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Abstract

Neural architecture search (NAS) has emerged as a promising direction for research in
automated machine learning by automating deep net design. The goal of this paper is to spur
progress on its understudied learning-theoretic and algorithmic questions, with the purpose
of developing new algorithms and informing existing approaches. Specifically, we consider
the popular, state-of-the-art technique of weight-sharing—the simultaneous optimization
of multiple networks using the same parameters—and propose feature map selection as a
tractable problem for its analysis. As with NAS, we show in this setting that weight-sharing
provides a useful signal to evaluate many configurations without individual training. Finally,
we show how feature map selection yields a sample complexity justification for using bilevel
rather than single-level optimization in NAS, a question raised in several recent works.

1. Introduction

An important tool for automating machine learning, neural architecture search has seen great
progress in recent years (Real et al., 2019; Cai et al., 2019); in particular, weight-sharing
(Pham et al., 2018) has led to fast algorithms with state-of-the-art results on canonical image
classification and language modeling problems (Liu et al., 2019; Li and Talwalkar, 2019). At
the same time, theoretical study of statistical and optimization questions in this area has
been minimal. While NAS is at least as hard a problem as deep learning, we might still hope
to gain insight from understanding certain sub-problems, sub-routines, or simple settings.

We take the latter approach and propose feature map selection—picking the best fixed
data representations to use in a linear model—as a way to study NAS and weight-sharing.
In this setting, we show empirically that weight-sharing provides a signal in the form
of correlation between the performances of shared and standalone weights for individual
configurations, just as in NAS. Using this, we design a simple method that outperforms
hyperparameter tuning baselines on two tasks. Finally, we show how the simple setting also
provides an explicit case where a bilevel objective improves over single-level optimization in
terms of sample complexity and discuss insights and limitations of this analysis.

c©2020 Anonymous.
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1.1 Background

In NAS we are interested in searching over a finite set of configurations C, where each element
c ∈ C is associated with a hypothesis class Hc = {hw,c : w ∈ W} of functions hw,c : X 7→ Y ′
parameterized by W ⊂ Rd. The joint hypothesis space over configurations and parameters
is then H(W, C) =

⋃
c∈C Hc = {hw,c : w ∈ W, c ∈ C}. As usual the goal of learning is to

find hw,c ∈ H(W, C) with low population risk `D(w, c) = `D(hw,c) = E(x,y)∼D`(hw,c(x), y)
for loss ` : Y ′ × Y 7→ R and some distribution D over sample space X × Y.

Given a dataset of examples from D, a standard approach is to do regularized empirical
risk minimization (ERM) over H(W, C). However, most NAS algorithms split the data into
training and validation sets T, V ⊂ X × Y and instead solve the following bilevel problem:

min
w∈W,c∈C

`V (w, c) s.t. w ∈ arg min
u∈W

LT (u, c), (1)

where `V is the empirical risk over V and LT is a (possibly) regularized objective over T .
A starting point for solving the bilevel optimization problem is random search (Bergstra

and Bengio, 2012): randomly sample a configuration c ∈ C, train the inner loop problem to
completion, and repeat. More sophisticated methods adapt the distribution (Hutter et al.,
2011) or allocate fewer resources to less-promising configurations (Li et al., 2018). A major
drawback of these methods is the need to train configurations separately, which means
only a limited part of the search space can be explored under resource constraints. Hence,
Pham et al. (2018) proposed simultaneously exploring both the weight-space W and the
configuration space C by partially training the weights w with minibatch gradient steps w.r.t.
architectures c sampled from a parameterized distribution. These weights are called shared
because they are trained to optimize a distribution of architectures over C.

Despite the noise due to updating w.r.t. different architectures, weight-sharing has
become an incredibly successful tool. A simple example that illustrates its surprising power
is random search with weight-sharing (RS-WS) (Bender et al., 2018; Li and Talwalkar, 2019),
where weights are trained by taking minibatch gradient steps w.r.t. uniformly sampled
architectures. The bilevel object solved by RS-WS is thus

min
c∈C

`V (w∗, c) s.t. w∗ ∈ arg min
u∈W

E
c∼Unif(C)

LT (u, c)

i.e. shared-weights are trained to optimize the expected loss of a uniformly sampled archi-
tecture. This is followed by evaluations of different configurations c ∈ C using the resulting
shared weights w∗. In the case of the two benchmarks studied by Li and Talwalkar (2019),
highly performant architectures according to the shared-weights also had high ground truth
performance. In Section 2 we observe analogous behavior for the feature map selection
problem.

1.2 Limitations and Questions

Shared-weights seem to be able to encode a remarkable amount of signal in over-parameterized
NAS models. However, many questions statistical and algorithmic questions about weight-
sharing remain. One major question, that we study using our proposed simple setting,
is why many practitioners find it useful to use bilevel optimization, which is a model
selection technique, when we are effectively training a single supernet that subsumes the
hyperparameters as regular model parameters (Li et al., 2020). Some recent work has
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Algorithm 1: Feature map selection using
successive halving with weight-sharing.

Input: training set T , validation set V ,
convex loss `, set of feature map φc
configurations C, regularization
parameter λ > 0

for round t = 1, . . . , log2 |C| do
for datapoint (x, y) ∈ T ∪ V do

assign cx ∼ Unif(C) i.i.d.

w∗t ←
arg min
w∈Rd

λ‖w‖22+
∑

(x,y)∈T
`(〈w, φcx(x)〉, y)

for configuration c ∈ C do
Vc ← {(x, y) ∈ V : cx = c}
sc ← 1

|Vc|
∑

(x,y)∈Vc
`(〈w∗t , φcx(x)〉, y)

C = {c ∈ C : sc ≤ Median({sc : c ∈ C})}
Result: Singleton set of configurations C.

Figure 1: Validation accuracy
of individual feature
maps using shared
weights compared to
individual training.

questioned this trend empirically (Xie et al., 2019; Li et al., 2019, 2020), and the single-level
case is perhaps more tractable to analyze (Li et al., 2020). In Section 3 we use our study of
feature map selection, a hyperparameter configuration problem that can be viewed as the
simplest form of NAS, to provide concrete excess risk bounds as part of a broader theory of
why bilevel optimization has been found to lead to better generalization in practice.

2. Feature Map Selection: A Simple Setting for Understanding NAS

In this section, we introduce feature map selection and show how it can be viewed as a simple
type of NAS with weight-sharing. Empirically, weight-sharing outperforms random search
and Hyperband (Li et al., 2018) both when selecting random Fourier maps on CIFAR-10
and configuring Bag-of-n-Grams representations on IMDb, motivating further analysis.

In feature map selection each configuration c ∈ C corresponds to a feature map φc : X 7→
Rd of the input to be passed to a linear classifier in W = Rd; the hypothesis space is then
H(Rd, C) = {〈w, φc(·)〉 : w ∈ Rd, c ∈ C}. This can be viewed as a simple NAS problem, with
the difference that in neural nets the maps φc also depend on parameter-weights w, whereas
here we only parameterize the last layer. We can write the standard bilevel optimization for
feature map selection in the form of (1) for regularization parameter λ > 0:

min
c∈C

∑
(x,y)∈V

`(〈w∗c , φc(x)〉, y) s.t. w∗c = arg min
w∈Rd

λ‖w‖22 +
∑

(x,y)∈T

`(〈w, φc(x)〉, y) (2)

Note that as a non-architectural hyperparameter, λ is not tuned by weight-sharing.
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Figure 2: Oracle test-error on CIFAR-10 (left) and IMDb (right) as a function of number
of solver calls. Here, oracle test-error refers to evaluation of a separately trained,
non-weight-shared, classifier on the best config at any given round according to
weight-sharing. All curves are averaged over 10 independent trials.

How can we use weight-sharing to approximate (2) without solving for w∗c for each
configuration c ∈ C? We take inspiration from the RS-WS algorithm described in Section 1,
which allocates a resource—a minibatch of training examples—to a configuration at each
iteration. Analogously, in Algorithm 1, we propose to allocate training examples to feature
maps: at each iteration t we solve an ERM problem with each point featurized by a random
map φc, c ∼ Unif(C). The result wt is thus shared among the feature maps rather than being
the minimizer for any single one; as with RS-WS we find that, despite being trained using
the uniform distribution over configurations, as showin in Figure 1 the shared-weights wt
are much better classifiers for data featurized using the best maps. We use this as validation
signal in a successive halving procedure approximating (2) in log2 |C| regression solves.

We evaluate Algorithm 1 on two problems: kernel ridge regression over random Fourier
features (Rahimi and Recht, 2008) on CIFAR-10 and regularized SVM classification over
hashed Bag-of-n-Gram representations (Wang and Manning, 2012) on IMDB.1 The hyperpa-
rameters we tune are described in the Appendix. In Figure 1, we show that the performance of
the shared weights found at the first stage of Algorithm 1 on CIFAR-10 is strongly correlated
with the standalone validation accuracy; thus, as in NAS we can use weight-sharing to obtain
a useful noisy indication of the performance of many configurations while training only
one set of parameters. We can exploit this fact in Figure 2, where we see that Algorithm 1
obtains a better test accuracy in fewer calls to the ridge regression or SVM solver than
random search. Interestingly, in terms of wallclock time the average weight-sharing solve is
slower than the average single-configuration solve, but in the Appendix we describe how
we can modify Algorithm 1 to outperform both random search and Hyperband (Li et al.,
2018) in terms of both accuracy and time. Note that we do not compare to Hyperband in
the above plot because it computes many more solutions to lower-dimensional problems and
so the evaluations are incomparable.

1We make code available at https://github.com/mkhodak/weight-sharing
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3. Generalization Guarantees for the Bilevel Problem

While in our experiments we have used the bilevel formulation, it is not immediately clear,
in NAS or feature map selection, that the joint ERM problem minc∈C,w∈W λ‖w‖22 +∑

(x,y)∈T∪V `(〈w, φc(x)〉, y) over the combined data would not also work. This question is
interesting due to the widespread use of the bilevel formulation in NAS with weight-sharing.
Especially when continuous relaxation Liu et al. (2019) is applied, architecture parameters
in NAS appear more similar to regular model parameters rather than controls on the model
complexity (Li et al., 2020), so it is reasonable to wonder why most NAS practitioners have
used the bilevel formulation. In this section we give an analysis suggesting that decomposing
the objective can improve generalization by adapting to the sample complexity of the best
configuration in C, whereas ERM suffers that of the worst. For feature map selection our
theory gives concrete excess risk bounds.

We start with a key fact about the weights that optimize the bilevel problem: they
are optima arg minw∈W LT (w, c) of the inner objective, i.e. elements of the version space
Hc,T = {hw,c : w ∈ arg minu∈W LT (u, c)} (Kearns et al., 1997, Equation 6). We use the
following data-dependent quantification of how much the hypotheses are restricted by the
inner optimization for N(F, ε) the L∞-covering-number of a set of functions F at scale ε > 0,
i.e. the number of L∞ balls in an ε-cover of F (Mohri et al., 2012, Equation 3.60):

Definition 3.1 The version entropy of H(C,W) at scale ε > 0 induced by the objective
LT over training data T is Λ(H, ε, T ) = logN

(⋃
c∈C Hc,T , ε

)
.

For finite C, the version entropy is less than log |C| + maxc∈C logN(Hc,T , ε), so that the
second term measures the worst-case complexity of the global minimizers of LT . In the
feature selection problem, LT is usually a strongly-convex loss due to regularization and so
all version spaces are singleton sets, making the version entropy log |C|. In the other extreme
case of nested model selection the version entropy reduces to the complexity of the version
space of the largest model and so may not be informative. However, in practical problems
such as NAS an inductive bias is often imposed via constraints on the number of input edges.

To bound the excess risk in terms of the version entropy, we first discuss an important
assumption describing cases when we expect the bilevel approach to perform well:

Assumption 3.1 There exists a c∗ ∈ C s.t. (w∗, c∗) ∈ arg minW×C `D(w, c) for some w∗ ∈
W and s.t. w.h.p. over the training sample T at least one of the minima of the optimization
induced by c∗ and T has low excess risk, i.e. w.p. 1− δ there exists w ∈ arg minu∈W LT (u, c∗)
s.t. `D(hw,c∗)− `D(h∗) ≤ ε∗(|T |, δ) for excess risk ε∗ and all h∗ ∈ H(W, C).

This assumption requires that the inner optimization objective does not exclude all good
classifiers for the optimal configuration. It asks nothing of the other configurations in C,
which may be arbitrarily bad, nor of the hypotheses found by the procedure, but prevents
the case where even minimizing the objective LT (·, c∗) does not provide a set of good weights.
Note that if the inner optimization is simply ERM over the training set T , i.e. LT = `T ,
then standard learning-theoretic guarantees will give ε∗(|T |, δ) decreasing in the size |T | of
the training set and increasing at most poly-logarithmically in 1

δ . With this assumption, we
can show the following guarantee for solutions to the bilevel optimization (1):
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Theorem 3.1 If Assumption 3.1 holds, ` is B-bounded, and (w, c) ∈ W × C solves the
bilevel objective (1) for space H(W, C) and data V, T, as in Section 1 then w.p. 1− 3δ

`D(hw,c) ≤ min
h∈H(W,C)

`D(h) + ε∗(|T |, δ) + inf
ε>0

3ε+
3B

2

√
2

|V |

(
Λ(H, ε, T ) + log

1

δ

)

3.1 Excess Risk of Feature Map Selection

To use this theorem we must bound the version entropy. In feature map selection, strong-
convexity induces a unique minimum for each each φc and thus a singleton version space, so
the bound is log |C|. Then we can show the following for Lipschitz (e.g. hinge) losses:

Corollary 3.1 For feature map selection with Lipschitz loss ` there exists λ > 0 s.t. bilevel

optimization yields a hypothesis with excess risk less than O
(√

‖w∗‖22+1
|T | log 1

δ +
√

1
|V | log |C|δ

)
.

In the case of selection random Fourier approximations of kernels, we can show that we can
compete with the optimal RKHS from among those associated with one of the configurations:

Corollary 3.2 In feature map selection suppose each map φc, c ∈ C is associated with a
random Fourier feature approximation of a continuous shift-invariant kernel approximating an
RKHS Hφ and ` is the square loss. Then for sufficiently large d there exists λ > 0 s.t. w.p. 1−δ

solving (2) yields a hypothesis with excess risk w.r.t. Hφ less than O
(

log2 1
δ√
|T |

+
√

1
|V | log |C|δ

)
.

In both cases we get bounds almost identical to the excess risk achievable by knowing the best
configuration beforehand, up to a term depending weakly on the number of configurations.
This improves upon solving the regular ERM objective, where we have to contend with the
possibly high complexity of the hypothesis space induced by the worst configuration.

3.2 Version Entropy and NAS

In simple settings Theorem 3.1 can guarantee excess risk almost as good as that of the
(unknown) optimal configuration without assuming anything about the complexity or
behavior of sub-optimal configurations. However, for NAS we do not have a bound on
the version entropy, which now depends on all of C. Whether the version space of deep
networks is small compared to the number of samples is unclear, although we gather some
evidence below. The question amounts to how many (functional) global optima are induced
by a training set of size |T |. In an idealized spin-glass model, Choromanska et al. (2015,
Theorem 11.1) suggest that the number of critical points is exponential only in the number of
layers, which would yield a small version entropy. It is conceivable that the quantity may be
further bounded by the complexity of solutions explored by the algorithm when optimizing
LT (Nagarajan and Kolter, 2017; Bartlett et al., 2017). On the other hand, Nagarajan
and Kolter (2019) argue, with evidence in restricted settings, that even the most stringent
implicit regularization cannot lead to a non-vacuous uniform convergence bound; if true
more generally this would imply that the NAS version entropy is quite large.
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4. Conclusion

Our work aims to promote feature map selection as a computationally and analytically
tractable way to study NAS. Empirically, we show that weight-sharing provides a strong
signal in this setting that can beat hyperparameter tuning baselines, while theoretical
usefulness is demonstrated through an explanation for the prevalence of bilevel optimization
in NAS. We believe this evidence suffices to spur research to improve and better understand
NAS via feature map selection and to explore the connection’s strengths and limitations.
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Appendix A. Generalization Results

This section contains proofs of the generalization results in Section 3.

A.1 Settings and Main Assumption

We first describe the setting for which we prove our general result.

Setting A.1 Let C be a set of possible architecture/configurations of finite size such that
each c ∈ C is associated with a parameterized hypothesis class Hc={hw,c : X 7→ Y ′ : w ∈ W}
for input space X , output space Y ′, and fixed set of possible weights W. We will measure
the performance of a hypothesis hw,c on an input x, y ∈ X × Y for some output space Y
using a B-bounded loss function ` : Y ′×Y 7→ [0, B]. Note that while the examples below have
unbounded loss functions, in practice they are explicitly or implicitly bounded by explicit or
implicit regularization.

We are given a training sample T ∼ D|T | and a validation sample V ∼ D|V |, where
D is some distribution over X × Y. We will denote the the population risk by `D(hw,c) =
`D(w, c) = E(x,y)∼D`(hw,c(x), y) and for any finite subset S ⊂ X × Y we will denote the

empirical risk over S by `S(hw,c) = `S(w, c) = 1
|S|
∑

(x,y)∈S `(hw,c(x), y).

Finally, we will consider solutions of optimization problems that depend on the training
data and architecture. Specifically, for any configuration c ∈ C and finite subset S ⊂ X × Y
let Wc(S) ⊂ W be the set of global minima of some optimization problem induced by S and
c and let the associated version space (Kearns et al., 1997) be Hc(S) = {hw,c : w ∈ Wc(S)}.

We next give as examples two specific settings encompassed by Setting A.1.

Setting A.2 For feature map selection, in Setting A.1 the configuration space C is a
set of feature maps φc : X 7→ Rd, the set of weights W ⊂ Rd consists of linear classifiers,
for inputs x ∈ X the hypotheses are hw,c(x) = 〈w, φc(x)〉 for w ∈ W, and so Wc(S) is the
singleton set of solutions to the regularized ERM problem

arg min
w∈W

λ‖w‖22 +
∑

(x,y)∈S

`(〈w, φc(x)〉, y)

for square loss ` : Y ′ × Y 7→ R+ and some coefficient λ > 0.

Setting A.3 For neural architecture search, in Setting A.1 the configuration space
consists of all possible choices of edges on a DAG of N nodes and a choice from one of K
operations at each edge, for a total number of configurations bounded by KN2

. The hypothesis
hw,c : X 7→ Y ′ is determined by a choice of architecture c ∈ C and a set of network weights
w ∈ W and the loss ` : Y ′ × Y 7→ R+ is the cross-entropy loss. In the simplest case Wc(S)
is the set of global minima of the ERM problem

min
w∈W

∑
(x,y)∈S

`(hw,c(x), y)

We now state the main assumption we require.
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Assumption A.1 In Setting A.1 there exists a good architecture c∗ ∈ C, i.e. one satisfying
(w∗, c∗) ∈ arg minW×C `D(w, c) for some weights w∗ ∈ W, such that w.p. 1 − δ over the
drawing of training set T ∼ D|T | at least one of the minima of the optimization problem
induced by c∗ and T has low excess risk, i.e. ∃ w ∈ Wc∗(T ) s.t.

`D(w, c∗)− `D(w∗, c∗) ≤ ε∗(|T |, δ) (3)

for some error function ε∗.

Clearly, we prefer error functions ε∗ that are decreasing in the number of training samples
|T | and increasing at most poly-logarithmically in 1

δ . This assumption requires that if we
knew the optimal configuration a priori, then the provided optimization problem will find a
good set of weights for it. We will show how, under reasonable assumptions, Assumption A.1
can be formally shown to hold in Settings A.2 and A.3.

A.2 Main Result

Our general result will be stated in terms of covering numbers of certain function classes.

Definition A.1 Let H be a class of functions from X to Y ′. For any ε > 0 the associated
L∞ covering number N(H, ε) of H is the minimal positive integer k such that H can be
covered by k balls of L∞-radius ε.

The following is then a standard result in statistical learning theory (see e.g. Lafferty
et al. (2010, Theorem 7.82)):

Theorem A.1 Let H be a class of functions from X to Y and let ` : Y ′ ×Y 7→ [0, B] be an
L-Lipschitz, B-bounded loss function. Then for any distribution D over X × Y we have

Pr
S∼Dm

(
sup
h∈H
|`D(h)− `S(h)| ≥ 3ε

)
≤ 2N (H, ε) exp

(
−mε

2

2B2

)
where we use the loss notation from Setting A.1.

Before stating our theorem, we define a final quantity, which measures the log covering
number of the version spaces induced by the optimization procedure over a given training
set.

Definition A.2 In Setting A.1, for any sample S ⊂ X ×Y define the version entropy to
be Λ(H, ε, S) = logN

(⋃
c∈C Hc(S), ε

)
.

Theorem A.2 In Setting A.1 let (ŵ, ĉ) ∈ W × C be obtained as a solution to the following
optimization problem:

arg min
w∈W,c∈C

`V (w, c) s.t. w ∈ Wc(T )

Then under Assumption A.1 we have w.p. 1− 3δ that

`D(ŵ, ĉ) ≤ `D(w∗, c∗)

+ ε∗(|T |, δ) +B

√
1

2|V |
log

1

δ
+ inf
ε>0

3ε+B

√
2

|V |

(
Λ(H, ε, T ) + log

1

δ

)

11
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Proof We have for any w ∈ Wc∗(T ) satisfying Equation 3, whose existence holds by
Assumption A.1, that

`D(ŵ, ĉ)− `D(w∗, c∗) ≤ `D(ŵ, ĉ)− `V (ŵ, ĉ)︸ ︷︷ ︸
1

+ `V (ŵ, ĉ)− `V (w, c∗)︸ ︷︷ ︸
2

+ `V (w, c∗)− `D(w, c∗)︸ ︷︷ ︸
3

+ `D(w, c∗)− `D(w∗, c∗)︸ ︷︷ ︸
4

each term of which can be bounded as follows:

1. Since ŵ ∈ Wĉ(T ) for some ĉ ∈ C the hypothesis space can be covered by the union of
the coverings of Hc(T ) over c ∈ C, so by Theorem A.1 we have that w.p. 1− δ

`D(ŵ, ĉ)− `V (ŵ, ĉ) ≤ inf
ε>0

3ε+B

√
2

|V |

(
Λ(H, ε, T ) + log

1

δ

)
2. By optimality of the pair (ŵ, ĉ) and the fact that w ∈ Wc∗(T ) we have

`V (ŵ, ĉ) = min
c∈C,w′∈Wc(T )

`V (w′, ĉ) ≤ min
w′∈Wc∗ (T )

`V (w′, c∗) ≤ `V (w, c∗)

3. Hoeffding’s inequality yields `V (w, c∗)− `D(w, c∗) ≤ B
√

1
2|V | log 1

δ w.p. 1− δ

4. Assumption A.1 states that `D(w, c∗)− `D(w∗, c∗) ≤ ε∗(|T |δ) w.p. 1− δ.

A.3 Applications

For the feature map selection problem, Assumption A.1 holds by standard results for
`2-regularized ERM for linear classification (e.g. Sridharan et al. (2008)):

Corollary A.1 In Setting A.2, suppose the loss function ` is Lipschitz. Then for regular-

ization parameter λ =
√

1
|T | log 1

δ we have

`D(w, c∗)− `D(w∗, c∗) ≤ O

(√
‖w∗‖22 + 1

|T |
log

1

δ

)
We can then directly apply Theorem A.2 and the fact that the version entropy is bounded
by log |C| because the minimizer over the training set is always unique to get the following:

Corollary A.2 In Setting A.2 let (ŵ, ĉ) ∈ W × C be obtained as a solution to the following
optimization problem:

arg min
w∈W,c∈C

`V (w, c) s.t. w = arg min
w∈W

λ‖w‖22 +
∑

(x,y)∈T

`(〈w, φc(x)〉, y)

Then

`D(ŵ, ĉ)− `D(w∗, c∗) ≤ O

(√
‖w∗‖22 + 1

|T |
log

1

δ
+

√
1

|V |
log
|C|+ 1

δ

)
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In the special case of kernel selection we can apply generalization results for learning with
random features to show that we can compete with the optimal RKHS from among those
associated with one of the configurations (Rudi and Rosasco, 2017, Theorem 1):

Corollary A.3 In Setting A.2, suppose each configuration c ∈ C is associated with a random
Fourier feature approximation of a continuous shift-invariant kernel that approximates an
RKHS Hc. Suppose ` is the squared loss so that (ŵ, ĉ) ∈ W × C is obtained as a solution to
the following optimization problem:

arg min
w∈W,c∈C

`V (w, c) s.t. w = arg min
w∈W

λ‖w‖22 +
∑

(x,y)∈T

(〈w, φc(x)〉 − y)2

If the number of random features d = O(
√
|T | log

√
|T |/δ) and λ = 1/

√
|T | then w.p. 1− δ

we have

`D(hŵ,ĉ)−min
c∈C

min
h∈Hc

`D(h) ≤ O

(
log2 1

δ√
|T |

+

√
1

|V |
log
|C|+ 1

δ

)
In the case of neural architecture search we are often solving (unregularized) ERM

in the inner optimization problem. In this case we can make an assumption weaker than
Assumption A.1, namely that the set of empirical risk minimizers contains a solution that,
rather than having low excess risk, simply has low generalization error; then applying
Hoeffding’s inequality yields the following:

Corollary A.4 In Setting A.1 let (ŵ, ĉ) ∈ W × C be obtained as a solution to the following
optimization problem:

arg min
w∈W,c∈C

`V (w, c) s.t. w ∈ arg min
w′∈W

`T (w′, c)

Suppose there exists c∗ ∈ C satisfying (w∗, c∗) ∈ arg minW×C `D(w, c) for some weights
w∗ ∈ W such that w.p. 1− δ over the drawing of training set T ∼ D|T | at least one of the
minima of the optimization problem induced by c∗ and T has low generalization error, i.e.
∃ w ∈ arg minw′∈W `T (w′, c∗) s.t.

`D(w, c∗)− `T (w∗, c∗) ≤ ε∗(|T |, δ)

for some error function ε∗. Then we have w.p. 1− 4δ that

`D(ŵ, ĉ) ≤ `D(w∗, c∗) + ε∗(|T |, δ) +B

√
1

2|V |
log

1

δ
+B

√
1

2|T |
log

1

δ

+ inf
ε>0

3ε+B

√
2

|V |

(
Λ(H, ε, T ) + log

1

δ

)
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Figure 3: Observed test-error on CIFAR-10 (left) and IMDb (right) as a function of number
of time. All curves are averaged over 10 independent trials.

Appendix B. Feature Map Selection Details

B.1 Fast Weight-Sharing Algorithm

In addition to the weight-sharing approach described in Algorithm 1, we evaluate a variant
we call Fast Weight-Sharing in which at each round t the feature dimension used is a
constant multiplicative factor greater than that used on the previous round (we use

√
2,

finding doubling to be too aggressive), with the final dimension d reached only at the last
round. This is reminiscent of the resource allocation scheme of Li et al. (2018), who after
each round of successive elimination give the promoted arms multiplicatively more features.
The results, showing that Fast Weight-Sharing outperforms the strong baseline of successive
halving and random search, are displayed in Figure 3.

All results are for 10 independent trials of each algorithm with the maximum number of
features used by all competing algorithms set to 100K. For both the Weight-Sharing and
Fast Weight-Sharing algorithms we started with 256 different configurations. For Figure 1 we
varied the feature dimension as shown and considered the correlation between shared-weights
performance and standalone performance fo 32 different configurations. The remaining
settings are in the provided code: https://github.com/mkhodak/weight-sharing.

B.2 Hyperparameter Tuning Setup

For selecting feature maps on CIFAR-10 and IMDb we used the Ridge regression and
SVM solvers from scikit-learn (Pedregosa et al., 2011) to solve the inner `2-regularized
ERM problems. The regularization was fixed to λ = 1

2 since weight-sharing does not tune
non-architectural hyperparameters; the same λ was used for all search algorithms. We tested
whether including λ in the search space helped random search and found that it did not,
or even caused random search to do worse; this is likely due to the bandwidth parameter
playing a similar role.
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B.2.1 Random Fourier Features on CIFAR-10

For the search space we used the same kernel configuration settings as Li et al. (2018,
Table 5) but replacing the regularization parameter by the option to use the Laplace kernel
instead of the Gaussian kernel. The data split used was the standard 40K/10K/10K for
training/validation/testing.

B.2.2 Hashed Bag-of-n-Grams on IMDb

For the search space we tuned whether to just tokenize on spaces, split on punctuation, or
use the NLTK (Loper and Bird, 2002) tokenizer; whether to remove stopwords; whether
to lowercase; the n-gram order between 1-3; whether to binarize bins; whether to weight
using Naive-Bayes (Wang and Manning, 2012) or SIF (Arora et al., 2017); the constant α
for these weighting schemes between [10−5, 101] on a logarithmic scale; and whether to use
nothing, normlizing, or averaging as preprocessing. The data split was 25K/12.5K/12.5K for
training/validation/testing.
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