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Abstract

Local search is one of the simplest families of algorithms in combinatorial optimization,
yet it yields strong approximation guarantees for canonical NP-Complete problems such
as the traveling salesman problem and vertex cover. While it is a ubiquitous algorithm in
theoretical computer science, local search is often neglected in hyperparameter optimization
and neural architecture search.

We show that the simplest local search instantiations achieve state-of-the-art results on
multiple NAS benchmarks (NASBench-101 and NASBench-201), outperforming the most
popular recent NAS algorithms. However, local search fails to perform well on the much
larger DARTS search space. Motivated by these observations, we present a theoretical study
which characterizes the performance of local search on graph optimization problems, backed
by simulation results. This may be of independent interest beyond NAS. 1

1. Introduction

Neural architecture search (NAS) is a widely popular area of machine learning, with the goal
of automating the development of the best neural network for a given dataset. Hundreds
of NAS algorithms have been proposed (Zoph and Le, 2017; Elsken et al., 2018), and with
the release of two NAS benchmark datasets (Ying et al., 2019; Dong and Yang, 2020), the
extreme computational cost for NAS is no longer a barrier, and it is easier to fairly compare
different NAS algorithms. Most of the recently proposed state-of-the-art algorithms are
becoming increasingly more complex, many of which use neural networks as subroutines (Wen
et al., 2019; White et al., 2019). This trend is problematic because as the complexity of NAS
algorithms increases, the amount of necessary “hyper-hyperparameter tuning”, or tuning the
NAS algorithm itself, increases. Not only is this a vicious cycle (will we start using AutoML
algorithms to tune AutoML algorithms?), but the runtime for any hyper-hyperparameter
tuning on a new dataset must be added to the total runtime of the NAS algorithm (Lindauer
and Hutter, 2019; Yang et al., 2020). Since this information is not always recorded, some
NAS algorithms may have under-reported runtimes.

In contrast to prior work, we study a NAS algorithm which can be implemented in
five lines of code. Local search is a simple and canonical family of greedy algorithms in
combinatorial optimization and has led to famous results in the study of approximation

1. This work was extended to a full-length paper here: https://arxiv.org/abs/2005.02960. Our code is
available at https://github.com/realityengines/local_search.
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algorithms. The most basic form of local search, often called the hill-climbing algorithm,
consists of starting with a random architecture, and then iteratively training all architectures
in its neighborhood, choosing the best one for the next iteration. The neighborhood is
typically defined as all architectures which differ by one operation or edge. Local search
finishes when it reaches a (local or global) optimum, or when it exhausts its runtime budget.

Despite the simplicity of local search, we show that it achieves state-of-the-art results on
all four NAS benchmark datasets from NASBench-101 and NASBench-201. However, these
benchmark datasets contain at most 4× 105 architectures. On the DARTS (Liu et al., 2018)
search space which contains 1018 architectures, local search performed worse than random
search. This suggests more generally that strong performance on NAS benchmark datasets
does not necessarily imply strong performance on real-world NAS applications.

Motivated by these observations, we present a theoretical study which explains the
performance of local search for NAS. We formally define a NAS problem instance by the
graph topology, and a probability density function on the architecture accuracies, and we
derive a set of equations which calculate the probability that a randomly drawn architecture
will converge to within ε of the global optimum, for all ε > 0. As a corollary, we derive
equations for the expected number of local minima, and the expected size of the preimage of
a local minimum. These results completely characterize the performance of local search. To
the best of our knowledge, this is the first result which theoretically predicts the performance
of a NAS algorithm, and may be of independent interest within discrete optimization. We
run simulations which suggests that our theoretical results predict the performance of real
datasets reasonably well. Altogether, our results show that the performance of local search
depends on the level of locality of the search space, as well as the diameter and average
neighborhood size in the search space.

Our contributions. We summarize our main contributions below.

• We implement the simple local search algorithm as a baseline for NAS, showing that it
achieves state-of-the-art performance on two NASBench datasets (which both have size
< 106) as well as subpar performance on a large search space (of size 1018). We suggest
that existing NAS benchmarks may be too small to adequately evaluate NAS algorithms.

• We give a full theoretical characterization of the properties of a dataset necessary for
local search to give strong performance. We experimentally validate these results on real
datasets. Our results improve the theoretical understanding of local search and lay the
groundwork for future studies.

2. Related Work

NAS has gained significant attention in recent years (Zoph and Le, 2017), although the
first few techniques have been around since at least the 1990s (Shah et al., 2018; Maziarz
et al., 2018). Popular techniques include Bayesian optimization (Kandasamy et al., 2018),
reinforcement learning (Pham et al., 2018), gradient descent (Liu et al., 2018), neural
prediction (White et al., 2019), and evolution (Real et al., 2019). Prior work has performed
local search for NAS using network morphisms, guided by cosine annealing (Elsken et al.,
2017). This is a more complex variation of local search for NAS. Very recently, concurrent
work has also shown that simple local search is a strong baseline for NAS (Ottelander et al.,
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2020). Their work considers multi-objective NAS (the objective is a function of accuracy
and network complexity), focuses on macro search rather than cell-based search, and gives
no theoretical results. The existence of their work strengthens our conclusions, as they
were independently and simultaneously verified using different techniques. Recent papers
have highlighted the need for fair and reproducible NAS comparisons (Li and Talwalkar,
2019; Lindauer and Hutter, 2019; White et al., 2020), spurring the release of two NAS
benchmark datasets (Ying et al., 2019; Dong and Yang, 2020). See the recent survey
on NAS (Elsken et al., 2018) for more information. Local search has been studied since
at least the 1950s in the context of the traveling salesman problem (Bock, 1958; Croes,
1958) and machine scheduling (Page, 1961). Local search has consistently seen significant
attention in theory (Aarts and Lenstra, 1997; Johnson et al., 1988; Balcan et al., 2020) and
practice (Bentley, 1992; Johnson and McGeoch, 1997).

3. Preliminaries

In this section, we formally define the local search algorithm, and we define notation that
will be used for the rest of the paper. Given a search space A of architectures v ∈ A,
denote the objective function as ` : A → [0, 1]. The goal is to find v∗ = argminv∈A`(v),
the neural architecture with the minimum validation loss, or else find an architecture
whose validation loss is within ε of the minimum, for some small ε > 0. We define a
neighborhood function N : A→ 2A. For instance, N(v) might represent the set of all neural
architectures which differ from v by one operation or edge. Local search in its simplest
form is defined as follows. Start with a random architecture v and evaluate `(v) by training
v. Iteratively train all architectures in N(v), and then replace v with the architecture
u such that u = argminw∈N(v)`(w). Continue until we reach an architecture v such that
∀u ∈ N(v), `(v) ≤ `(u). We give pseudocode as Algorithm 1 in the appendix. In Section 5,
we also consider two simple variants. In the query until lower variant, instead of evaluating
every architecture in the neighborhood N(v), we move to the next iteration as soon as we
find an architecture u ∈ N(v) such that `(u) < `(v). In the continue at min variant, we do
not stop at a local minimum, instead moving to the second-best architecture found so far.

Now we define the notation used in Sections 4 and 5. Given a search space A and
a neighborhood function N , we define the neighborhood graph GN = (A,EN ) such that
for u, v ∈ A, the edge (u, v) is in EN if and only if v ∈ N(u). We assume that v ∈ N(u)
implies u ∈ N(v). Given G, N , and a loss function `, define LS : A→ A such that ∀v ∈ A,
LS(v) = argminu∈N(v)`(u) if minu∈N(v) `(u) < `(v), and LS(v) = ∅ otherwise. In other
words, LS(v) denotes the architecture after performing one iteration of local search. For
integers k ≥ 1, recursively define LSk(v) = LS(LSk−1(v)). We set LS0(v) = v and denote
LS∗(v) = mink|LSk(v)6=∅ LS

k(v), that is, the output when running local search to convergence,

starting at v. Similarly, define the preimage LS−k(v) = {u | LSk(u) = v} for integers k ≥ 1
and LS−∗(v) = {u | ∃k ≥ 0 s.t. LS−k(u) = v}. We refer to LS−∗ as the full preimage of v.

4. A theory of local search

In this section, we give a theoretical analysis of local search for NAS, including a complete
characterization of its performance. We present both a general result on local search, as
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well as a closed-form solution for search spaces satisfying certain constraints. We give an
experimental validation of our theoretical results in the next section.

In a NAS application, the topology of the search space is fixed and discrete, while the
distribution of validation losses for architectures is randomized and continuous, due to
the non-deterministic nature of training a neural network. Therefore, we assume that the
validation loss for a trained architecture is sampled from a global probability distribution,
and for each architecture, the validation losses of its neighbors are sampled from a local
probability distribution. Given a graph GN = (A,EN ), each node v ∈ A has a loss `(v) ∈ R
sampled from a PDF which we denote by pdfn. For any two neighbors (v, u) ∈ EN , the
PDF for the validation loss x of architecture u is given by pdfe(`(v), x). In Appendix A, we
discuss this further by formally defining measurable spaces for all random variables.

Our main result is a formula for the fraction of nodes in the search space which are local
minima, as well as a formula for the fraction of nodes v such that the loss of LS∗(v) is within
ε of the loss of the global optimum, for all ε ≥ 0. We give the full proofs for all of our results
in Appendix A. For the rest of this section, we assume for all v ∈ A, |N(v)| = s, and we
assume GN is vertex transitive (given u, v ∈ A, there exists an automorphism of GN which
maps u to v). Let v∗ denote the architecture with the global minimum loss. We slightly
abuse notation and define LS−∗(v) = LS−∗(x) when `(v) = x. In the following theorems and
lemmas, we assume there is a fixed graph GN , and the validation accuracies are randomly
assigned from a distribution defined by pdfn and pdfe. Therefore, the expectations are over
the random draws from pdfn and pdfe. In particular, given a node v with validation loss
`(v) the probability distribution for the validation loss of a neighbor depends only on `(v)
and pdfe, which makes the local search procedure similar to a Markov process.

Theorem 1 Given |A| = n, `, s, ε, pdfn, and pdfe, we have

E[|{v ∈ A | LS∗(v) = v}|] = n

∫ ∞
`(v∗)

pdfn(x)

(∫ ∞
x

pdfe(x, y)dy

)s
dx, and

E[|{v ∈ A | `(LS∗(v))− `(v∗) ≤ ε}|] = n

∫ `(v∗)+ε

`(v∗)
pdfn(x)

(∫ ∞
x

pdfe(x, y)dy

)s
E[|LS−∗(x)|]dx.

Intuitively, to compute the probability that local search outputs a near-optimal solution,
we first compute the probability a point v is a local minimum by integrating pdfe(`(v), y)
from `(v) to ∞ over y and raising it to the power |N(v)| = s. We multiply this probability
by the expected size of v’s full preimage to give us the size of the set of nodes that will
converge to v. Then we integrate this probability over all values of `(v) drawn from pdfn.

In Appendix A, we prove that E[|LS−1(v)|] = s
∫∞
`(v) pdfe(`(v), y)

(∫∞
`(v) pdfe(y, z)dz

)s−1
dy,

and we give a recursive expression for E[|LS−k(v)|]. For some PDFs, it is not possible to find
a closed-form solution for E[|LS−k(v)|] because arbitrary functions may not have closed-form
antiderivatives. By assuming there exists a function g such that pdfe(x, y) = g(y) for all x,
we can use induction to achieve a closed-form expression for E[|LS−k(v)|]. This includes the
uniform distribution (g(y) = 1 for y ∈ [0, 1]), as well as distributions that are polynomials in
x. In Appendix A, we use this to show that E[|LS−∗(v)|] can be approximated nearly exactly
by 1 + s ·G(`(v))s · eG(`(v))s , where G(x) =

∫∞
x g(y)dy. This allows us to give a closed-form

expression for Theorem 1 when the local and global distributions are uniform.
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Lemma 2 If pdfn(x) = pdfe(x, y) = U([0, 1]) ∀x ∈ A, then E[|{v | v = LS∗(v)}|] = n
s+1 and

E[|{v | `(LS∗(v))− `(v∗) ≤ ε}|] = n
∞∑
i=0

si (1− (1− ε)(i+1)s+1
)

(i+ 1)s+ 1
·
i−1∏
j=0

1

js+ 1

 .

5. Experiments

In this section, we discuss our experimental setup and results. We use two benchmark
NAS datasets and one popular large-scale search space for experiments. The NASBench-
101 dataset (Ying et al., 2019) consists of over 423,000 neural architectures pretrained on
CIFAR-10, while the NASBench-201 dataset (Dong and Yang, 2020) contains over 15,000
neural architectures pretrained on CIFAR-10, CIFAR-100, and ImageNet-16-120. The
DARTS search space (Liu et al., 2018) consists of over 1018 architectures and is popular
for experiments on CIFAR-10. To promote reproducible research, we discuss how our
experiments follow the best practices checklist (Lindauer and Hutter, 2019) in Appendix B.

Local search performance. We evaluate the effectiveness of local search for NAS. First
we compare local search to other NAS algorithms on the four benchmark dataset/search
space pairs. On the three NASBench-201 datasets, we compare local search to random
search, DNGO (Snoek et al., 2015), Regularized Evolution (Real et al., 2019), Bayesian
Optimization, BANANAS (White et al., 2019), and NASBOT (Kandasamy et al., 2018).
On NASBench-101, we test local search with the aforementioned algorithms, as well as
REINFORCE (Williams, 1992) and AlphaX (Wang et al., 2018). For every algorithm,
we used the code directly from the corresponding open source repositories and kept the
hyperparameters largely unchanged. For more details, see Section B. We ran 200 trials
of each algorithm and averaged the results. On NASBench-101 and ImageNet-16-120, we
used the query until lower variant of local search, and on NASBench-201 CIFAR-10 and
CIFAR-100, we used the continue at min variant. (In Appendix B, we evaluate all four
variants.) See Figure 1. Local search consistently performs the strongest on all four datasets.

Next, we evaluate local search with the query until lower variant on the DARTS search
space. We ran one trial training all queried architecture to 25 epochs, and another trial
training to 50 epochs. We trained the final returned architectures for 600 epochs, using the
same training pipeline as prior work (Li and Talwalkar, 2019; Liu et al., 2018). The final
test error percent was 3.93 (25 epochs) and 3.49 (50 epochs), compared to 3.29 (Random
Search) and 2.68 (DARTS). For a table of results, see Appendix B. One reason for the
subpar performance is because the degree of the neighborhood graph is 136, much larger
than NASBench-201’s 24. For instance, in the 50 epoch trial, 100 queries was not sufficient
to get through a single iteration of local search even with the query until lower variant.

Simulation Results. We run a local search simulation using the equations in Theorem 1
and Lemma 2, to show that our theoretical results can approximate the datasets in NASBench-
201. We focus on modeling the dataset with simpler functions that may be easier to
approximate. In particular, we approximate both pdfn and pdfe using a normal distribution
with mean u − v and standard deviation σ. For each dataset, we approximate the best
standard deviation value in the global distribution by aligning the normal distribution
with the global histogram. We approximate the best standard deviation value in the local
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Figure 1: Results on NASBench-201 (top) and NASBench-101 (bottom left). Probability
that local search will converge to within ε of the global optimum, compared to Theorem 1
(bottom middle). Validation loss vs. size of preimages, compared to theory (bottom right).

distribution by computing the random walk autocorrelation (RWA) on each dataset. RWA
is defined as the autocorrelation of the accuracies of points visited during a walk of random
single changes through the search space (Weinberger, 1990; Ying et al., 2019). For the full
details, see Appendix B. Then we use Theorem 1 to compute the probability that a randomly
drawn architecture will converge to within ε of the global minimum, when running local
search. We compare this to the experimental results on NASBench-201. We also compare
the performance of the NASBench-201 search space with validation losses drawn uniformly
at random, to the performance predicted by Lemma 2. Finally, we compare the preimage
sizes of the architectures in NASBench-201 with randomly drawn validation losses to the
sizes predicted in Appendix A. See Figure 1. Our theory exactly predicts the performance
and the preimage sizes of the uniform random NASBench-201 dataset. On the three image
datasets, our theory predicts the performance fairly accurately, but is not perfect due to our
assumption that the distribution of accuracies is unimodal.

6. Conclusion

We show that the simplest local search algorithm achieves state-of-the-art results on the
most popular existing NAS benchmarks (NASBench-101 and -201). We also show that it
has subpar performance on the DARTS search space, suggesting that the NAS benchmarks
may be too simple and/or small to adequately evaluate NAS methods. We give a theoretical
analysis, characterizing the conditions under which local search performs well for NAS, which
may be of independent interest. Since local search can be implemented in five lines of code,
we encourage local search to be used as a NAS benchmark in future work.
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Appendix A. Details from Section 4

In this section, we give details from Section 4. For pseudocode of local search, see Algorithm 1.
For convenience, we restate all theorems and lemmas here.

Algorithm 1 Local search

Input: Search space A, objective function `, neighborhood function N
1. Pick an architecture v1 ∈ A uniformly at random
2. Evaluate `(v1); denote a dummy variable `(v0) =∞; set i = 1
3. While `(vi) < `(vi−1) :

i. Evaluate `(u) for all u ∈ N(vi)

ii. Set vi+1 = argminu∈N(vi)`(u); set i = i+ 1

Output: Architecture vi

We start by giving a rigorous grounding of our theoretical framework. Recall that the
topology of the search space is fixed and discrete, while the distribution of validation losses
for architectures is randomized and continuous. This is because training a neural network is
not deterministic; in fact, both NASBench-101 and NASBench-201 include validation and
test accuracies for three different random seeds for each architecture, to better simulate real
NAS experiments. Therefore, we assume that the validation loss for a trained architecture
is sampled from a global probability distribution, and for each architecture, the validation
losses of its neighbors are sampled from a local probability distribution.

Let (R,B(R)) denote a measurable space for the global validation losses induced by the
dataset on the architectures, where B(R) is the Borel σ-algebra on R. The distribution for
the validation loss of any architecture in the search space is given by pdfn(x)∀x ∈ R.

Let (R2,B(R2)) denote a measurable space for validation losses in a neighborhood of an
architecture. Let E : R2 → R denote a random variable mapping the validation losses of
two neighboring architectures to the loss of the second architecture, E(x, y) 7→ y. E has a
distribution that is characterized by probability density function pdfe(x, y)∀x, y ∈ R. This
gives us a probability over the validation loss for a neighboring architecture.

Every architecture v ∈ A has a loss `(v) ∈ R that is sampled from pdfn. For any
two neighbors (v, u) ∈ EN , the PDF for the validation loss x of architecture u is given
by pdfe(`(v), x). Note that choices for the distribution pdfe are constrained by the fixed
topology of the search space, as well as the selected distribution pdfn.

Let (A, 2A) denote a measurable space over the nodes of the graph. The following
theorems and lemmas describe probabilities over sets of the nodes based on the associated
global validation loss and neighborhood validation loss probability spaces defined above.

Theorem 1 Given |A| = n, `, s, ε, pdfn, and pdfe, we have

E[|{v ∈ A | LS∗(v) = v}|] = n

∫ ∞
`(v∗)

pdfn(x)

(∫ ∞
x

pdfe(x, y)dy

)s
dx, and

E[|{v ∈ A | `(LS∗(v))− `(v∗) ≤ ε}|] = n

∫ `(v∗)+ε

`(v∗)
pdfn(x)

(∫ ∞
x

pdfe(x, y)dy

)s
E[|LS−∗(x)|]dx.

10
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Proof To prove the first statement, we introduce an indicator random variable on the
architecture space to test if the architecture is a local minimum I : A→ R, where

I(v) = I{LS∗(v) = v}
= I{`(v) < `(u) ∀u s.t. (u, v) ∈ EN}.

The expected number of local minima in |A| is equal to |A| times the fraction of nodes
in A which are local minima. Therefore, we have

E[|{v ∈ A | LS∗(v) = v}|] = n · P({I = 1})

= n

∫ ∞
−∞

pdfn(x) · P({x < `(u)∀u s.t. (u, v) ∈ EN , x = `(v)})dx

= n

∫ ∞
−∞

pdfn(x)

(∫ ∞
x

pdfe(x, y)dy

)s
dx

In line one we use the notation P({I = 1}) ≡ P({v ∈ A | I(v) = 1}).
To prove the second statement, we introduce an indicator random variable on the

architecture space that tests if a node will terminate on a local minimum that is within ε of
the global minimum, Iε : A→ R, where

Iε(v) = I{LS∗(v) = u ∧ l(u)− l(v∗) ≤ ε}
= I{∃S ∈ {LS−∗(u) : LS∗(u) = u ∧ l(u)− l(v∗) ≤ ε}, v ∈ S}

We use this random variable to prove the second statement of the theorem.

E[|{v ∈ A | `(LS∗(v))− `(v∗) ≤ ε}|] = n · P({Iε = 1})

= n

∫ `(v∗)+ε

`(v∗)
P({v ∈ A | I(v) = 1, `(v) = x})E[|LS−∗(x)|]dx

= n

∫ `(v∗)+ε

`(v∗)
pdfn(x)

(∫ ∞
`(v)

pdfe(x, y)dy

)s
E[|LS−∗(x)|]dx

where the last equality follows from the first half of this theorem. This concludes the
proof.

Lemma 3 Given A, `, s, pdfn, and pdfe, then for all v ∈ A, we have the following equations.

E[|LS−1(v)|] = s

∫ ∞
`(v)

pdfe(`(v), y)

(∫ ∞
`(v)

pdfe(y, z)dz

)s−1
dy, and (1)

E[|LS−m(v)|] = E[|LS−1(v)|]

(∫∞
`(v) pdfe(`(v), y)E[|LS−(m−1)(y)|]dy∫∞

`(v) pdfe(`(v), y)dy

)
. (2)

11



Proof The function LS−1(v) ∈ 2A returns a set of nodes which form the preimage of node
v ∈ A, namely, the set of all neighbors u ∈ N(v) with higher validation loss than v, and
whose neighbors w ∈ N(u) excluding v have higher validation loss than `(v). Formally,

LS−1(v) = {u ∈ A | LS(u) = v}
= {u ∈ A | (v, u) ∈ EN , `(v) < `(u), {v′ ∈ A\{v} | (v′, u) ∈ EN , `(v′) < `(v)} = ∅}.

Let LS−1v : A → R denote a random variable where LS−1v (u) = I{u ∈ LS−1(v)}. The
probability distribution for LS−1v gives the probability that a neighbor of v is in the preimage
of v. We can multiply this probability by |N(v)| = s to express the expected number of
nodes in the preimage of v.

E[|LS−1(v)|] = s · P({LS−1v = 1})

= s

∫ ∞
`(v)

pdfe(`(v), y)

(∫ ∞
l(v)

pdfe(y, z)dz

)s−1
dy.

Note that the inner integral is raised to the power of s− 1, not s, so as not to double
count node v. We can use this result to find the preimage of node v after m steps. Let
LS−mv : A→ R denote a random variable where

LS−mv (u) = I{u ∈ LS−m(v)}
= I{∀w ∈ LS−1(v), u ∈ LS−(m−1)(w)}.

Following a similar argument as above, we compute the expected size of the m’th preimage
set.

E[|LS−m(v)|] = E[|LS−1(v)|] · E[|{∀w ∈ A | ∀u ∈ LS−1(v), LS−(m−1)u (w) = 1}|]

E[|LS−m(v)|] = E[|LS−1(v)|]

(∫∞
`(v) pdfe(`(v), y)E[|LS−(m−1)(y)|]dy∫∞

`(v) pdfe(`(v), y)dy

)

Closed-form solution for single-variate PDFs. Now we give the details for Lemma 2.
We start with a lemma that will help us prove Lemma 2. This lemma uses induction to
derive a closed-form solution to Lemma 3 in the case where pdfe(x, y) is independent of x.

Lemma 4 Assume there exists a function g such that pdfe(x, y) = g(y) for all x. Given
v ∈ A, for m ≥ 1,

E[|LS−m(v)|] = sm

(∫ ∞
`(v)

g(y)dy

)sm
·
m−1∏
i=0

1

is+ 1
.

12
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Proof Given v ∈ A,

E[|LS−1(v)|] = s

∫ ∞
`(v)

pdfe(`(v), y)

(∫ ∞
`(v)

pdfe(y, z)dz

)s−1
dy

= s

∫ ∞
`(v)

g(y)

(∫ ∞
`(v)

g(z)dz

)s−1
dy

= s

(∫ ∞
`(v)

g(y)dy

)s
,

where the first equality follows from Lemma 3. Now we give a proof by induction for the
closed-form equation. The base case, m = 1, is proven above. Given an integer n ≥ 1,
assume that

E[|LS−n(v)|] = sn

(∫ ∞
`(v)

g(y)dy

)sn
·
n−1∏
i=0

1

is+ 1
.

Then

E[|LS−(n+1)(v)|] = E[|LS−1(v)|] ·

(∫ ∞
`(v)

g(y)dy

)−1 ∫ ∞
`(v)

g(y)E[|LS−n(y)|]dy

= s

(∫ ∞
`(v)

g(y)dy

)s(∫ ∞
`(v)

g(y)dy

)−1 ∫ ∞
`(v)

g(y) · E[|LS−n(y)|]dy

= s

(∫ ∞
`(v)

g(y)dy

)s−1 ∫ ∞
`(v)

g(y) · sn
(∫ ∞

y
g(z)dz

)sn
·
n−1∏
i=0

1

is+ 1
· dy

= sn+1

(∫ ∞
`(v)

g(y)dy

)s−1
·
n−1∏
i=0

1

is+ 1

∫ ∞
`(v)

g(y)

(∫ ∞
y

g(z)dz

)sn
dy

= sn+1

(∫ ∞
`(v)

g(y)dy

)s−1
·
n−1∏
i=0

1

is+ 1

(∫ ∞
`(v)

g(z)dz

)sn+1
1

sn+ 1

= sn+1

(∫ ∞
`(v)

g(y)dy

)s(n+1)

·
n∏
i=0

1

is+ 1
.

In the first equality, we used Lemma 3, and in the fourth equality, we used the fact that

∂

∂y

(∫ ∞
y

g(z)dz

)sn+1

= g(y)

(∫ ∞
y

g(z)dz

)sn
(sn+ 1).

This concludes the proof.

Next, we prove a lemma which gives strong approximation guarantees on the size of the
full preimage of an architecture, again assuming that pdfe(x, y) is independent if x.

13



Lemma 5 Assume there exists g such that pdfe(x, y) = g(y) for all x. Denote G(x) =∫∞
x g(y)dy. For all v, we have

1 + s ·G(`(v))se
s
s+1

G(`(v))s ≤ E[|LS−∗(v)|] ≤ 1 + s ·G(`(v))s · eG(`(v))s .

Proof From Lemma 4, we have

E[|LS−∗(v)|] =

∞∑
m=1

E[|LS−m(v)|] =

∞∑
m=1

(
smG(`(v))sm ·

m−1∏
i=0

1

is+ 1

)
. (3)

We start with the lower bound. For all j ≥ 1, s
j(s+1) ≤

s
js+1 . Therefore, for all i,

si−1

(i− 1)!(s+ 1)i−1
=

i−1∏
j=1

s

j(s+ 1)
≤

i−1∏
j=1

s

js+ 1
.

It follows that

E[|LS−∗(v)|] =

∞∑
i=1

siG(`(v))si
i−1∏
j=0

1

js+ 1

= s

∞∑
i=1

G(`(v))si
i−1∏
j=1

s

js+ 1

≥ sG(`(v))s
∞∑
i=1

(
1

(i− 1)!
·
(
sG(`(v))s

s+ 1

)i−1)
= sG(`(v))s · e

s
s+1

G(`(v))s .

The final equality comes from the well-known Taylor series ex =
∑∞

n=0
xn

n! (e.g. Abramowitz
and Stegun (1948)) evaluated at x = s

s+1 ·G(`(v))s.

Now we prove the upper bound. For all j ≥ 1, s
js+1 ≤

s
sj = 1

j . Therefore for all i,

i−1∏
j=1

s

js+ 1
≤

i−1∏
j=1

1

j
=

1

(i− 1)!
.

It follows that

E[|LS−m(v)|] =

∞∑
i=1

siG(`(v))si
i−1∏
j=0

1

js+ 1

= s

∞∑
i=1

G(`(v))s
i−1∏
j=1

s

js+ 1

≤ sG(`(v))s
∞∑
i=1

(
1

(i− 1)!
·G(`(v))s

)
= sG(`(v))seG(`(v))s .
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The final equality again comes from evaluating the Taylor series for ex.

Now we use Lemma 5 and Theorem 1 to prove Lemma 2.

Lemma 2 If pdfn(x) = pdfe(x, y) = U([0, 1]) ∀x ∈ A, then E[|{v | v = LS∗(v)}|] = n
s+1 and

E[|{v | `(LS∗(v))− `(v∗) ≤ ε}|] = n
∞∑
i=0

si (1− (1− ε)(i+1)s+1
)

(i+ 1)s+ 1
·
i−1∏
j=0

1

js+ 1

 .

Proof
The probability density function of U([0, 1]) is equal to 1 on [0, 1] and 0 otherwise. Let

`(v) = x. Then
∫∞
x pdfe(x, y)dy =

∫ 1
x dy = (1− x). Using Theorem 1, we have

E[|{v | v = LS∗(v)}|] = n

∫ ∞
`(v∗)

1 · (1− x)s dx =
n

s+ 1
.

Now we plug in Lemma 4 to the second part of Theorem 1.

E[|{v | `(LS∗(v))− `(v∗) ≤ ε}|] = n

∫ `(v∗)+ε

`(v∗)
1 · (1− x)s

∞∑
m=0

E[|LS−m(x)|]dx

= n

∫ `(v∗)+ε

`(v∗)
(1− x)s

∞∑
m=0

(
sm(1− x)sm ·

m−1∏
i=0

1

is+ 1

)
dx

= n

∞∑
i=0

si (1− (1− ε)(i+1)s+1
)

(i+ 1)s+ 1
·
i−1∏
j=0

1

js+ 1

 .

Appendix B. Details from Section 5

In this section, we give details and supplementary results for Section 5. We start by giving
full details for all search spaces used in our experiments.

NASBench-101 (Ying et al., 2019). The NASBench-101 benchmark dataset consists of
over 423,000 unique neural architectures from a cell-based search space, and each architecture
comes with precomputed validation, and test accuracies for 108 epochs on CIFAR-10.

The search space consists of a cell with 7 nodes. The first node is the input, and the
last node is the output. The remaining five nodes can be either 1 × 1 convolution, 3 × 3
convolution, or 3× 3 max pooling. The cell can take on any DAG structure from the input
to the output with at most 9 edges. The hyper-architecture consists of nine cells stacked
sequentially, with each set of three cells separated by downsampling layers. The first layer
before the first cell is a convolutional layer, and the hyper-architecture ends with a global
average pooling layer and a fully connected layer.

The neighbors of a cell consist of the set of all cells that differ by one operation or edge.
Since each cell can have between 1 and 9 edges, the number of neighbors of a cell can range
from 1 to 29.
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NASBench-201 (Dong and Yang, 2020). The NASBench-201 dataset consists of over
15, 000 unique neural architectures, with precomputed training, validation, and test accuracies
for 200 epochs on CIFAR-10, CIFAR-100, and ImageNet-16-120.

The search space consists of a cell which is a complete directed acyclic graph over 4
nodes. Therefore, there are

(
4
2

)
= 6 edges. Each edge takes an operation, and there are five

possible operations: 1× 1 convolution, 3× 3 convolution, 3× 3 avg. pooling, skip connect, or
none. The hyper-architecture consists of 15 cells stacked sequentially, with each set of five
cells separated by residual blocks. The first layer before the first cell is a convolution layer,
and the hyper-architecture ends with a global average pooling layer and a fully connected
layer.

Since every cell has exactly 6 edges, the total number of possible cells is 56 = 15625. We
say that two cells are neighbors if they differ by exactly one operation. Then the diameter
of the neighborhood graph is 6, because any cell can reach any other cell by swapping out
all 6 of its operations. Each cell has exactly 24 neighbors, because there are 6 edges, and
each edge has 4 other choices for an operation. The neighborhood graph is (K5)

6, that is,
the Cartesian product of six cliques of size five.

DARTS search space (Liu et al., 2018). The DARTS search space is a popular search
space for large-scale NAS experiments. It is a convolutional cell-based search space used for
CIFAR-10. The search space consists of two cells, a convolutional cell and a reduction cell,
each with six nodes. The hyper-architecture stacks k convolutional cells together with one
reduction cell. For each cell, the first two nodes are the outputs from the previous two cells
in the hyper-architecture. The next four nodes contain two edges as input, creating a DAG.
Each edge can take on one of seven operations.

B.1 Details and additional local search experiments

In this section, we give details and additional experiments for local search on the datasets
described above.

For every benchmark NAS algorithm, we used the code directly from its corresponding
open-source repository. For regularized evolution, we changed the population size from
50 to 30 to account for fewer queries. For NASBOT, which was designed for macro (non
cell-based) NAS, we computed the distance between two cells by taking the earth-mover’s
distance between the set of row sums, column sums, and node operations, similar to (White
et al., 2019). We did not change any hyperparameters for the other baseline algorithms.
For vanilla Bayesian optimization, we used the ProBO implementation (Neiswanger et al.,
2019). Our experimental setup is the same as prior work (e.g., (Ying et al., 2019)). At each
timestep t, we report the test error of the architecture with the best validation error found
so far, and we run 200 trials of each algorithm and average the result.

Now we evaluate all four variants of local search on all three NASBench-201 datasets.
See Figure 2. See Section 4 for an explanation of the query until lower and continue at min
variants to local search.

Now we show the full table of results for the experiments on the DARTS search space
from Section 5. See Table 1.
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Figure 2: Results for local search variants on CIFAR-10 (left), CIFAR-100 (middle), and
ImageNet-16-120 (right) on NASBench-201.

Table 1: Test error percent of the best architectures returned by several NAS algorithms.
The runtime is in total GPU-days on a Tesla V100.

NAS Algorithm Source Test error Queries Runtime

Random search (Liu et al., 2018) 3.29 4
DARTS (Liu et al., 2018) 2.68 5
ASHA (Li and Talwalkar, 2019) 3.08 700 9
BANANAS (White et al., 2019) 2.64 100 11.8
Local Search 50 epochs Ours 3.49 100 11.8
Local Search 25 epochs Ours 3.93 200 11.8

B.2 Details from simulation experiments

In this section, we give more details for our simulation experiment described in Section 5.

We start by visualizing the probability density functions of the three datasets in
NASBench-201. See Figure 3. We see more density along the diagonal, meaning that
architectures with similar accuracy are more likely to be neighbors. We also see that the
PDF is multimodal.

The function we use to approximate the datasets on NASBench-201 is shown below.

pdf(u) =

 1
σ
√
2π
· e−

1
2(u−vσ )

2

·
(∫ 1

0
1

σ
√
2π
· e−

1
2(w−v

σ )
2

dw
)−1

if u ∈ [0, 1],

0 otherwise.
(4)

This is a normal distribution with mean u− v and standard deviation of σ, truncated so
that it is a valid PDF in [0, 1]. In order to choose an appropriate probability density function
for modelling the datasets in NASBench-201, we approximate the σ values for both the local
and global PDFs.

To model the global PDF for each dataset, we plot a histogram of the validation losses
and match them to the closest-fitting values of σ and v. The best values are σ = 0.18, 0.1,
and 0.22 for CIFAR-10, CIFAR-100, and ImageNet16-120, respectively.

Now we plot the random-walk autocorrelation (RWA) described in Section 5. Recall that
RWA is defined as the autocorrelation of the accuracies of points visited during a walk of
random single changes through the search space (Weinberger, 1990; Stadler, 1996), and was
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Figure 3: Probability density function for CIFAR-10 (left), CIFAR-100 (middle), and
ImageNet16-120 (right) on NASBench-201. For each coordinate (u, v), a darker color
indicates that architectures with accuracy u and v are more likely to be neighbors.
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Figure 4: Histogram of validation losses for the three datasets in NASBench-201, fitted with
the best values of σ and v in Equation 4 (top). RWA vs. distance for three datasets in
NASBench-201, as well as three values of σ in Equation 4 (bottom).
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used to measure locality in NASBench-101 in prior work (Ying et al., 2019). We compute
the RWA for all three datasets in NASBench-201, by performing a random walk of length
100,000. See Figure 4. We also compute the RWA for Equation 4, and match each dataset
with the closest value of σ. We see that a value of σ = 0.35 is the closest match for all three
datasets.

Now for each of the three NASBench-201 datasets, we have estimated the pdfe and pdfn
distributions. We plug each (pdfe, pdfn) pair into Theorem 1, which gives a plot of ε vs.
percent of architectures that converge to within ε of the global optimum after running local
search. We compare these to the true plot in Figure 1. For the random simulation, we are
modeling the case where pdfe = pdfn = U([0, 1]), so we can use Lemma 2 directly.

B.3 Best practices for NAS research

The area of NAS research has had issues with reproducibility and fairness in empirical
comparisons (Li and Talwalkar, 2019; Ying et al., 2019), and there is now a checklist for
best practices (Lindauer and Hutter, 2019). In order to promote best practices, we discuss
each point on the list, and encourage all NAS research papers to do the same.

• Releasing code. We have released our code anonymously at
https://github.com/realityengines/local_search. The training pipelines and
search spaces are from popular existing NAS work: NASBench-101, NASBench-201,
and DARTS. One thing that is missing is the set of random seeds we used for the
DARTS experiments.

• Comparing NAS methods. We made fair comparisons due to our use of NASBench-
101 and NASBench-201. For baseline comparisons, we used open-source code, a few
times adjusting hyperparameters to be more appropriate for the search space. We ran
ablation studies, compared to random search, and compared performance over time.
We performed 200 trials on tabular benchmarks.

• Reporting important details. Local search only has two boolean hyperparameters,
so we did not need to tune hyperparameters. We reported the times for the full NAS
method and all details for our experimental setup.
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