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Abstract

Macro actions have been demonstrated to be beneficial for the learning processes of an
agent. A variety of techniques have been developed to construct more effective macro
actions. However, they usually fail to provide an approach for combining macro actions to
form a synergistic macro action ensemble. A synergistic macro action ensemble performs
better than individual macro actions within it. Motivated by the recent advances of neural
architecture search, we formulate the construction of a synergistic macro action ensemble
as a sequential decision problem and evaluate the ensemble in a task. The formulation
of sequential decision problem enables coherency in the macro actions to be considered.
Also, our evaluation procedure takes synergism into account since the synergism among the
macro action ensemble exhibits when jointly used by an agent. The experimental results
show that our framework is able to discover synergistic macro action ensembles. We further
perform experiments to validate the synergism property among the macro action ensemble.

1. Introduction

A number of previous works have been devoted to developing macro action (or simply
“macro”) construction procedures (Yoshikawa and Kurihara, 2006; Newton et al., 2007;
Durugkar et al., 2016). In the hope of alleviating the combinatorial complexity of constructing
macro actions, these works attempted to reduce the scope down to searching macros
individually, instead of developing multiple macros jointly. However, searching macros
individually overlooks the synergism amongst macros, which is one of the keys for solving
complex tasks. Incompatible macros may fail to synthesize required behaviors for solving
such tasks. Hence, synergism among macros emerges to be of crucial importance. An
ensemble of synergistic macro actions can facilitate the synthesis of complex behaviors.
Synergistic macros can be executed either interleavely or jointly with primitive actions.
Therefore, an ideal macro action ensemble (or simply “macro ensemble”) should exhibit

©2020 Yu-Ming Chen, Kuan-Yu Chang, Chien Liu, Tsu-Ching Hsiao, Zhang-Wei Hong and Chun-Yi Lee.



Chen, Chang, Liu, Hsiao, Hong and Lee

synergism among the macros in it. Unfortunately, an appropriate approach to construct
such an macro ensemble still remains a challenge and unexplored.

To address this challenge, we borrow the idea from the recent advances of Neural
Architecture Search (NAS). Recent works (Baker et al., 2017; Zoph and Le, 2017; Liu et al.,
2018) in NAS cast architecture design of a neural network (NN) as a Markov Decision
Process (MDP), and solve this MDP by reinforcement learning (RL) (Baker et al., 2017).
In this MDP, the type of each layer is decided by an RL-based controller at each decision
step. The layers determined at all steps are then chained as a complete NN. This process
is analogous to macro ensemble construction since NAS and macro ensemble construction
both aim to search for the optimal sequence of decisions.

In the light of this analogy, we formulate macro ensemble construction as an MDP and
optimize the construction process via RL. An RL-based controller decides a primitive action
at each construction step based on the previously decided action sequence. At the end of an
episode of this MDP, all primitive actions selected in this episode are then segmented into
multiple macros that together form a macro ensemble. The generated macro ensemble is
evaluated by an agent in a target task, and then the feedback is returned to the controller.
The performances of macro ensembles, which reflect effectiveness as well as synergism, guide
the controller to refine its macro ensemble construction policy toward synergism.

Our principal contributions are (1) introducing the synergism property, which is crucial
to a macro ensemble, and (2) formulating a macro ensemble construction process as an
MDP. In this paper, we propose an effective construction method grounded on RL and a
parallel asynchronous framework to accelerate the construction process. We then validate
the effectiveness of our methodology through conducting experiments on a range of Atari
2600 (Bellemare et al., 2013) environments. The experimental results show that our method
is able to discover effective and synergistic macro ensembles that improve RL agents’
performance. Moreover, we perform a series of analyses to verify the existence and influence
of the synergism property among macro actions constructed by our methodology.

The rest of the paper is organized as follows. Section 2 describes our methodology.
Section 3 presents our experimental results. Section 4 concludes. The appendix is organized
as follows. Section A reviews the related works. Section B introduces the background
material. Sections C and D provide the experimental setup and our additional results.

2. Methodology

Our proposed methodology constructs macro ensembles using an parallel asynchronous
framework, which is composed of two phases: a construction phase and an evaluation phase.
The framework contains two main components: a controller C, which is an RL agent updating
its policy in an off-policy manner, and a worker pool W, which is a set of asynchronous
parallel workers implemented as agents. In the construction phase, C constructs macro
ensembles and sends them to W. During the evaluation phase, each worker in W evaluates
the performance of the assigned macro ensemble in its own copy of the target environment.
The evaluated performances of the constructed macro ensembles are stored in a replay
memory. The controller C then updates its policy using the data sampled from the replay
memory. The construction and evaluation phases are concurrently executed until a fixed
number N of macro ensembles are constructed.
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Figure 1: Overview of the proposed macro action ensemble construction framework.

In the following subsections, we first formulate the macro ensemble construction process
as an MDP in Section 2.1. We then detail the construction and evaluation phases of our
proposed methodology in Sections 2.2 and 2.3, respectively. Fig. 1 illustrates the complete
framework of our methodology, while the pseudo code is summarized in Algorithm A1 .

2.1 Formulation of the Macro Action Ensemble Construction Process

In this section, we formulate the macro ensemble construction process as an MDP with a
fixed episode length equal to T . In this MDP, the controller C decides a primitive action
an,t ∈ A ∪ {null} at timestep t, where n is the episode number, A is the primitive action
space of the target environment E , and null is a padding action to be ignored by the worker.
The decision of an,t is based on the previously decided action sequence en,t−1, which can
be represented as en,t−1 = [an,1, an,2, · · · , an,t−1]. The determined an,t is then appended to
en,t−1 to form en,t = en,t−1 ‖ an,t, serving as the information required for the next decision.
After taking an,t, C receives the corresponding reward rn,t, which is defined as:

rn,t ←

{
0 t < T

Evaluate Ensemble(E , en,t) t = T ,
(1)

where Evaluate Ensemble is a function presented in Algorithm A3 of the appendix. Once
episode n is completed, en,T is then transformed to a macro ensemble e. The transformation
first segments en,T into macro actions. For example, if the maximum length of each macro
action m in e is set to three (i.e., |m| ≤ 3,∀ m ∈ e), [an,1, an,2, an,3] is assigned to m1,
[an,4, an,5, an,6] is assigned to m2, and so on. The transformation is then done by removing
the null actions from each m in e, allowing macros to have various lengths. The complete
transformation procedure is illustrated in Fig. A1 of the appendix..
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Figure 2: Comparison of the macro action ensembles constructed by our method and
IEB. The red and the blue lines represent the performances of the agents trained with the macro
ensembles constructed by our method and IEB, respectively.

2.2 Construction Phase

Based on the formulation in Section 2.1, we implement C as a Deep Q-Network (DQN) (Mnih
et al., 2015), with an objective to maximize the return in the formulated MDP. The selection
of DQN as C is due to the large state space considered in our work (e.g., 14T for Kung-
Fu Master, where 14 is the number of the available primitive actions of it). The overall
algorithm is presented in Algorithm A1 of the appendix.

For each episode n, en,0 is first initialized as an empty sequence. For each construction
step t ≤ T during the construction phase, C predicts an,t based on en,t−1 and generate
the new action sequence en,t as described in Section 2.1. The partial transition record
(en,t−1, an,t, en,t, t) is then buffered in an evaluation queue D, waiting for the workers to
evaluate rn,t before storing the complete transition record (en,t−1, an,t, en,t, t, rn,t) to a replay
memory Z. The controller C updates its policy using the data sampled from Z. Please note
that C explores the formulated MDP based on the ε-greedy algorithm (Sutton and Barto,
1998), where ε linearly decays from 1 to 0.

2.3 Evaluation Phase

During the evaluation phase, rn,t is evaluated by a worker based on Eq. (1) in order to
generate the complete transition record from the partial one stored in D. In the case of
t < T , zero is assigned to rn,t. On the other hand, when t = T , the worker first transforms
the received en,T to e, as described in Fig. A1. It then trains an agent using an augmented
action space M = A ∪ e to interact with E . After the worker trains the agent for a fixed
number of timesteps H, the trained agent is evaluated as described in Algorithm A3 of
the appendix. Once the evaluation procedure is finished, the complete transition record
(en,t−1, an,t, en,t, t, rn,t) is stored into Z. The controller C is then updated by minimizing the
loss function stated in Section B.3 of the appendix using the data samples from Z. Since C
updates its policy by maximizing the overall performance of e rather than the performance
of each individual macro action within e, the complete transition records in Z, which reflect
effectiveness of e as well as synergism among the macros in e, guide the controller to refine
its macro ensemble construction policy toward synergism.

3. Experimental Results

In this section, we present the experimental results and discuss their implications. We
provide a brief introduction to our experimental setup in Section C of the appendix. We
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Figure 3: Comparison of the macro ensembles constructed by our methodology and the
decoupled macro actions. For each environment, the red curve represents the performance of the
agent trained with the macro ensemble constructed by our method while the curves with the other
colors represent that of the individual macros decoupled from this macro ensemble. The red curve
rises faster and ends up with higher performance than the other curves. These results suggest that
the macro ensemble derived from our method can lead to higher performance than that corresponding
to individual macros in the ensemble, showing the existence of the synergism property of the macro
ensembles built by our method.
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Figure 4: Comparison of the macro ensembles constructed by IEB and the decoupled
macro actions. For each environment, the red curve represents the performance of the agents
trained with the macro ensemble constructed by IEB and the curve of other colors represents that
of the individual macro actions decoupled from the macro ensemble. In all environments, the red
curves rise slower and end up with lower performance. The results reveal that the macro ensembles
constructed by IEB may not possess the synergism property.

compare the performance of the macro ensembles constructed by our method against those
constructed with an iterative experience based method (Durugkar et al., 2016) in Section 3.1.
Then, we further validate the synergism property by examining if it exists among the macros
in the constructed macro ensembles in Section 3.2. We additionally investigate whether or
not the proposed methodology is capable of discovering good macro ensembles for improving
the training performance of an RL agent in Section D.1 of the appendix.

3.1 Comparison of our Macro Action Ensemble versus Iterative Experience
Based

To demonstrate the effectiveness of our method based on the MDP formulation over the
baselines leveraging on agent’s experience, we compare the performance of our method
against that of IEB. For a fair comparison, both methods construct macro ensembles for
identical amount of wall time. After the macro construction process, we evaluate the resultant
macro ensembles by training the agents in the target environments with them for the same
training timesteps. As shown in Fig. 2 and Table A1 of the appendix, the performances of
the macro ensembles constructed our methodology outperform those constructed by IEB.
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3.2 Synergism Property

An ensemble of macro actions is said to possess the synergism property if the performance
achievable by the macro ensemble is higher than the maximum performance of the individual
macros within that macro ensemble. To inspect the synergism property of the constructed
macro ensemble e, we decouple e into multiple {m},∀ m ∈ e, and compare the performance
of agents trained based on e against those trained with each decoupled macro {m}.

3.2.1 Comparison of our Macro Ensembles versus Decoupled Macro Actions

It is observed that the learning curves corresponding to e (i.e., ours in Fig. 3) grow faster
and higher than those corresponding to each {m} in Fig. 3. The results show that the macro
ensembles constructed by our controller exhibit synergism property as expected. In addition
to improving performance, our method is able to adjust the number of the macros in an
ensemble. For example, there are only two macros within the constructed macro ensemble
in Gravitar).

3.2.2 Comparison of Macro Action Ensembles constructed by IEB versus
Decoupled Macro Actions

We similarly examine the synergism property of the macro ensembles constructed by IEB.
As shown in Fig. 4, the learning curves corresponding to e constructed by IEB grow slower
and end up with lower performances than those corresponding to decoupled macro actions.
Therefore, the curves reveal that the ensembles constructed by IEB do not benefit from the
synergism property.

3.2.3 Comparison of Our Method versus IEB

In Table A1 of the appendix., ‘Ensemble Perf.’ denotes the performance of the RL agent
trained with the constructed macro ensemble, while ‘Maximum Perf.’ represents the
maximum scores of all the decoupled macro actions in that macro ensemble. In Space Invaders,
even though the ‘Maximum Perf.’ of our method (i.e., 1076.55) is lower than that of IEB (i.e.,
1086.10), the ‘Ensemble Perf.’ of our method (i.e., 1,368.52) is higher than the ‘Ensemble
Perf.‘ of IEB (i.e., 1,006.45). The above results reveal that the performance of our constructed
e is influenced by the synergism property among the macro actions. In Beamrider, the
performance of the decoupled macros corresponding to IEB are as good as ours, as shown in
Table A1. However, when those macros are combined together as a macro ensemble, the
performance corresponding to that macro ensemble drops considerably. The results therefore
indicate that the macro ensemble constructed by IEB is not synergistic in Beamrider.

4. Conclusions

In this paper, we presented a methodology for constructing macro action ensembles based
on the MDP formulation. We proposed a parallel framework with an RL-based controller
to generate candidate macro ensembles and evaluate them asynchronously. We evaluated
the proposed methodology in a number of Atari 2600 environments against IEB. We
demonstrated that our method is superior to IEB. We further provided analysis and verified
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the existence of the synergism property among the macro actions contained in the constructed
macro ensemble. Moreover, our experimental results validated that the macro ensembles
discovered by our method are complementary to the primitive action space, and outperformed
this baseline in terms of episode rewards presented in appendix. The results show that the
synergism property is consequential to the research field of macro action ensemble.
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Appendix A. Related Works

With a similar concept to macro actions, early works McGovern et al. (1997); Randlov
(1999); Braylan et al. (2015) repeat the same primitive actions for multiple timesteps,
where the number of repetition is required to be predefined. The later works relax human
priors Vezhnevets et al. (2016); Lakshminarayanan et al. (2017); Sharma et al. (2017) by
further substituting the fixed-length action repetition with adaptive ones. Nevertheless,
action repetition is unlikely to result in delicate behaviors.

Previous works attempt to combine multiple different primitive actions to form a macro
action, whereas these works rely on either domain knowledge (Heecheol et al., 2019) or
structural assumptions about planners (Botea et al., 2005; Coles and Smith, 2007). Moreover,
researchers have investigated approaches that construct macro actions grounded on frequently
used sequences of primitive actions from the experience of an agent Durugkar et al. (2016);
Dulac et al. (2013); Yoshikawa and Kurihara (2006); Onda and Ozawa (2009). Nonetheless,
such approaches are sensitive to the quality of experience. In addition, evolutionary strategies
have also been employed to search for useful macro actions Newton et al. (2005, 2007).
Unfortunately, these strategies rely on utility functions entailing domain knowledge.

On the other hand, option discovery methods (Hauskrecht et al., 1998; Kulkarni et al.,
2016; Bacon et al., 2016; Heess et al., 2016; Vezhnevets et al., 2016) also seek to reduce
the the number of decisions required to be made by master policy. Options are usually
defined as subroutines required for accomplishing a specific task, which is executed until
the termination condition is met. Despite the similarity in an abstract sense, these works
substantially differ from our focused topic (i.e., macro action ensemble or simply ‘macro
ensemble’), since options re-make decisions at every timestep. On the contrary, no additional
decision will be made after a macro action is chosen to take. This difference diverges
option-based approaches and macro actions into two research directions with their own
niches.

Appendix B. Background

In this section, we start by briefly reviewing the formulations of Markov Decision Process
(MDP) Sutton and Barto (1998) and Reinforcement Learning (RL) Sutton et al. (1999),
then explain Deep Q-network (DQN) Mnih et al. (2015) which is used in our macro ensemble
construction process and finally formalize macro actions.

B.1 Markov Decision Process

An MDP consists of a state space S that contains all possible circumstances of an environment
E , a primitive action space A, and a reward function R : S×A → R. In an MDP, a controller
perceives a state st ∈ S, takes an action at ∈ A according to its policy π : S → A, receives a
reward rt = R(st, at) as feedback, and a transition to a next state st+1 determined by E at
each discrete timestep t.

B.2 Reinforcement Learning

The goal of RL is to search for the optimal policy π∗ in E characterized by MDP. An
RL-based controller performs episodes of a task and iteratively updates its π to search for π∗
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via collections of transition record (st, at, rt, st+1), where π∗ maximizes the expected return
Gt = E

[∑T
τ=t γ

τ−trτ
]

within an episode. The discount factor γ can be used to represent
the controller’s extent of preference for short-term rewards over long-term ones. The horizon
T stands for the length of one episode in E .

B.3 Deep Q-network

Deep Q-network (DQN) Mnih et al. (2015) approximates E
[∑T

τ=t γ
τ−trτ

∣∣st, at] by a pa-
rameterized function Qθ to update π, where θ denotes the weights of the neural network.
The optimal Qθ∗(st, at) estimates E

[
rt + γmaxa′ Qθ∗(st+1, a

′)|st, at
]
. The optimal weights

θ∗ can be found by minimizing the loss function L(θ) with respect to the current θ:

L(θ) = E(st,at,rt,st+1)∼U(Z)

[(
rt + γmax

a′
Qθ(st+1, a

′)−Qθ(st, at)
)2]

, (A1)

where the U(Z) stands for an uniform distribution over the replay memory Z that stores
the controller’s transition records. Based on the learned Qθ function, the controller takes
π(st) = arg maxaQθ(st, a) as its policy.

B.4 Macro Action and Macro Action Ensemble

A macro action m is an open-loop policy and is defined as a finite sequence of primitive
actions, where m = [a1, · · · , ak], and k is the length of m. Similar to taking a primitive
action, an agent can atomically execute a macro action, where the only difference is the
resultant transition. Once a macro m is selected for st, each primitive action a ∈ m is then
executed sequentially for the following timesteps t to t+ k, instead of re-deciding actions
based on the subsequent states. At the end of m, the agent transitions to st+k and receives∑k

i=1 rt+i−1.
A macro ensemble e is defined as a set of macros, expressed as e = {m1,m2, . . . ,mω},

where ω is an arbitrarily non-negative integer. To equip an agent with e in an MDP, the
primitive action space A is augmented by e in that MDP, where the augmented action space
M is expressed as M = A ∪ e.

Appendix C. Experimental Setup

We first present the environments used in our experiments in Section C.1, followed by a brief
description of the baseline for comparison purpose in Section C.2. Next, we describe our
controller architecture as well as the hyperparameters in Section C.3. Finally, we explain
the setup of the RL agents for the evaluation phase in Section C.4. The curves presented in
the experiments are generated based on five random seeds and drawn with 95% confidence
interval as the shaded areas.

C.1 Environments

In order to verify our work with various types of environments, we employ eight Atari 2600
environments: Asteroids, Seaquest, Frostbite, Gravitar, Beamrider, Kung-Fu Master, Solaris,
and Space Invaders, which are distributed among the four categories (Burda et al., 2018) (i.e.,
human optimal, score exploit, dense reward, and sparse reward). We present the learning
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en,T = [an,1, . . . ,an,α = null, . . . ,an,β = null, . . . ,an,γ = null, . . . , an,T ]

Step one: e = {[an,1, . . . , an,α−1,an,α = null, an,α+1, . . . , an,k],

[an,k+1, . . . , an,β−1,an,β = null, an,β+1, . . . , an,2k],

...

[an,T−k+1, . . . , an,γ−1,an,γ = null, an,γ+1, . . . , an,T ]}
Step two: e = {[an,1, . . . , an,α−1, an,α+1, . . . , an,k],

[an,k+1, . . . , an,β−1, an,β+1, . . . , an,2k],

...

[an,T−k+1, . . . , an,γ−1, an,γ+1, . . . , an,T ]}

Figure A1: Transformation of a decided action sequence en,T to a macro ensemble e. Step
one, segment en,T base on maximum length k of each macro and form e. Step two, eliminate the
null actions in e (i.e., an,α, an,β , and an,γ). Please note that each macro in e must contains at least
two primitive actions, otherwise it is either an empty macro or a duplicate of a primitive action.
These types of macros are removed from e.

Algorithm A1 Macro action ensemble construction algorithm

1: input: The total number of ensemble searching episodes N
2: input: The fix length of an episodes T
3: input: The target Environment E
4: input: A Worker Pool W
5: output: Best constructed macro ensemble e
6: Initialize a Controller C with random weights
7: Initialize an empty Replay Memory Z
8: Initialize an empty Evaluation Queue D
9: Launch Parallel Evaluation(E , W, Z, D)

10: for n = 1, 2, ..., N do // the nth ensemble
11: Initialize empty sequence en,0

12: for t = 1, 2, ...,T do

13: an,t ←

{
Select a random action a, with probability ε

Action predicted by C using en,t−1, with probability 1− ε
14: en,t ← en,t−1 ‖ an,t

15: // rn,t is evaluated in Parallel Evaluation
16: Push partial transition record (en,t−1, an,t, en,t, t) into D
17: end for
18: // Z filled by Parallel Evaluation
19: Optimize C by sampling mini-batches from Z using DQN method
20: end for
21: ı= arg maxn{rn,T ∈ (en,T−1, an,T , en,T , T, rn,T ) | ∀ (en,T−1, an,T , en,T , rn,T ) ∈ Z}
22: Transform ei,T into macro ensemble e

curves of the following four environments Asteroids, Seaquest, Frostbite, and Gravitar in
Figs. 2, 3 and 4. The results of the remaining environments are reported in Table A1.
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Algorithm A2 Parallel Evaluation

1: input: Environment E ;
2: input: Worker Pool W;
3: input: Replay Memory Z;
4: input: Evaluation Queue D;
5: function Parallel Evaluation(E , W, Z, D)
6: while True do
7: Wait for an available worker in W
8: Pop (en,t−1, an,t, en,t, t) from D
9: Run Worker Routine(E , en,t−1, an,t, en,t, t, Z) asynchronously with the available

worker
10: end while
11: end function
12:

13: function Worker Routine(E , en,t−1, an,t, en,t, t, Z)
14: Duplicate E as E ′
15: if t == T then
16: rn,t = Ensemble Evaluation(E ′, en,t)
17: else
18: rn,t = 0
19: end if
20: Store transition record (en,t−1, an,t, en,t, t, rn,t) into Z
21: end function

Algorithm A3 Ensemble Evaluation

1: input: Environment E
2: input: Decided Action Sequence e;
3: output: Reward r̂
4: function Ensemble Evaluation(E , e)
5: Reset Environment E
6: Transform e into macro ensemble e
7: M←A∪ e
8: Learn a policy ν over M in E for H timesteps
9: Evaluate 100 episodes with the policy ν

10: Eliminate the highest 10 episodes rewards and lowest 10 episodes
11: return Average reward r̂ of the rest 80 episodes
12: end function

C.2 Baselines

To evaluate the constructed e, we select a state of the art algorithm, proximal policy
optimization (PPO) (Schulman et al., 2017), and follow the default hyperparamters described
in (Dhariwal et al., 2017) for training the agents on the provided augmented action space
M = A ∪ e, and compare our proposed method with the following baselines.

Iterative Experience Based (IEB). We study the iterative experience based method
(IEB) (Durugkar et al., 2016) by comparing the performance of an agent trained with the
macro ensemble constructed by it. The method constructs a macro ensemble based on the
most frequently used action sequences during the macro ensemble construction procedure.
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Figure A2: Comparison of our methodology with the primitive action baseline. ”Ours”

(red line) represents the performance of an agent trained with the macro ensemble constructed by our method.

”Primitive” (green line) represents the performance of an agent trained with the primitive actions in the

target environment E . This figure shows that our method is able to construct efficacious macro ensemble.

Primitive action. We additionally compare the performance of the agents trained on
M against those trained on A to demonstrate that M is superior to A. The results are
presented in Section D.1.

C.3 Controller Setup

Our controller C is a DQN agent whose objective is to generate a synergistic e. We modify
the architecture of Nature-DQN (Mnih et al., 2015) by removing the convolutional layer
and keeping the fully connected layer as well as the output layer. The maximal number
and the maximal length of the macros in e are configured to pre-defined values |e| = 3 and
|m| = 3, respectively. The configuration is based on the optimal setting of the macro length
in (Durugkar et al., 2016) as well as the reasonable time budget for analyzing the synergism
property.

C.4 Setup of the RL Agents for Evaluation

The default RL agent employed in this work is set to PPO. The RL agents are trained by
the parallel workers illustrated in Fig. 1. Each worker receives a macro ensemble e from C,
and trains an RL agent with e for 5M timesteps. The macro ensemble is then evaluated for
100 episodes according to Algorithm A3.

Appendix D. Additional Experimental Results

In this section, we present the additional experimental results and the complete version of
table.

D.1 Comparison of our Macro Action Ensemble versus Primitive Actions

In this section, we compare the performance of the RL agents trained with the macro
ensembles constructed by our proposed method for 10M timesteps against the primitive
action baseline described in Section C.2. The results are depicted in Fig. A2. It is observed
that the RL agents trained with our macro ensembles perform better than the primitive
action baseline for all of the four environments. The learning curves of the above cases also
reveal that the macro ensembles constructed by the proposed method is complementary to
the primitive action space, and do lead to higher episode rewards with same timesteps.
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Table A1: The ‘Maximum Perf.’ column represents the maximum score of all the perfor-
mances corresponding to the decoupled macros. The ‘Ensemble Perf.’ column represents
the performance of the constructed macro ensemble. The ‘Improvement ’ represents the
improvements of ‘Ensemble Perf.’ over ‘Maximum Perf.’. The synergism property exists
among the macros if the score in the column of ‘Ensemble Perf.’ is higher than that in the
column of ‘Maximum Perf.’ in the same row.

Atari 2600 Method Macro action 1 m1 Macro action 2 m2 Macro action 3 m3 Maximum max{m1,m2,m3} Ensemble Perf. Improvement

Beamrider
Ours 3758.06 (405.62) 3996.31 (476.38) N/A 3996.31 (476.38) 4165.74 (372.66) 4.24%

IEB 3739.30 (306.27) 3653.49 (405.27) 2699.69 (173.01) 3739.30 (306.27) 1722.42 (584.84) -53.94%

Kung-Fu Master
Ours 42485.00 (3921.55) 34240.31 (6655.82) 33829.44 (5635.99) 42485.00 (3921.55) 44453.20 (4955.30) 4.63%

IEB 46255.84 (5966.10) 38848.04 (1184.16) 38914.63 (2347.86) 46255.84 (5966.10) 38236.28 (1803.30) -17.34%

Seaquest
Ours 1105.22 (204.40) 1262.94 (399.28) 1072.03 (263.65) 1262.94 (399.28) 1362.75 (152.32) 7.90%

IEB 865.28 (59.28) 891.97 (179.63) 1037.70 (461.58) 1037.70 (461.58) 811.42 (11.01) -21.81%

Space Invaders
Ours 713.95 (627.45) 1076.55 (131.65) 642.19 (521.62) 1076.55 (131.65) 1368.52 (159.05) 27.12%

IEB 1086.10 (127.80) 952.24 (78.32) 974.43 (87.87) 1086.10 (127.80) 1006.45 (90.95) -7.33%

Asteroids
Ours 7105.89 (2432.10) 10180.60 (7857.42) 5589.20 (1049.35) 10180.60 (7857.42) 19685.48 (7421.24) 93.36%

IEB 2187.89 (215.14) 2274.65 (133.90) 7620.44 (3946.70) 7620.44 (3946.70) 2349.21 (189.27) -69.17%

Gravitar
Ours 937.76 (103.74) 1011.37 (155.23) N/A 1011.37 (155.23) 1496.22 (254.70) 47.94%

IEB 783.26 (50.80) 730.39 (119.08) 925.10 (68.26) 925.10 (68.26) 842.57 (138.18) -8.92%

Frostbite
Ours 282.88 (11.95) 1594.20 (1488.34) 4010.67 (739.10) 4010.67 (739.10) 4298.52 (1151.88) 7.18%

IEB 998.33 (1011.80) 308.29 (20.56) 283.63 (14.15) 998.33 (1011.80) 812.71 (747.94) -18.59%

Figure A3: Clip of history action sequence of Seaquest. The top bar shows a trajectory in
Seaquest with green representing three consecutive UP macro, red representing (UP, LEFT, RIGHT)
macro, and blue representing three consecutive FIRE macro. The white segment represents the action
seqeuences composed of primitive actions. The macro actions and primitve actions are able to be
jointly and interlevely used by a RL agent, which demonstrates the synergism property empirically.

D.1.1 Qualitative Analysis

To further explain the synergism property, we scrutinize the clip of action sequence composed
of the initial 200 timesteps from the history of evaluation in Seaquest, and illustrate it in
Fig. A3. The objectives of this environment are to rescue the victims under the sea with a
submarine and eliminate the enemies. The agent in the first two screenshots a.1 and a.2

shown in Fig. A3 executes the first macro (highlighted as the green rectangle) composed
of three consecutive UP, which brings the agent to the same level as the victims in the sea.
The next screenshot corresponds to the second macro (highlighted as the red rectangle)
which is composed of UP, LEFT, and RIGHT moves, illustrating the agent’s intention to rescue
the victims. Then, the agent executes the third macro (highlighted as the blue rectangle)
which is composed of three consecutive FIRE actions to deal with the new enemy appeared
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in the screenshot a.4 of Fig. A3. The screenshot a.5 shows that the agent has successfully
rescued the victim and eliminated the enemy. The above pattern of macro actions (depicted
as the black rectangles) frequently appears in the action sequence shown in Fig. A3. This
observation implies that the agent is able to utilize the constructed macro actions in a
synergistic manner. The three screenshots b.1, b.2 and b.3 in Fig. A3 further show that the
agent is able to bring the victim to the top of the water by the first macro and accomplish
the objective. The above interpretations explain the synergism property of the constructed
macro ensemble. Since the primitive actions (depicted as white segments) as well as the
macro actions are interleavedly used in the action sequence, Fig. A3 also justifies that the
macro actions are compatible to the primitive action space.
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