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Abstract

Detecting and signaling when a machine learning algorithm, such as a classifier, makes er-
roneous predictions is of crucial importance for the development of trustworthy AI systems.
At the same time, most work on uncertainty estimation tends to be limited to a specific type
of predictor or only considers regression tasks. In this work, we present a flexible method
for estimating uncertainty in classification procedures using several, classifier-independent
measures that act as proxies for the uncertainty associated with predictions. Our approach
yields promising results on a variety of benchmark datasets and can be used alone or in
combination with the uncertainty estimates produced by the classifier.
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1. Introduction

As AI-based systems are becoming an increasingly important tool for individuals and prac-
titioners within various domains and use contexts (Barr and Feigenbaum, 2014), there need
to be mechanisms in place that assess the reliability of such systems. This is important, as
even the best machine learning methods are expected to produce imperfect results. Common
approaches to evaluating machine learning algorithms include holdout and cross-validation
strategies, where the learned predictor is applied to and validated on a previously unseen
partition of the data set at hand. However, once a system has been deployed, such test-
ing mechanisms no longer guarantee reliability. For example, there might be cases, where
incoming data deviates from the distribution of the data the system has been trained on
(Gama et al., 2004). At the same time, it may be difficult to verify the correctness of predic-
tions when there is no access to ground truth. If a classifier produces incorrect predictions
and there is no way to identify such errors, this could have dangerous consequences. For
example, a classifier used in medical diagnostics producing an erroneous output might cause
serious physical harm; furthermore, it could foster distrust in AI-based technologies in gen-
eral. Detecting and signaling when a classifier is in error is therefore a crucial component
of the development of trustworthy AI systems.
There are various causes of classification error. For example, individual outliers are often
misclassified (Abe et al., 2006). Border points, that is, points close to an inter-class bound-
ary, also tend to cause classification error (Brighton and Mellish, 2002). Further potential
sources of error could be named; these and others motivate the goal of this work: Devel-
oping measures that (i) can be used to identify data points that are likely to be
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misclassified (i.e., that the predictor should be uncertain about) and (ii) are indepen-
dent of the classification algorithm being used, which we also refer to as our base
classifier. The latter point is motivated by two observations. Firstly, most previous work on
uncertainty estimation is rather inflexible as it tends to be limited to a specific type of base
classifier, for example deep neural networks (Mandelbaum and Weinshall, 2017; Kendall and
Gal, 2017; Hendrycks and Gimpel, 2016). In contrast, when training an AutoML system,
many machine learning algorithms are usually considered and selected according to their
ability to solve the task at hand. Our method for estimating uncertainty therefore does
not link to any specific algorithm, but seeks to be generically applicable. Secondly, pre-
vious work on uncertainty estimation that goes beyond deep models focuses on regression
rather than classification tasks (Liu et al., 2019; Duan et al., 2019). One explanation for
this is that “probabilistic estimation is already the norm in classification problems” (Duan
et al., 2019). However, this statement is somewhat problematic. For example, a random
forest classifier determines probability as the fraction of trees in a forest that vote for a
certain class, although this has been shown to not always produce reasonable estimates for
uncertainty (Olson and Wyner, 2018). To the best of our knowledge, there is no work that
analyses the ability of such probability scores to capture uncertainty.
In brief, the main contributions of our work presented in the following are: (i) Several
measures that act as proxies for classifier uncertainty and capture data point characteris-
tics such as class likelihood or overlap, which may cause classification error; (ii) promising
results when using these measures for the prediction of classification error across a wide
range of datasets, indicating a significant relative improvement over the baseline by 55%.

2. Related Work

When we are to model uncertainty of a classifier, we implicitly model its performance. That
is, we are interested in the question of whether we can we predict if a trained classifier will
produce an error on a particular held-out test example. This stands in contrast to methods
that aim at identifying erroneous data instances in the training set (John, 1995; Brodley
and Friedl, 1999). While such approaches can improve the quality of the training data at
hand, they do not provide mechanisms to deal with misclassification of previously unseen
data points, once a trained classifier has been deployed.
The question of whether we can predict classification error on an unseen data instance can
be placed within the context of empirical performance modeling. An empirical performance
model is a model that predicts the performance of algorithms on previously unseen input,
including previously unseen problem instances. Such models can and have been used to,
for example, predict the running time distribution of an unseen algorithm configuration
on a given problem instance (Hutter et al., 2014; Eggensperger et al., 2018). The main
idea behind these models is to empirically learn a function that maps properties of the
input, i.e., the problem instance or data point, to the desired performance metric. Against
this background, it is not surprising that empirical performance models have also been
used to predict the expected accuracy of a given algorithm on an unseen dataset, as done
in work by Garcia et al. (2018). Here, the task is to predict the accuracy of different
classifiers and recommend the best classifier to use for a particular classification problem,
i.e., dataset. Their work builds upon the idea of meta-learning (Brazdil et al., 2008) and
maps global dataset features to the predictive performance of the classifiers. We deploy a
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somewhat similar framework, in which we map characteristics of a single data instance to
the predictive performance of a given classifier.
The idea of mapping data point attributes to the predictive accuracy of a classifier is not
entirely new and has previously been introduced in the form of grading classifiers (Seewald
and Fürnkranz, 2001). Here, data instances are labeled with predictions that have been
marked as correct or incorrect. Subsequently, these labels are used as targets for a meta-
classifier that predicts when a given base classifier will produce incorrect results. While
we also ‘grade’ instances at the base level, we do not use the data point attributes as our
training corpus, but develop features, i.e., uncertainty measures, specifically tailored for
capturing potential sources of classification errors.

3. Methodology

The goal of this work is to learn a meta-classifier that can predict, based on a set of
uncertainty measures whether an instance will be subject to classification error or not.
This meta-classifier will generally be referred to as the uncertainty model.

3.1 General Framework

Training the Base Classifier. We start by randomly splitting each dataset into train-
ing, validation and testing partitions; the partition sizes are 56%, 19% and 25% of the
full dataset, respectively. The test set remains untouched until we test our system for un-
certainty prediction. After splitting the data, we train a base classifier using an AutoML
approach; more specifically, we employ the auto-sklearn package (Feurer et al., 2015). All
hyperparameters are set to their default values, but we limit the search space by only in-
cluding random forest and gradient boosting classifiers. Thereby, we reduce computational
expenses, while still achieving good performance on almost every dataset. The time limit
is set to 7200 seconds per task. Next, we use the base classifier to generate predictions for
examples in the set. Subsequently, we compare these predictions to the ground truth labels
and produce a new, binary label indicating whether an instance has been correctly classified
or not. This binary label forms the new target class labels for the following training step,
that is, the training of the uncertainty model. At the same time, we compute uncertainty
measures and use those as training data for the uncertainty model. An overview of this
approach can be found in Appendix B.1.
Training the Uncertainty Model. There are two modes for training the uncertainty
model. In the first mode, we train an uncertainty model for every dataset individually.
Thus, a meta-classifier is fitted on the uncertainty measures computed for each respective
dataset. In the second training mode, we follow a leave-one-dataset-out protocol, where
the computed uncertainty measures and binary labels of all n-1 datasets or more specifi-
cally, validation sets, serve as training data. On the other hand, the uncertainty measures
computed for the remaining dataset serve as testing data for the uncertainty model. The
idea behind this approach is to learn a representation for uncertainty by using information
from all available datasets, rather than considering each dataset in isolation. For training
of the uncertainty model, we again employ auto-sklearn and follow the same training pro-
tocol as used for the base classifier, except for the objective metric, which we change to
the F1 score with incorrectly classified examples set as the positive class. The F1 score can
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be interpreted as a weighted harmonic mean of precision and recall and thus prevents the
uncertainty model from being optimised towards only one of these metrics, as that might
be at the expense of the other one.

3.2 Uncertainty Measures

To describe an instance, we need to compute features that provide information about the
likelihood of that instance to be misclassified. A straightforward approach would be to make
a probabilistic estimation, for example, by obtaining the class probability provided by the
given classifier. We refer to this probability as the classifier score and use it as our baseline
when predicting classification error. As previously reported, the classifier score alone is not
expected to provide reliable information when it comes to model uncertainty. Therefore,
we include further uncertainty measures, which are defined in the following paragraphs. It
should be noted that these measures can be computed with little computational overhead;
more specifically, we computed them within less than 30 seconds for every dataset.
k-Disagreeing Neighbours. The k -disagreeing neighbours (kDN) uncertainty measure
builds on work by Smith et al. (2014). In their work, they present complexity measures
that capture the ‘hardness’ of a data instance, which can be interpreted as a proxy for the
likelihood of a single data point to be misclassified. One of these measures is the kDN
measure that is computed as the fraction of the k nearest neighbours for an instance that
do not share its target class value. Since we assume the absence of ground truth labels
when classifying unseen data points, we make a small modification and replace the target
class value by the predicted class value for instance x:

kDN(x) =
|{y : y ∈ kNN(x) ∧ y 6= ŷ}|

k
(1)

where kNN(x) is the set of k nearest neighbours of instance x and ŷ is the predicted class.
k-Disagreeing Classifiers. The k -disagreeing classifiers (kDC) uncertainty measure is
inspired by the notion of landmarking (Pfahringer et al., 2000). That is, we characterise
an observation by the predictions of a set of auxiliary classifiers or landmarkers. As we
would like those classifiers to measure different properties of a data instance, we choose
them from a broad range of algorithms; more specifically, we use every classifier available in
auto-sklearn with default settings (Feurer et al., 2015). In order to ensure the landmarker’s
ability to learn a somewhat meaningful representation of the input data, we only consider
predictions by classifiers that achieve an accuracy of at least 60% on the test set. Formally,
the kDC measure can be defined as:

kDC(x) =
|{y : y ∈ G(x) ∧ y 6= ŷ}|

k
(2)

where G(x) is a set of predictions made by auxiliary classifiers on the instance x and ŷ is
the predicted class for instance x made by the base classifier.
Class Likelihood. Class likelihood (CL) measures the likelihood of an instance belonging
to the predicted class. We define the Class Likelihood measure as:

P (ŷ) | x1, ..., xn) ∝ P (ŷ) ·
n∏

i=1

P (xi | ŷ) (3)
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where ŷ refers to the predicted class and and xi is the value of instance x’s i-th attribute.
In practice, we implement the CL measure by means of a näıve bayes classifier.
Distance to the Closest Centroid. The distance to the closest centroid (DCC) repre-
sents a measure to detect whether an instance might be off the training distribution. The
DCC measure is described by the Euclidean distance of the observed instance to the centre
point of the closest k -means cluster. The number of clusters is computed according to the
number of classes present in the data.

3.3 Data

Experiments have been performed on the OpenML-CC18 benchmark suite (Bischl et al.,
2017), which comprises 72 handpicked classification datasets from a broad range of domains,
ranging from plant classification to loan approval. Since convolutional neural networks are
the state-of-the-art for image classification datasets, we excluded these datasets, which
leaves us with 57 datasets. A list of all datasets and their corresponding characteristics,
such as the number of features and samples, can be found in Appendix A.1. We further
remove datasets where a) the base classifier achieves close to perfect accuracy on the test set,
i.e., where the number of misclassified instances is smaller than 5, thereby not allowing for
efficient training of the uncertainty model and/or b) the base classifier predicted the same
class for each sample in the test set, i.e., where it did not learn a meaningful representation
of the data. Thereby, 12 datasets were eliminated, resulting in a final set of 45 datasets.

4. Results

For all experiments, we report performance metrics averaged across all used datasets in
the form of F1 score, precision and recall along with their standard deviation. As these
aggregate statistics may not reflect individual dataset performance, we also provide box
plots of the distribution of the F1 metric. These can be found in Appendices B.2 and B.3.
Differences in performance metrics are tested for statistical significance using permutation
test with the number of permutations set at 10 000 and a significance threshold of 0.05.
Results on individual datasets. Firstly, we test for the performance of each uncertainty
measure alone and compare their individual informative value. While all measures, except
for the class likelihood, show slightly better performance in terms of the F1 score, these
differences are not statistically significant. However, when all measures are merged and
used as joint input for the uncertainty model we achieve the highest recall and significantly
outperform the baseline (Table 1). This observation suggests that we are able to detect
significantly more misclassified instances than if we were to only use the classifier score.
Results from leave-one-dataset-out cross-validation. In order to ensure a fair com-
parison, we first compute a new baseline using only the classifier score. Subsequently, we
add every uncertainty measure to the model and achieve significantly better performance
in terms of both the F1 score and recall (Table 2), while precision remains statistically
unchanged. This indicates that, when learned from a large number of observations, our
measures are able to capture uncertainty beyond the classifier’s probabilistic score. It
should be noted that this improvement can be found consistently across datasets, rather
than just for a few outliers. This is visualised in Appendix B.4. Lastly, we fit an uncertainty
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Table 1: Averaged results on individual datasets, where for each dataset, an
individual uncertainty model is trained. In columns marked with [C]orrect, perfor-
mance metrics are reported with correctly classified instances treated as the positive class.
Boldfaced values represent those that are significantly higher than the baseline.

Uncertainty Measure F1 Precision Recall Precision [C] Recall [C]

Classifier Score (Baseline) 0.40± 0.18 0.51± 0.24 0.36± 0.18 0.84± 0.19 0.91± 0.12
Class Likelihood 0.34± 0.17 0.48± 0.25 0.31± 0.18 0.74± 0.21 0.87± 0.17
Distance to Closest Centroid 0.43± 0.13 0.54± 0.19 0.38± 0.13 0.79± 0.19 0.86± 0.17
k-Disagreeing Classifiers 0.44± 0.15 0.57± 0.19 0.38± 0.15 0.75± 0.23 0.87± 0.17
k-Disagreeing Neighbours 0.48± 0.14 0.58± 0.18 0.43± 0.14 0.79± 0.20 0.88± 0.17
Score + kDC + kDN + CL + DCC 0.48± 0.14 0.57± 0.19 0.45± 0.16 0.79± 0.20 0.86± 0.20

Table 2: Averaged results from leave-one-dataset-out cross-validation, where an
uncertainty model is trained on n-1 datasets. In columns marked with [C]orrect,
performance metrics are reported with correctly classified instances treated as the positive
class. Boldfaced values represent those that are significantly higher than the baseline.

Uncertainty Measure F1 Precision Recall Precision [C] Recall [C]

Classifier Score (Baseline) 0.38± 0.13 0.74± 0.20 0.28± 0.12 0.84± 0.26 0.91± 0.09
kDC + kDN + CL + DCC 0.54± 0.12 0.75± 0.17 0.43± 0.12 0.83± 0.15 0.96± 0.04
Score + kDC + kDN + CL + DCC 0.59± 0.14 0.82± 0.18 0.49± 0.14 0.84± 0.17 0.97± 0.03

model with the classifier score excluded. Though this approach achieves slightly lower per-
formance, it still significantly outperforms the baseline. Most interestingly, it suggests that
we can detect misclassified instances without accessing the properties of the base classifier,
but rather in a universal fashion.

5. Conclusions and Future Work

We presented several measures that act as proxies for model uncertainty and capture data
point characteristics, such as class likelihood or overlap, which in turn may cause classifica-
tion errors. These measures can be computed irrespective of the base classifier and without
access to ground truth, making them suitable for an online setting where access to ground
truth is costly and/or subject to substantial delays. Beyond that, we find promising results
when using these measures for classification error prediction across a wide range of datasets
from the OpenML-CC18 benchmark suite. Most importantly, we show that each measure
embodies information on model uncertainty and can be used in addition to uncertainty
estimates produced by the classifier, which we argue does not suffice to reliably detect mis-
classified data instances. Furthermore, we show that the uncertainty measures transfer well
across datasets, which supports their generality, and allows for more efficient training.
There are various avenues for further research. One possible path goes towards the inclusion
of a broader range of techniques to be used as base classifiers. Furthermore, we assume that
the set of uncertainty measures can be further extended, as there are probably more factors
at play than the ones considered in this study. This is underlined by the observation that
for some datasets, our uncertainty model achieves only limited performance. In light of
this, we consider our results a promising first step towards making classification algorithms
and their applications more reliable and trustworthy.
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Appendix A. Tables

Table A.1: Datasets used from the OpenML-CC18 benchmark suite.

Dataset # instances # features

Bioresponse 3751 1777
Internet-Advertisements 3279 1559
cnae-9 1080 857
isolet 7797 618
har 10299 562
madelon 2600 501
dna 3186 181
nomao 34465 119
MiceProtein 1080 82
analcatdata authorship 841 71
ozone-level-8hr 2534 73
splice 3190 61
spambase 4601 58
first-order-theorem-proving 6118 52
connect-4 67557 43
qsar-biodeg 1055 42
texture 5500 41
cylinder-bands 540 40
pc4 1458 38
pc3 1563 38
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kr-vs-kp 3196 37
GesturePhaseSegmentationProcessed 9873 33
wdbc 569 31
PhishingWebsites 11055 31
sick 3772 30
steel-plates-fault 1941 28
wall-robot-navigation 5456 25
kc2 522 22
kc1 2109 22
pc1 1109 22
jm1 10885 22
numerai28.6 96320 22
climate-model-simulation-crashes 540 21
churn 5000 21
credit-g 1000 21
segment 2310 20
eucalyptus 736 20
vehicle 846 19
letter 20000 17
bank-marketing 45211 17
credit-approval 690 16
adult 48842 15
dresses-sales 500 13
vowel 990 13
ilpd 583 11
breast-w 699 10
tic-tac-toe 958 10
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Appendix B. Figures

Figure B.1: Schematic view of the technical framework: For each sample
from the test set, we compute binary labels and uncertainty measures that
subsequently serve as input for the uncertainty model. For every holdout sample
we compute uncertainty measures and use those to test the uncertainty model,
which predicts whether an instance is likely to be misclassified.
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Figure B.2: Variance of the F1 metric for different measures when training an
uncertainty model on each dataset individually.

Figure B.3: Variance of the F1 metric for different measures when including
n-1 datasets into uncertainty model training and testing on the remaining one;
i.e., leave-one-dataset-out cross-validation.
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Figure B.4: Dataset-wise comparison of F1 score and recall values obtained
from leave-out-dataset-out cross-validation, using (i) the classifier score only
and (ii) the classifier score along with the uncertainty measures.
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