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Abstract

Ensembles constitute one of the most widely used approaches in classification tasks, for
their ability to mitigate the weaknesses of several models while making a more robust and
powerful prediction tool. Evolutionary Directed Graph Ensembles (EDGE) is a frame-
work for evolving ensembles of models represented as directed acyclic graphs, where the
connections between nodes represent the impact of a node’s prediction in the successor’s
prediction. The Directed Graph Ensembles (DGEs) have their topology evolved, with the
connections bootstrapped using a sample of the training data. Our work extends EDGE
by evolving the weights of the connections between nodes of a DGE using Adam, an algo-
rithm for gradient-based optimization. We also automatically decide, at each generation,
whether to evolve the topology or the weights, using the Kolmogorov–Smirnov test. Two
sets of tests were devised to evaluate this work, the first comparing the results directly with
the ones from the EDGE framework. In contrast, the second compares the results with a
baseline consisting of Decision Trees, Random Forests, and Gradient Boosting classifiers on
a compilation of datasets from the KEEL dataset repository. The results for the first test
set show that our implementation versus the original EDGE improves accuracy in three
datasets by 4.2 percentage points and lagging 0.20 percentage points in one. The base-
line comparison shows our work to achieve the pique accuracy in 20 out of the 21 tested
datasets, with gains between 1 and 15 percentage points and the only decline at around
0.10 percentage points.

1. Introduction

In recent years there have been interesting developments in ensemble learning, making
it ubiquitous in machine learning. Specifically, Random Forests are one of the de facto
methods in machine learning classification tasks (Polikar, 2012). In essence, ensembles have
base models that are trained independently of each other, and the predictions of all models
are then combined to form the final prediction of the ensemble as a whole (Dietterich, 2000;
Russell and Norvig, 2009).

In the literature, one approach to ensemble learning that has shown satisfactory results
is the use of Evolutionary Algorithms (Sylvester and Chawla, 2006; Gagné et al., 2007; Kim
and Cho, 2008). Evolutionary Algorithms stem from the concept of evolving populations of
individuals, trying to incrementally improve the population at each generation according to
some fitness function. This domain is combined with ensemble learning in various ways, one
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of the most adopted being to have an evolutionary meta-model choose the weights or the
base models themselves (Kwon and Moon, 2004; Chandra and Yao, 2006). The ensemble is
thus evolved generation after generation to increase predictive performance.

Evolutionary Directed Graph Ensembles (EDGE) is a machine learning tool based on the
evolution of a population of ensembles where each ensemble is represented as a weighted
graph (Fontes and Silva, 2019). Evolutionary Algorithms are used to evolve ensembles
of models arranged in a directed acyclic structure. The weights of connections between
nodes map the strength each node gives its predecessors’ predictions. One of EDGE’s
shortcomings, as it was presented, is that it only evolves the topology of the graph ensembles,
keeping the weights between nodes static.

This work tackles the aforementioned shortcoming, by evolving the weights attributed
to the predecessors of any given node. This work also introduces a heuristic to chose, at
the start of each generation, whether to evolve the topology or the weights of the graph
ensembles. We use an optimizer to update the weights between nodes in the graph with
a decision heuristic based on a nonparametric statistic test to present what is, arguably,
an improved implementation of EDGE. The proposed development is tested and compared
with previous results from EDGE, as well as with a collection of baseline models in several
different datasets.

The rest of this paper is organized as follows. In Section 2, we present a brief overview
of EDGE and a more detailed description of our contribution. The experimental setup
and results are discussed in Section 3. Finally, we conclude this work and mention future
developments in Section 4.

2. EDGE and Our Contribution

In EDGE, every graph ensemble is referred to as a Directed Graph Ensemble (DGE) and
instantiated as a directed acyclic graph. Every node in the graph has a Component Model
(CM), an instance of a model used for prediction, such as a Decision Tree or Random Forest.
Every node of the graph computes prediction P based on its predecessors and its CM. The
prediction of node i, Pi, for a given data point Xj , is calculated according to the formula:

Pi(Xj) = α× predi(Xj) + (1− α)× ppi(Xj)

‖ppi(Xj)‖1
where

ppi(X) =
∑

n∈pr(i)

Pn(X) ◦Wn
i

and ◦ represents the Hadamard product; α represents a node’s confidence in its own
predictions; predi(X) denotes the prediction made by CMi; pr(i) denotes the set of prede-
cessors of node i; ppi(X) represents the aggregated prediction made by the predecessors of
i; Wn

i represents the weight vector of node i in its predecessor, node n. The inner workings
of EDGE make use of an auxiliary data structure, the Reservoir, which is tasked with hav-
ing a configuration space for a given set of models. At runtime, it can supply EDGE with
the necessary CMs. Every generation, the graph ensembles that constitute the population
are evaluated on a portion of the training data and given a fitness value, representing how
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apt each individual is. EDGE defines fitness as the accuracy with class-balanced weights.
The distribution of fitness values of a population at any given generation represents how
well the generation is as a whole. A full description of the original formulation of EDGE is
presented by Fontes and Silva (2019).

The main contribution of this work is the implementation of a strategy to evolve the
weights between nodes in the graph ensembles. The strategy consists of using Adam, a
gradient-based optimization algorithm (Kingma and Ba, 2015), to update the weights of
the graph ensembles, namely the previously mentioned parameters W and α. The gradients
are computed with respect to a loss function that we wish to minimize. The loss function
used was the sum of mean squared error (MSE) for each class probability value across
a subset of data. It was assumed that, at each generation, only one type of evolution
step is performed – topology or weight evolution – thus we devised a heuristic based on the
statistical comparison between two probability distributions. At the start of each generation,
the most suitable type of step is chosen. In the scheme of EDGE’s internal process, our
contribution can be seen as the red-colored components in Fig. 1.

DGE
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Figure 1: Inner process of EDGE, with our contribution outlined.

The decision process for the evolution step was made using the Kolmogorov–Smirnov test
(K-S test) to decide whether to switch the type of evolution step or not (Conover, 1980).
At each generation after the first, we use the K-S two-sample test to ascertain whether
two distributions of fitness values, the current generation’s and the previous’, differ from
one another. The devised heuristic always starts with a topology step. In subsequent
generations, if we reject the null hypothesis that the two fitness distributions come from
the same distribution, the evolution continues with the previous type of step, otherwise
switching to the other type. The intuition behind this heuristic is that we keep performing
the same step type if, following the K-S test, it continues to produce distributions of the
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fitness values different from the previous generation, with the assumption that whenever
we have different distributions, the population as a whole has improved.

3. Experimental Results

To evaluate our contribution, two sets of tests were designed. The first is intended to
compare this version against the previously introduced version of EDGE. For a more natural
distinction between the two different implementations, we refer to ours as Weighted-EDGE
(W-EDGE). The second type was designed to compare this work against a baseline of
models, on a bigger dataset pool. Both test sets and their results are discussed next.

3.1 W-EDGE vs EDGE

In this test set, we used the same four datasets used by Fontes and Silva (2019): the Anuran
dataset, where feature variables derived from their callings are used to predict the species of
anuran (Colonna et al., 2017); the MNIST dataset, for its widespread use as a benchmarking
tool (Deng, 2012); an appliances energy forecasting dataset (Candanedo et al., 2017); and
a parking lot occupancy dataset introduced by the authors in earlier works (Fontes and
Silva, 2018)1. The parameters of W-EDGE matched with those of EDGE (Table A.1). The
results can be seen in Table 1, where bold text outlines the best results.

Table 1: Comparison between EDGE and W-EDGE. Results from EDGE are the best re-
sults presented, per dataset. Results from W-EDGE are the average of 3 runs and
values between parentheses are the best obtained.

EDGE W-EDGE

Dataset Accuracy F1-Score Accuracy F1-Score

MNIST 97.78 97.78 97.93 (98.34) 97.93 (98.34)

Anuran 99.17 99.16 98.80 (98.94) 98.79 (98.94)

Appliances 86.27 84.29 93.37 (93.96) 93.26 (93.74)

Parking Lot 87.68 87.10 93.28 (93.81) 93.24 (93.75)

Of the 4 datasets, W-EDGE improved on 3, 2 of them by a significant margin. In the
significantly dominated datasets, accuracy was improved by around 6 percentage points,
whereas the dataset that EDGE dominated has a difference of only 0.2 percentage points.
The two datasets in which W-EDGE improved by a bigger margin are time series with
a discretized target variable. We argue that a possible explanation is the robustness of
evolving both topology and weights that allows capturing patterns, even in different types
of problems.

1. Dataset available online from https://github.com/xfontes42/parking_lot_ds
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3.2 W-EDGE vs Baseline

Baseline models were defined using Decision Tree models, Random Forests and Gradient
Boosting classifiers, following the configuration space presented in Table A.2. We chose these
three types of models for baselines and their specific configuration because they represent
the models and approximate parameters that EDGE used as CMs, arguing for a fairer
comparison. The configuration space of W-EDGE is disclosed in Table A.3. We used the
Anuran dataset mentioned in the previous section as a link to it and because of its size and
20 datasets from the KEEL Dataset Repository (Alcalá-Fdez et al., 2011). Each dataset’s
main characteristics are showcased in Table A.4.

The division between train and test was made randomly, with the test set being 20% of
the whole data, and the remaining 80% being further split 60-20 into training the CMs and
training the graphs, respectively.

Table 2: Comparison between baseline and W-EDGE. Only the best results for each are
shown.

Dataset Name Baseline W-EDGE

Accuracy F1-Score Accuracy F1-Score

Anuran 98.33 98.32 99.17 99.16

H9-car-good 99.71 99.71 99.88 99.89

H9-poker-8-9 vs 5 98.80 98.20 99.61 99.58

H9-winequality-white-9 vs 4 100.00 100.00 100.00 100.00

H9-zoo-3 100.00 100.00 100.00 100.00

L9-haberman 82.26 80.40 89.54 89.14

L9-iris0 100.00 100.00 100.00 100.00

L9-new-thyroid1 97.67 97.60 100.00 100.00

L9-newthyroid2 100.00 100.00 100.00 100.00

ST-appendicitis 90.91 89.63 100.00 100.00

ST-haberman 75.81 74.19 89.54 89.37

ST-hepatitis 100.00 100.00 100.00 100.00

ST-iris 96.67 96.66 100.00 100.00

ST-monk-2 100.00 100.00 100.00 100.00

ST-newthyroid 95.35 95.60 100.00 100.00

ST-ring 95.68 95.67 97.46 97.46

ST-shuttle-c2-vs-c4 100.00 100.00 100.00 100.00

ST-tae 74.19 73.85 89.47 89.47

ST-titanic 79.37 76.48 79.29 76.24

ST-wine 100.00 100.00 100.00 100.00

ST-zoo 95.24 93.12 100.00 100.00
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The results can be examined in Table 2, all of them being the best results aggregated
by the baseline models and the configurations of W-EDGE.

Overall the results are very positive, with our implementation improving the accuracy
of 12 of the 21 datasets, maintaining the performance in 8 of the 21 datasets, and only
losing by a small margin (0.1 percentage points) in one case. On the datasets that were
improved, the improvement ranged from 0.17 to 15.28 percentage points, with an average
5.25 percentage point increase in accuracy. The perfect accuracy values should be taken
critically, showcasing perhaps that some datasets are too simple. W-EDGE achieved good
results, regardless of the Imbalance in the datasets, which also hints at its ability to be robust
against skewed data. We consider these results to support the promise of our contribution
to the further development of a framework that automates the process of model choice and
the evolution of ensembles.

4. Conclusion and Future Work

EDGE is a tool for ensemble evolution that evolves a population of ensembles where each
ensemble is represented as a directed graph. An auxiliary data structure is used to supply
EDGE with CMs that are the nodes of the graph ensembles. This method allows the
exploration of an enormous space state for the possible CMs used and possible good pairings
of models, having only to setup the most basic parameters.

In this work, we set our focus on improving this existing tool with a method for updating
the weights, using the Adam optimization algorithm, and a decision mechanism based on
the KS-test of equality between probability distributions to choose whether to evolve the
topology or the weights at each generation of the ensembles’ evolution. Allowing the weights
of the graphs to be updated, as well as the decision of the evolution step, we believe data
can be better used to learn the weight each node should have in its predecessors and in
itself.

Our implementation, dubbed W-EDGE, constitutes an improvement over the standard
EDGE implementation. Two experimental setups support the argument, the first being
that W-EDGE improved on 75% the datasets. The improvement was more than one order
of magnitude bigger than the decline (4.2 percentage point increase versus 0.2 percentage
points decrease in accuracy). The other setup where W-EDGE was compared against a
baseline of models on 21 different datasets showed W-EDGE to perform worse on only
one dataset, by a relatively low margin of 0.10 percentage points, while maintaining or
improving in the other datasets by as much as 15 percentage points.

For future work, attention is to be given in running experiments with more configurations
and different types of baseline models, as well as choosing a more significant number of
datasets. The weight update can be a subset of the topology evolution instead of a different
type of step altogether. In short, we might not even consider weight updating as changing
from one generation to another, effectively combining both types of evolution steps. Since we
are evolving the weight each node gives its predecessors and itself, we can explore heuristics
that force the topology to be changed upon specific triggers, like a low self-confidence of a
node triggering its removal.
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Appendix A. Configurations for the Experimental Results Section

A.1 Configuration values for W-EDGE and EDGE comparison

NA (Not Applicable)

Parameter W-EDGE EDGE

NElite 2 2

NBottom 0 0

MutationRate 0.1 0.1

PopSize 20 20

NGenerations 100 100

Adam Learning Rate 0.001 NA

Optimizer Steps 2 NA

K-S p-value 0.5 NA

A.2 Configuration space of baseline

Parameter Random Forest Decision Tree Gradient Boosting

Training examples (%) 80 80 80

Estimators 40, 100 - 40, 100

Criterion Gini Impurity Gini Impurity Friedman MSE

Max Depth None None 3

Max Features Sqrt All Features All Features

Learning Rate - - 0.001, 0.1

Loss - - Deviance

Splitter - Best -

A.3 Configuration space of W-EDGE

Parameter Value

NElite 1

NBottom 0

PopSize 10, 20, 40

NGenerations 10, 20, 50

AdamLR 0.001

OptimizerSteps 2
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A.4 Dataset Description

The different prefixes (ST - standard, H9 - higher than 9, L9 - lower than 9) denote the
imbalance ration category of the dataset. The choice of datasets from different imbalance
ratio categories was to simulate real-world data problems and gather a larger set of datasets.

Dataset Name No. Samples No. Features No. Target Classes

Anuran 7195 22 10

H9-car-good 1728 6 2

H9-poker-8-9 vs 5 2075 10 2

H9-winequality-white-9 vs 4 168 11 2

H9-zoo-3 101 16 2

L9-haberman 306 3 2

L9-iris0 150 4 2

L9-new-thyroid1 215 5 2

L9-newthyroid2 215 5 2

ST-appendicitis 106 7 2

ST-haberman 306 3 2

ST-hepatitis 80 19 2

ST-iris 150 4 3

ST-monk-2 432 6 2

ST-newthyroid 215 5 3

ST-ring 7400 20 2

ST-shuttle-c2-vs-c4 129 9 2

ST-tae 151 5 3

ST-titanic 2201 3 2

ST-wine 178 13 3

ST-zoo 101 16 7
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A.5 Further Experiments - Dataset Description

Similar to Table A.4, for new datasets used in further experiments.

Dataset Name No. Samples No. Features No. Target Classes

ST-saheart 462 9 2

ST-led7digit 500 7 10

ST-balance 625 4 3

L9-pima 768 8 2

ST-mammographic 830 5 2

ST-vehicle 846 18 4

ST-german 1000 20 2

ST-flare 1066 11 6

H9-flare-F 1066 11 2

ST-contraceptive 1473 9 3

ST-yeast 1484 8 10

L9-yeast1 1484 8 2

H9-abalone19 4174 8 2

ST-yeast-1-4-5-8 vs 7 693 8 2

H9-winequality-red-4 1599 11 2

H9-abalone-19 vs 10-11-12-13 1622 8 2

ST-marketing 6876 13 9

ST-cleveland 297 13 5
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A.6 Further Experiments - Results

Comparison of accuracy between Baseline and W-EDGE in the datasets from Table A.5.

Dataset Name Baseline W-EDGE

ST-saheart 70.97 87.16

ST-led7digit 75.40 76.67

ST-balance 86.72 93.72

L9-pima 77.27 91.58

ST-mammographic 86.75 89.24

ST-vehicle 78.00 90.23

ST-german 77.00 90.07

ST-flare 73.55 81.93

H9-flare-F 95.98 97.06

ST-contraceptive 55.86 78.61

ST-yeast 63.43 83.38

L9-yeast1 80.47 89.49

H9-abalone19 99.28 99.74

ST-yeast-1-4-5-8 vs 7 96.40 98.27

H9-winequality-red-4 96.56 98.79

H9-abalone-19 vs 10-11-12-13 98.15 99.18

ST-marketing 36.12 67.70

ST-cleveland 62.00 82.55
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