune model using the trained DQN agent (averaged over 5 episodes)
16: Fine-tune model
17: return model

Appendix B. Experimental Results

B.1 Understanding the RL Design Space

B.1.1 IS ABSOLUTE MAGNITUDE BETTER THAN STANDARD DEVIATION?

Referring to the Magnitude Target based ablation Table 1 (row 3), we compare absolute magnitude
based pruning to standard deviation based pruning (Section 3). For absolute magnitude, we set a
sparsity target for a layer and then remove all small weights until we hit the desired sparsity level.
As we observe, both the sparsity and accuracy results are lower in this case as compared to our
baseline experiment (dense rewards). Thus, standard deviation based pruning is better.

B.1.2 DOES REWARD SHAPING HELP?

In the experiments using Reward 2 and Reward 3 (Table 1), we investigate if reward shaping can help
the agent achieve higher accuracy. For Reward 2, we allow the agent to receive positive rewards if it

9

GUPTA, ARAVINDAN, KALISZ, CHANDRASEKHAR, JIE

Experiment State Action Reward Space Accuracy Sparsity

Space Size Prune
Penalty

Acc.
Penalty

Acc.
Up-
side

Cubic
Up-
side

Low Dimensional
State 3 0.2 X X 47.6 ± 2.3 87.4 ± 1.3

Higher Dimensional
State 108 0.2 X X 51.0 ± 0.3 82.0 ± 2.0

Table 3: Follow-up experiment on perturbing the State space on the ImageNet dataset. Error denotes standard
error as measured on 3 trials. The higher dimensional state space (108 dimensions) performs better than the
simple low dimensional state space (3 dimensions)

surpasses the given accuracy target (Equation 3). This is in contrast to the baseline reward function
in which there is a cap on the maximum reward that the agent can achieve i.e. zero.

R2 = −S((A/TA − 1) + max(1− PP/TPP , 0)) (3)

For Reward 3, we build on Reward 2 and give a cubic reward to the agent. The agent now sees cubic
growth in positive reinforcement as it approaches and surpasses the accuracy target (Equation 4).
Hence, by taking the same step size towards accuracy improvement as compared to Reward 2, the
agent now gets rewarded more for it.

R3 = −S(((A/TA)3 − 1) + max(1− PP/TPP , 0)) (4)

The performance of both these functions is close to the baseline (dense rewards), but the baseline
still outperforms them. The added complexity of these functions might require the agent to sample
more steps to learn them well. Hence, given a tight training budget, the baseline reward function
performs well.

B.1.3 IS MORE INFORMATION BETTER FOR THE AGENT?

In the last experiment with State 2 (Table 1), we vary the state space and make it 108 dimensional
instead of 3 dimensional. The idea here is to give the agent more information on the state represen-
tation (See Section 3 for details). We see that in this experiment, the agent achieves less accuracy
than the baseline however, prunes more than it. Hence, none of the experiments Pareto dominate
each other and its inconclusive to determine which one is better. To get more evidence on this,
we carry out a further ablation on the ImageNet dataset. Referring to Table 3, we see that the 108
dimensional state outperforms the 3 dimensional state. Hence, more information is indeed better
and we use this feature in the final configuration.

B.2 Scaling PuRL to CIFAR100

We first experiment with PuRL on the WideResNet-28-10 architecture Zagoruyko and Komodakis
(2016) on the CIFAR-100 Krizhevsky et al. dataset. We compare it to a uniform pruning baseline
where every layer is pruned by the same amount to achieve a target sparsity of 93.5%. PuRL
outperforms the baseline in Table 4 on both the sparsity and final accuracy.

10

LEARNING TO PRUNE DEEP NEURAL NETWORKS VIA REINFORCEMENT LEARNING

Method WideResNet-28-10

Sparsity Top-1 Acc.
Pre-Pruning

Top-1 Acc.
Post-Pruning

Baseline 93.50% 82.63% 72.42%
PuRL 93.90% 82.63% 80.63%

Table 4: Comparison of the PuRL algorithm to a uniform pruning baseline on the WideResNet-28-10 archi-
tecture on CIFAR-100 dataset. PuRL beats the baseline by a huge margin

Method MobileNet-V2

Sparsity Flops
reduction

Top-1 Acc.
Pre Pruning

Top-1 Acc.
Post Pruning

AMC Not
reported

30% 71.8% 70.8%

PuRL 43.3% 47.9% 71.9% 69.8%

Table 5: Comparison of PuRL to AMC for the MobileNet-V2 architecture.

Method EfficientNet-B2

Sparsity Top-1 Acc.
Pre Pruning

Top-1 Acc.
Post Pruning

Baseline 59.0% 79.8% 68.9%
PuRL 59.5% 79.8% 74.5%

Table 6: Comparison of PuRL to uniform pruning baseline on the state-of-the-art EfficientNet-B2 architecture
on the ImageNet dataset. PuRL outperforms the baseline on both the sparsity and accuracy

B.3 Generalization across ImageNet

We also conduct experiments on other state-of-the-art efficient architectures on ImageNet to see
whether our pruning algorithm can make these architectures even more sparse. We experiment on
MobileNet-V2 Sandler et al. (2018) and EfficientNet-B2 Tan and Le (2019). Referring to Table 5,
PuRL achieves more than 1.5x sparsity compared to AMC without much loss in accuracy.

At the same time, PuRL achieves this performance on MobileNet-V2 without any changes in
the underlying hyper-parameters compared to ResNet-50. Thus, PuRL can be easily used across
architectures without the requirement of modifying the underlying MDP. For EfficientNet-B2, Table
6, we compare PuRL to a uniform pruning baseline. PuRL outperforms the baseline on both sparsity
and final accuracy, achieving an accuracy improvement of more than 5%. In this case as well, we
set the exact same hyper-parameters and MDP setting as that of ResNet-50 and MobileNet-V2.
However, since Efficient-B2 is very deep, having 116 layers compared to 54 in ResNet-50, we do
early-stopping of the RL episode, to make the training even faster. We stop the episode if the test
accuracy drops to less than 0.1% and move on to the next episode.

11

	Introduction
	Related Work
	Pruning using Reinforcement Learning (PuRL)
	Pruning as a Markov Decision Problem
	State Representation
	Action Space
	Reward Function

	The PuRL Algorithm
	Choice of RL Agent
	Making RL Fast: Dense Rewards

	Experiments & Analysis
	Understanding the RL Design Space
	Are Dense Rewards better than Sparse Rewards?
	Are fewer Actions better?

	Generalization across ImageNet

	Conclusion

	PuRL Algorithm
	Experimental Results
	Understanding the RL Design Space
	Is Absolute Magnitude better than Standard Deviation?
	Does Reward Shaping help?
	Is more information better for the agent?

	Scaling PuRL to CIFAR100
	Generalization across ImageNet

