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Abstract

The notion of task similarity is at the core of various machine learning paradigms, such as do-
main adaptation and meta-learning. Current methods to quantify it are often heuristic, make strong
assumptions on the label sets across the tasks, and many are architecture-dependent, relying on task-
specific optimal parameters (e. g., require training a model on each dataset). In this work we propose
an alternative notion of distance between datasets that (i) is model-agnostic, (ii) does not involve
training, (iii) can compare datasets even if their label sets are completely disjoint and (iv) has solid
theoretical footing. This distance relies on optimal transport, which provides it with rich geometry
awareness, interpretable correspondences and well-understood properties. Our results show that
this novel distance provides meaningful comparison of datasets, and correlates well with transfer
learning hardness across various experimental settings and datasets.

1. Introduction

A key hallmark of machine learning practice is that labeled data from the application of interest is
usually scarce. For this reason, there is vast interest in methods that can combine, adapt and transfer
knowledge across datasets and domains. Entire research areas are devoted to these goals, such as
domain adaptation, transfer-learning and meta-learning. A fundamental concept underlying all these
paradigms is the notion of distance (or more generally, similarity) between datasets. For instance,
transferring knowledge across similar domains should intuitively be easier than across distant ones.
Likewise, given a choice of various datasets to pretrain a model on, it would seem natural to choose
the one that is closest to the task of interest.

Despite its evident usefulness and apparent simpleness, the notion of distance between datasets is
elusive, and quantifying it efficiently and in a principled manner remains largely an open problem.
Doing so involves various challenges that commonly arise precisely in the settings for which this
notion would be most useful, such as the ones mentioned above. For example, in supervised learning
settings the datasets consist of features and labels, andwhile defining a distance between the former is
often —though not always— trivial, doing so for the labels is far from it, particularly if the label-sets
across the two tasks are not identical (as is often the case for off-the-shelf pretrained models).

Current approaches to transfer learning that seek to quantify dataset similarity circumvent these
challenges in various ingenious, albeit often heuristic, ways. A common approach is to compare the
dataset via proxies, such as the learning curves of a pre-specified model (Leite and Brazdil, 2005) or
its optimal parameters (Achille et al., 2019; Khodak et al., 2019) on a given task, or by making strong
assumptions on the similarity or co-occurrence of labels across the two datasets (Tran et al., 2019).
Most of these approaches lack guarantees, are highly dependent on the probemodel used, and require
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Figure 1: Our approach represents labels as distributions over features and computes Wasserstein
distances between them (left). Combined with the usual metric between features, this yields a trans-
portation cost between datasets. The optimal transport problem then characterizes the distance be-
tween them as the minimal possible cost of coupling them (optimal coupling π∗ shown on the right).

training a model to completion (e. g., to find optimal parameters) on each dataset being compared.
On the opposite side of the spectrum are principled notions of discrepancy between domains Ben-
David et al. (2007); Mansour et al. (2009), which nevertheless are often not computable in practice,
or do not scale to the type of datasets used in machine learning practice.

In this work, we address some of these limitations by proposing an alternative notion of distance
between datasets. At the heart of this approach is the use of optimal transport (OT) distances (Villani,
2008) to compare distributions over feature-label pairs in a geometrically-meaningful and principled
way. In particular, we propose a hybrid Euclidean-Wasserstein distance between feature-label pairs
across domains, where labels themselves are modeled as distributions over features vectors. As a
consequence of this technique, our framework allows for comparison of datasets even if their label
sets are completely unrelated or disjoint, as long as a distance between their features can be defined.
This notion of distance between labels, a by-product of our approach, has itself various potential
uses, e. g., to optimally sub-sample classes from large datasets for more efficient pretraining.

In summary, we make the following contributions:
• We introduce a notion of distance between datasets that is principled, flexible and computable
• We show how to scale up computation of this distance to very large datasets
• We provide extensive empirical evidence that this distance is highly predictive of transfer learning
success across various domains, tasks and data modalities

Related Work1

Notions of (dis)similarity between data distributions have been proposed before. In the context of
domain adaptation (Ben-David et al., 2007; Mansour et al., 2009), they are almost always loss and
function-dependent and are often used to obtain generalization bounds (Cortes and Mohri, 2011),
which despite powerful, their approximation quality relies on quantities that are often incomputable.
A different line of work seeks to characterize dataset distances via parameter sensitivity, e.g., via the
Fisher Information metric (Achille et al., 2019) or notions from information theory (Achille et al.,
2018). Also related are methods that represent complex objects via distributions and compare them
via optimal transport distances (Muzellec and Cuturi, 2018; Frogner et al., 2019).

1. We provide a more detailed discussion of related work in Appendix A.
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2. Background on Optimal Transport

Optimal transport (OT) is a powerful and principled approach to compare probability distributions
(Villani, 2008; Peyré and Cuturi, 2019). It considers a complete and separable metric spaceX , along
with probability measures α ∈ P(X ) and β ∈ P(X ), continuous or discrete. The Kantorovich
formulation Kantorovitch (1942) of the transportation problem reads:

OT(α, β) , min
π∈Π(α,β)

∫
X×X

c(x, y) dπ(x, y), (1)

where c(·, ·) : X ×X → R+ is a cost function (the “ground” cost), and the set of couplings Π(α, β)
consists of joint probability distributions over the product space X × X with marginals α and β:

Π(α, β) , {π ∈ P(X×X ) | P1#π = α, P2#π = β}. (2)

Whenever X is equipped with a metric dX , it is natural to use it as ground cost, e. g., c(x, y) =
dX (x, y)p for some p ≥ 1. In such case, Wp(α, β) , OT(α, β)1/p is called the p-Wasserstein
distance. The case p = 1 is also known as the Earth Mover’s Distance (Rubner et al., 2000).

Themeasuresα and β are rarely known in practice. Instead, one has access to finite samples {x(i)} ∈
X , {y(j)} ∈ X , which implicitly define discrete measures α =

∑n
i=1 aiδx(i) and β =

∑m
i=1 biδy(j) ,

where a,b are vectors in the probability simplex, and the pairwise costs can be compactly represented
as an n × m matrix C, i. e., Cij = c(x(i),y(j)). In this case, Eq. (1) becomes a linear program,
whose cubic complexity is often prohibitive. The entropy-regularized problem

OTε(α, β) , min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y) + εH(π |α⊗ β) (3)

where H(π | α⊗β) =
∫

log(dπ/dα dβ) dπ, can be solved much more efficiently —and with better
sample complexity (Genevay et al., 2019)— by using the Sinkhorn algorithm (Cuturi, 2013).

3. Optimal Transport between Datasets
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much closer than the first under the
usual (label-agnostic) OT distance,
while the opposite is true for our
(label-aware) distance.

The definition of dataset is notoriously inconsistent across the
machine learning literature. Here we are interested in super-
vised learning, so we define a dataset D as a set of feature-
label pairs (x, y) ∈ X × Y over a certain feature space X and
label set Y . We will use the shorthand notations z , (x, y)
and Z , X × Y . Henceforth, we focus on classification,
so Y shall be finite. We consider two datasets DA and DB ,
and assume, for simplicity, that their feature spaces have the
same dimensionality, but will discuss how to relax this assump-
tion later on. On the other hand, we make no assumptions
on the label sets YA and YB whatsoever. In particular, the
classes these encode could be partially overlapping or related
(e. g., imagenet and cifar-10) or completely disjoint (e. g.,
cifar-10 and mnist). Although not a formal assumption of
our approach, it will be useful to think of the samples in these
two datasets as being drawn from joint distributions PA(x, y)

and PB(x, y), i. e., , DA = {(x(i)
A , y

(i)
A )}ni=1 ∼ PA(x, y) and

DB = {(x(j)
B , y

(j)
B )}mj=1 ∼ PB(x, y).
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Our goal is to define a distance d(DA,DB) without relying on external models or parameters. The
interpretation above, viewed in light of Section 2, suggests comparing the datasets by computing an
OT distance between their joint distributions. However, casting Problem (1) in this context requires
a —crucial— component: a metric on Z , i. e., , between pairs (x, y), (x′, y′). If we had metrics on
X and Y , we could define a metric on Z as dZ(z, z′) =

(
dX (x, x′)p + dY(y, y′)p

)1/p, for p ≥ 1.
In most applications, dX is readily available, e. g., as the euclidean distance in the feature space.
On the other hand, dY will rarely be so, particularly between labels from unrelated label sets (e. g.,
between cars in one image domain and and dogs in the other). If we had some prior knowledge of
the label spaces, we could use it to define a notion of distance between pairs of labels. However, in
the challenging —but common— case where no such knowledge is available, the only information
we have about the labels is their occurrence in relation to the feature vectors x. Thus, we can take
advantage of the fact that we have a meaningful metric in X and use it to compare labels.

Formally, letND(y) := {x ∈ X | (x, y) ∈ D} be the set of feature vectors with label y in datasetD,
and let ny be its cardinality. With this, a distance between two labels y and y′ could be defined as the
distance between the centroids of ND(y) and ND(y′). But representing the collections ND(y) only
through their mean is too simplistic for real datasets. Ideally, we would represent labels through
the actual distribution over the feature space that they define, namely, by means of the map y 7→
αy(X) , P (X|Y = y), of which ND(y) can be understood as a finite sample. If we use this
representation, defining a distance between labels boils down to choosing a statistical divergence
between their associated distributions. Here again we argue that OT is an ideal choice, since it: (i)
yields a true metric, (ii) is computable from finite samples, which is crucial since the distributions αy
are not available in analytic form, and (iii) is able to deal with sparsely-supported distributions.

The approach described so far grounds the comparison of the αy distributions to the feature spaceX ,
so we can simply use dpX as the optimal transport cost, leading to a p-Wasserstein distance between
labels: Wp

p(αy, αy′), and in turn, to the following distance between feature-label pairs:

dZ
(
(x, y), (x′, y′)

)
,
(
dX (x, x′)p + Wp

p(αy, αy′)
)1/p

. (4)

With this notion of distance in Z at hand we can finally use optimal transport, which lifts this point-
wise metric into a distance between measures (and therefore, between datasets):

dOT(DA,DB) = min
π∈Π(α,β)

∫
Z×Z

dZ(z, z′)π(z, z′). (5)

This defines a truemetric (proof inAppendix §B) – theOptimal Transport Dataset Distance (otdd).

It remains to describe how the distributions αy are to be represented. We could treat the samples
in ND(y) as support points of a uniform empirical measure, i. e., αy =

∑
x(i)∈ND(y)

1
ny
δx(i) , as

described in Section 2. In this case, every evaluation of (4) would involve solving an OT problem,
for a total worst-caseO(n5 log n) complexity, as we show in §E.1. Instead, we propose an alternative
representation of the αy as Gaussian distributions, which leads to a simple yet tractable realization
of the general dataset distance (5). Formally, we model each αy as a Gaussian N (µ̂y, Σ̂y) whose
parameters are the sample mean and covariance of ND(y). The main advantage of this approach is
that the 2-Wasserstein distance between GaussiansN (µα,Σα) andN (µβ,Σβ) has an analytic form:

W2
2(α, β) = ‖µα−µβ‖22 + tr(Σα+Σβ− 2(Σ

1
2
αΣβΣ

1
2
α)

1
2 ) (6)

When using Eq. (6) in the point-wise distance (4), we denote the resulting distance (5) by dOT-N .
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Figure 4: OTDD vs. adaptation accuracy on *nist tasks (left) and mnist + augmentations (right).

4. Experiments
Dataset and model details are provided in the Appendix.

4.1 Dataset Selection for Transfer Learning
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Figure 3: Pairwise OT Distances

In this section, we test whether theOTDDcan provide learning-
free criterion on which to select a source dataset for transfer
learning. We start with a simple domain adaptation setting, us-
ing usps, mnist and three of its extensions: fashion-mnist,
kmnist and the emnist (letters). We first compute all pair-
wise OTDD distances (Fig 3). Despite both consisting of digits, mnist and usps are not the closest
among these datasets according to the OTDD. The closest pair is instead (mnist, emnist), while
fashion-mnist appears far from all others, particularly from mnist. Next, we compare these dis-
tances against the transferability between datasets, i. e., the gain in performance from using a model
pertrained on the source domain and fine-tuning it on the target domain. To make these numbers
comparable across dataset pairs, we report realtive drop in classification error brought by adapta-
tion: T (DS → DT ) = 100 × error(DS→DT )−error(DT )

error(DT ) . We run the adaptation task 10 times with
different random seeds for each pair of datasets, and compare T against their distance. The strong
significant correlation between these (Fig. 4) shows that the OTDD is highly predictive of transfer-
ability across these datasets. In particular, emnist led to the best adaptation to mnist, justifying
the —initially counter-intuitive— value of the OTDD.

4.2 Distance-Driven Data Augmentation
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Figure 5: Tiny-ImageNet→cifar-10.

Data augmentation is another key aspect of transfer learn-
ing that has substantial empirical effect on the quality
of the transferred model yet lacks principled guidelines.
Here, we investigate if the OTDD could be used to com-
pare and select among possible augmentations. For a
fixed source-target dataset pair, we generate replicas of
the source data with various transformations applied to it,
compute their distance to the target dataset, and compare
against the transferability as before.
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We present results for small (mnist→usps) and larger-scale (Tiny-ImageNet→cifar-10) settings.
The transformations we use on mnist consist of rotations by a fixed degree [30◦, . . . , 180◦], random
rotations (−180◦, 180◦), random affine transformations, center-crops and random crops. For Tiny-
ImageNetwe randomly vary brightness, contrast, hue and saturation. Themodels use are respectively
the LeNet-5 and a ResNet-50. The results in both of these settings (Figs. 4 and 5) show, again, a
strong significant correlation between these two. Note in particular that cropping mnist images
substantialy improves performance on usps, while most rotations degrade transferability.

4.3 Transfer Learning for Text Classification
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Figure 6: Transfer in text classification.

Natural Language Processing has seen a pro-
found impact from large-scale transfer learn-
ing, partly due to the availability of off-the-
shelf large language-models pretrained on mas-
sive amounts of the data (Devlin et al., 2019;
Radford et al., 2019). While natural language
inherently lacks the fixed-size continuous rep-
resentation required by our framework to com-
pute pointwise distances, we can take advantage
of these pretrained models to embed sentences
in a vector space with rich geometry. Here, we
first embed the sentences of every dataset using
the (base) bert model (Devlin et al., 2019) and
then compute OTDD on these embedded datasets. We focus on the task of sentence classification,
and consider the following datasets by Zhang et al. (2015): ag news (ag), dbpedia (db), yelp
reviews (5-way: yl5, and binary: yl+), amazon reviews (5-way: am5, and binary: am+), and
yahoo answers (yh). We provide details for these datasets in the Appendix. As before, we simu-
late a challenging adaptation setting by keeping only 100 examples per target class. For every pair of
datasets, we first fine-tune the bert model using the entirety of the source domain data, after which
we fine-tune and evaluate on the target domain. Figure 6 shows that the OTDD is highly correlated
with transferability in this setting too. Interestingly, adaptation sometimes substantially degrades per-
formance, which suggests that off-the-shelf bert is powerful enough on its own to initialize many
of these tasks, so that choosing the wrong domain for pretraining might be counterproductive.

5. Discussion

We have shown that the notion of distance between datasets proposed in this work is scalable and
flexible enough to be used in realistic transfer learning scenarios, all the while offering appealing
theoretical properties, interpretable comparisons andmakingminimal assumptions on the underlying
datasets. There are many natural extensions of this framework. Here we assumed that the datasets
were defined on feature spaces of the same dimension, but one could instead leverage a relational
notion such as the Gromov-Wasserstein distance (Mémoli, 2011) to compute the distance between
datasets whose features and not directly comparable. On the other hand, our efficient implementation
relies on modeling groups of points with the same label as Gaussians, but this could be extended to
more general distributions for which the Wasserstein distance has an analytic solution or at least can
be computed efficiently, such as Gaussian mixture models (Delon and Desolneux, 2019).
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Appendix A. Detailed Related Work
DiscrepancyDistance Various notions of (dis)similarity between data distributions have been pro-
posed in the context of domain adaptation, such as the dA (Ben-David et al., 2007) and discrepancy
distances (Mansour et al., 2009). These discrepancies depend on a loss function and hypothesis
(i. e., predictor) class, and quantify dissimilarity through a supremum over this function class. The
latter discrepancy in particular has proven remarkably useful for proving generalization bounds for
adaptation (Cortes and Mohri, 2011), and while it can be estimated from samples, bounding the ap-
proximation quality relies on quantities like the VC-dimension of the hypothesis class, which might
not be always known or easy to compute.

Dataset Distance via Parameter Sensitivity The Fisher information metric (FIM) is a classic
notion from information geometry (Amari, 1985; Amari and Nagaoka, 2000) that characterizes a
parametrized probability distribution locally through the sensitivity of its density to changes in the
parameters. In machine learning, it has been used to analyze and improve optimization approaches
(Amari, 1998) and to measure the capacity of neural networks (Liang et al., 2019). In recent work,
Achille et al. (2019) use this notion to construct vector representations of tasks, which they then
use to define a notion of similarity between these. They show that this notion recovers taxonomic
similarities and is useful in meta-learning to predict whether a certain feature extractor will perform
well in a new task. While this notion shares with ours its agnosticism of the number of classes and
their semantics, it differs in the fact that it relies on a probe network trained on a specific dataset, so its
geometry is heavily influenced by the characteristics of this network. A related information-theoretic
notion of complexity that can be used to characterize tasks is the Kolmogorov Structure Function
(Li, 2006), which Achille et al. (2018) use to define a notion of reachability between tasks.

Optimal Transport-based distributional distances The general idea of representing complex
objects via distributions, which are then compared through optimal transport distances, is an active
area of research. Also driven by the appeal of their closed-form Wasserstein distance, Muzellec
and Cuturi (2018) propose to embed objects as elliptical distributions, which requires differentiating
through these distances, and discuss various approximations to scale up these computations. Frogner
et al. (2019) extend this idea but represent the embeddings as discrete measures (i. e., point clouds)
rather than Gaussian/Elliptical distributions. Both of these works focus on embedding and consider
only within-dataset comparisons. Also within this line of work, Delon and Desolneux (2019) in-
troduce a Wasserstein-type distance between Gaussian mixture models. Their approach restricts the
admissible transportation couplings themselves to be Gaussian mixture models, and does not directly
model label-to-label similarity. More generally, the Gromov-Wasserstein distance (Mémoli, 2011)
has been proposed to compare collections across different domains (Mémoli, 2017; Alvarez-Melis
and Jaakkola, 2018), albeit leveraging only features, not labels.

Hierarchical OT distances The distance we propose can be understood as a hierarchical OT dis-
tance, i. e., one where the ground metric itself is defined through an OT problem. This principle has
been explored in other contexts before. For example, Yurochkin et al. (2019) use a hierarchical OT
distance for document similarity, defining a inner-level distance between topics and a outer-level dis-
tance between documents using OT. (Dukler et al., 2019) on the other hand use a nested Wasserstein
distance as a loss for generative model training, motivated by the observation that the Wasserstein
distance is better suited to comparing images than the usual pixel-wise L2 metric used as ground
metric. Both the goal, and the actual metric, used by these approaches differs from ours.
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Optimal Transport for Domain Adaptation Using label information to guide the optimal trans-
port problem towards class-coherent matches has been explored before, e. g., by enforcing group-
norm penalties (Courty et al., 2017) or through submodular cost functions (Alvarez-Melis et al.,
2018). These works are focused on the unsupervised domain adaptation setting, so their proposed
modifications to the OT objective use only label information from one of the two domains, and even
then, do so without explicitly defining a metric between these. Furthermore, they do not lead to
proper distances, and these works deal with a single static pair of tasks, so they lack analysis of the
distance across multiple source and target datasets.

Appendix B. OTDD is a Proper Distance

Proposition 1 dOT(DA,DB) defines a valid metric on P(X × P(X )) the space of measures over
feature and label-distribution pairs.

Proof Whenever the cost function used is a metric in a given spaceX , the optimal transport problem
itself defines a distance (the Wasserstein distance) on P(X ) (Villani, 2008, Chapter 6). Therefore,
it suffices to show that the cost function dZ defined in Eq. (4) is indeed a distance. Clearly, it is
symmetric because both dX and Wp are. In addition, since both of these are distances:

dZ(z, z′) = 0⇔ dX (x, x′) = 0 ∧Wp(αy, α
′
y) = 0⇔ x = x′, αy = α′y ⇔ z = z′

Finally, we have that

dZ(z1, z3) =
(
dX (x1, x3)p + Wp(αy1 , αy3)p

) 1
p

≤
(
dX (x1, x2)p + dX (x2, x3)p + Wp(αy1 , αy2)p + Wp(αy2 , αy3)p

) 1
p

=
(
dZ(z1, z2)p + dZ(z2, z3)p

) 1
p = dZ(z1, z2) + dZ(z2, z3)

where the last step is an application of Minkowski’s inequality. Hence, dZ satisfies the triangle in-
equality, and therefore it is a metric on Z = X ×P(X ). We therefore conclude that the value of the
optimal transport (5) that uses this metric as a cost function is a distance itself.

Appendix C. A Gelbrich-Type Bound

Representing label-defined distributions as Gaussians might seem like a heuristic choice driven only
by algebraic convenience. However, Proposition 3 shows that this approximation lower-bounds the
distance that would be obtained had it been computed using the label distances on the true distribu-
tions (regardless of their form). This result is a direct extension of the following well-known bound
for the 2-Wasserstein distance due to Gelbrich (1990):

Lemma 2 (Gelbrich bound) Suppose α, β ∈ P(Rd) are any two measures with mean vectors
µα, µβ ∈ Rd and covariance matrices Σα,Σβ ∈ Sd+ respectively. Then,

W2
2

(
N (µα,Σα),N (µβ,Σβ)) ≤W2

2(α, β) (7)

where W2
2

(
N (µα,Σα),N (µβ,Σβ)) is as in Eq. (6).

For our setting, we have:
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Proposition 3 For any two datasets DA,DB , we have:

dOT-N (DA,DB) ≤ dOT(DA,DB) (8)

Furthermore, if the label distributions αy are all Gaussian or elliptical, these quantities are equal,
i. e., dOT-N is exact.

Proof In the notation of Section 3, Lemma 2 implies that for every feature-label pairs z = (x, y)
and z′ = (x′, y′), we have:

dX (x, x′) + W2
2

(
N (µy,Σy),N (µy′ ,Σy′)) ≤ dX (x, x′) + W2

2(αy, αy′), (9)

and therefore ∫
dZ(z, z′) dπ ≤

∫
dZ(z, z′) dπ (10)

for every coupling π ∈ Π(α, β). In particular, for the minimizing π∗, we obtain that

dOT (DA,DB;N ) ≤ dOT (DA,DB) (11)

Clearly, Gelbrich’s bound holds with equality when α and β are indeed Gaussian. More generally,
equality is attained for elliptical distributions with the same density generator (Kuhn et al., 2019).
This immediately implies equality of the two quantities in equation (11) in that case.

Appendix D. Computational Considerations
Since our goal in this work is to use the proposed dataset distance as a tool for tasks like transfer
learning in realistic (i. e., large) machine learning datasets, scalability is crucial. Indeed, most com-
pelling use cases of any notion of distance between datasets will involve computing it repeatedly on
very large samples. While estimation of Wasserstein —and more generally, optimal transport— dis-
tances is known to be computationally expensive in general, in Section 2 we briefly discussed how
entropy regularization can be used to trade-off accuracy for runtime. Recall that both the general
and Gaussian versions of the dataset distance proposed in Section 3 involve solving optimal trans-
port problems (though the latter, owing the closed form solution of subproblem (6), only requires
optimization for the global problem). Therefore, both of benefit from approximate OT solvers.

But further speed-ups are possible. For dOT-N , a simple and fast implementation can be obtained
if (i) the metric in X coincides with the ground metric in the transport problem on Y , and (ii) all
covariance matrices commute. While (ii) will rarely occur in practice, one could use a diagonal
approximation to the covariance or simultaneous matrix diagonalization (De Lathauwer, 2003). In
either case, Eq. (6) further simplifies to W2

2(α, β) = ‖µα − µβ‖22 + ‖Σ
1
2
α − Σ

1
2
β ‖22, so the pointwise

distance d(z, z′) can be computed by creating augmented representations of each dataset, whereby
each pair (x, y) is represented as a stacked vector x̃ := [x;µy; vec(Σ

1/2
y )] for the corresponding label

mean and covariance. Then, ‖x̃ − x̃′‖22 = dZ(x, y;x′, y′)2 for dZ as defined in Eq. (4). Therefore,
in this case the OTDD can be immediately computed using an off-the-shelf OT solver on these
augmented datasets. While this approach is appealing computationally, here instead we focus on
a exact version that does not require diagonal or commuting covariance approximations, and leave
empirical evaluation of this approximate approach for future work.
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What we propose next is motivated by the observation that, unlike usual OT distances for which the
cost of computing pair-wise distance is negligible compared to the complexity of optimization, in
our case the former dominates, since it involves computing multiple OT distances itself. In order to
speed up computation, we first precompute and store in memory all label-to-label pairwise distances
d(αy, αy′), and retrieve them on-demand during the optimization of the global OT problem.

For dOT-N , computing the label-to-label distances d(N (µ̂y, Σ̂y),N (µ̂y′ , Σ̂y′)) is dominated by the
cost of matrix square roots, which if done exactly involves a full eigendecomposition. Instead, it can
be computed approximately using the Newton-Schulz iterativemethod (Higham, 2008;Muzellec and
Cuturi, 2018). Besides runtime, loading all examples of a given class to memory (to compute means
and covariances) might be infeasible for large datasets (especially if running on GPU), so we instead
use a two-pass stable online batch algorithm to compute these statistics (Chan et al., 1983).

The following result summarizes the time complexity of our two distances and sheds light on the
trade-off between precision and efficiency they provide.

Theorem 4 For datasets of size n and m, with p and q classes, dimension d, and maximum class
size n, both dOT and dOT-N incur in a cost ofO(nm log(max{n,m})τ−3) for solving the global OT
problem τ -approximately, while the worst-case complexity for computing the label-to-label pairwise
distances (4) is O

(
nm(d+ n3 log n+ dn2)

)
for dOT and O

(
nmd+ pqd3 + d2n(p+ q)

)
for dOT-N .

Inmost practical applications, the cost of computing pairwise distances will dominate, making dOT-N
superior. For example, if n = m and the largest class size is O(n), this step becomes O(n5 log n)
—prohibitive for all but toy datasets— for dOT but only O(n2d+ d3) for dOT-N .

Appendix E. Time Complexity Analysis

For the analyses in this section, assume thatDS andDT respectively have n andm labeled examples
in Rd and ks, kt classes. In addition, let N S

D(i) := {x ∈ X | (x, y = i) ∈ D} be the subset of
examples in DS with label i, and define analogously N T

D (j). The denote the cardinalities of these
subsets as nis , |N (i)

s | and analogously for njt .

Direct computation of the distance (4) involves two main steps:

(i) computing pairwise pointwise distances (each requiring solution of a label-to-label OT sub-
problem), and

(ii) a global OT problem between the two samples.

Step (ii) is identical for both the general distance dOT and its Gaussian approximation counterpart
dOT-N , so we analyze it first. This is an OT problem between two discrete distributions of size n and
m, which can be solved exactly in O

(
(n+m)nm log(nm)

)
using interior point methods or Orlin’s

algorithm for the uncapacitated min cost flow problem (Peyré and Cuturi, 2019). Alternatively, it
can be solved τ -approximately in O(nm log(max{n,m})τ−3) time using the Sinkhorn algorithm
(Altschuler et al., 2017).

We next analyze step (i) individually for the two OTDD versions. Combined, they provide a proof
of Theorem 4.
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E.1 Pointwise distance computation for dOT

Consider a single pair of points, (x, y = i) ∈ DA and (x′, y′ = j) ∈ DB . Evaluating ‖x − x′‖
has O(d) complexity, whileW (αy, βy′) is an nis × njt OT problem which itself requires computing
a distancematrix (at costO(nisn

j
td)), and then solving the OT problem, which as discussed before, be

done exactly inO
(
(nis+n

j
t )n

i
sn
j
t log(nis+n

j
t )
)
or τ -approximately inO(nisn

j
t log(max{nis, njt})τ−3).

For simplicity, let us denote ns = maxi n
i
s, and nt = maxj n

j
t the size of the largest label cluster

in each dataset, and n = max{ns, nt} the overall largest one. Using these, and combining all of the
above, the overall worst case complexity for the computation of the n×m pairwise distances can be
expressed as

O
(
nm(d+ n3 log n + dn2)

)
, (12)

which is what we wanted to show. �

E.2 Pointwise distance computation for dOT-N

As before, consider a pair of points (x, y = i) ∈ DA and (x′, y′ = j) ∈ DB whose cluster sizes are
nis andn

j
t respectively. Asmentioned in SectionD, for dOT-N we first compute all the per-classmeans

and covariance matrices. This step is clearly dominated by latter, which is O(d2nis).2 Considering
all labels from both datasets, this amounts to a worst-case complexity of O

(
d2(ksns + ktnt)

)
. Once

the means and covariances have been computed, we precompute all the ks × kt pair-wise label-
to-label distances W2(αy, βy′) using Eq. (6). This computation is dominated by the matrix square
roots. If done exactly, these involve a full eigendecomposition, at cost O(d3), so the total cost for
this step is O(ksktd

3). Finally, while computing the pairwise distance, we will incur in O(nmd) to
obtain ‖x − x′‖. Putting all of these together, and replacing ns, nt by n, we obtain a total cost for
precomputing all the point-wise distances of: O(nmd+ ksktd

3 + d2n(ks + kt). �

Appendix F. Dataset Details

Dataset Input Dimension Number of Classes Train Examples Test Examples Source

usps 16× 16∗ 10 7291 2007 (Hull, 1994)
mnist 28× 28 10 60K 10K (LeCun et al., 2010)

emnist (letters) 28× 28 26 145K 10K (Cohen et al., 2017)
kmnist 28× 28 10 60K 10K (Clanuwat et al., 2018)

fashion-mnist 28× 28 10 60K 10K (Xiao et al., 2017)

Tiny-ImageNet 64× 64‡ 200 100K 10K (Deng et al., 2009)
cifar-10 32× 32 10 50K 10K (Krizhevsky and Hinton, 2009)

ag-news 768† 4 120K 7.6K (Zhang et al., 2015)
DBpedia 768† 14 560K 70K (Zhang et al., 2015)

YelpReview (Polarity) 768† 2 560K 38K (Zhang et al., 2015)
YelpReview (Full Scale) 768† 5 650K 50K (Zhang et al., 2015)

AmazonReview (Polarity) 768† 2 3.6M 400K (Zhang et al., 2015)
AmazonReview (Full Scale) 768† 5 3M 650K (Zhang et al., 2015)

Yahoo Answers 768† 10 1.4M 60K (Zhang et al., 2015)

Table 1: Summary of datasets used in this work. ∗: we rescale usps digits to 28×28 for comparison
to the *nist datasets. ‡: we rescale Tiny-ImageNet to 32 × 32 for comparison to cifar-10. †: for
text datasets, variable-length sentences are embedded to fixed-dimensional vectors using bert.

2. technically, this would be O(dωni
s) where ω is the coefficient of matrix multiplication, but we take ω = 3 for sim-

plicity.
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Figure 7: Dataset Distance between mnist and usps. Left: The label Wasserstein distances
—computed without knowledge of the relation between labels across domains— recover expected
relations between classes in the two domains. Center/Right: The optimal coupling π∗ for different
regularization levels exhibits a block-diagonal structure, indicating class-coherent matches across
domains.

Appendix G. Optimization and Training Details

For the adaptation experiments on the *nist datasets, we use a LeNet-5 architecture (two convolu-
tional layers, three fully conntected ones) with ReLU activations trained for 20 epochs using ADAM
with learning rate 1× 10−3 and weight decay 1× 10−6 It was fine-tuned for 10 epochs on the target
domain(s) using the same optimization parameters. When transferring, we freeze the convolutional
layers and fine-tune only the top three layers.

For the Tiny-ImageNet to Cifar-10 adaptation results, we use a ResNet-50 trained for 300 epochs
using SGD with learning rate 0.1 momentum 0.9 and weight decay 1× 10−4 It was fine-tuned for
30 epochs on the target domain using SGD with same parameters except 0.01 learning rate. We
discard pairs for which the variance on adaptation accuracy is beyond a certain threshold.

For the text classification experiments, we use a pretrained bert architecture (the bert-base-
uncased model of the transformers3 library). We first embed all sentences using this model.
Then, for each pair of source/target domains, we first fine-tune using ADAM with learning rate
2× 10−5 for 10 epochs on the full source domain data, and the fine-tune on the restricted target
domain data with the same optimization parameters for 2 epochs.

Our implementation of the OTDD relies on the pot4 and geomloss5 python packages.

3. huggingface.co/transformers/
4. pot.readthedocs.io/en/stable/
5. www.kernel-operations.io/geomloss/
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