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Abstract

Exploration-exploitation dilemma has long been a crucial issue in reinforcement learning.
In this paper, we propose a new approach to automatically balance between these two.
Our method is built upon the Soft Actor-Critic (SAC) (Haarnoja et al., 2018a) algorithm,
which uses an “entropy temperature” that balances the original task reward and the policy
entropy, and hence controls the trade-off between exploitation and exploration. It is
empirically shown that SAC is very sensitive to this hyperparameter, and the follow-up
work (SAC-v2) (Haarnoja et al., 2018b), which uses constrained optimization for automatic
adjustment, has some limitations. The core of our method, namely Meta-SAC, is to
use metagradient along with a novel meta objective to automatically tune the entropy
temperature in SAC. We show that Meta-SAC achieves promising performances on several
of the Mujoco benchmarking tasks, and outperforms SAC-v2 over 10% in one of the most
challenging tasks, humanoid-v2.

1. Introduction

Reinforcement learning algorithms need to find a good balance between exploration and
exploitation. On the one hand, the agent needs to explore the environment to gather
useful information. On the other hand, it needs to exploit the knowledge it already
obtains to improve its policy. There have been numerous works that aimed to tackle the
exploitation/exploration trade-off issue. One category of methods use intrinsic rewards /
count-based bonuses to enhance the exploration (Ostrovski et al., 2017; Pathak et al., 2017).
Another family of methods use an entropy term to guide the agent to explore and exploit
in a balanced way (Mnih et al., 2016; Haarnoja et al., 2018a). Among those methods, Soft
Actor-Critic (SAC) (Haarnoja et al., 2018a) achieves the state-of-the-art performance on
Mujoco (Todorov et al., 2012), a set of RL benchmarking continuous control tasks, and also
performs well on lots of other robotics tasks.

SAC augments the traditional RL objective (Sutton and Barto, 2018) with a policy
entropy term:

J(π) :=
T∑
t=0

γtEst,at∼ρπ [r(st,at) + αH(π(·|st))] (1)

This is also called the maximum entropy RL objective (Ziebart et al., 2008; Levine, 2018).
It also defines a soft version of value functions and bellman operators, where a new policy
update rule is derived. The entropy temperature α plays a key role in the maximum entropy
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RL objective as it is the hyperparameter that balances the expected original task reward
and the expected policy entropy, thus balancing the exploitation versus exploration.

SAC (Haarnoja et al., 2018a) (referred to as SAC-v1 throughout) is known to be
particularly sensitive to the entropy temperature. For large temperature, the policy is
encouraged to become nearly uniform and thus fails to exploit the reward signal, which
substantially degrading the performance; for small temperature, though the policy learns
quickly at first, it then becomes nearly deterministic and gets stuck at poor local minimal
due to lack of exploration. However, it is non-trivial to choose a proper value of the entropy
temperature. The optimal value not only changes across different tasks, but also varies in
the learning process as the policy improves. In SAC-v1, this problem is solved by treating
α as a hyperparameter and determining its value by grid search. This brings significant
computational costs and manual efforts, and needs to be done for each new task.

Recently, gradient-based methods have been developed for hyperparameter optimization
for deep neural networks (Hutter et al., 2019; Feurer and Hutter, 2019). In a follow-up work
of SAC-v1 (Haarnoja et al., 2018b) (referred to as SAC-v2 throughout), the authors derive a
formula to adjust the value of α automatically in the learning process by adding an entropy
constraint upon the original RL objective, turning it into a constrained optimization problem,
and using dual gradient descent to solve it. However, the derived update rule has several
drawbacks, among which the most severe one is that it introduced another hyperparameter
“target entropy”, which by itself needs to be tuned for each task. The authors give a heuristic
formula for choosing this new hyperparameter, which performs empirically well on Mujoco
tasks, however, it remains unknown whether it is the optimal choice for every task.

In this paper, we propose to leverage the metagradient method (Xu et al., 2018; Zheng
et al., 2018) to automatically tune the value of α during the learning process. In contrast
to constrained optimization in SAC-v2, metagradient method introduces no more adaptive
hyperparameter.1 It is also a different and principled way of adjusting α, where the value of
α (thus the balance between exploration and exploitation) is optimized towards minimizing
a meta loss. In the early metagradient works, the meta loss is mostly defined as the policy
gradient loss after the current policy update. In this paper, we propose to use a different
meta loss to be consistent with the evaluation metric (i.e., the classic RL objective). The
new meta loss lies between the DDPG (Lillicrap et al., 2015) and SAC objective, and we
empirically verify its effectiveness.

In summary, the main contributions of this paper are as follows: We propose and derive
a new method to automatically tune the entropy temperature α in SAC, which is based on
metagradient and a novel meta loss, and does not introduce any adaptive hyperparameters.
We show that the proposed method achieves state-of-the-art performance on several of the
Mujoco locomotion tasks (Todorov et al., 2012).

2. Preliminaries

2.1 Metagradient

Metagradient (Xu et al., 2018; Zheng et al., 2018) is a general method for adapting some of
the hyperparameters in the learning algorithm online. We follow the notations in a recent

1. An adaptive hyperparameter is defined as the one that needs to be tuned for every task.
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paper (Zahavy et al., 2020) to give a brief review on it. Let θ denotes all the learnable
parameters of the algorithm, e.g., the weights for the policy and value network, and ζ denotes
all the hyperparameters, e.g., the learning rate of the optimizer, the discount factor γ, and
the entropy temperature α in SAC. Let η be a subset of the hyperparameters ζ that we
want to adapt during the learning process. We call η the metaparameters. The update of
the learnable parameters θ at step t is done by optimizing them w.r.t. a learning loss that
depends both on θ and η:

θt+1(ηt)← θt − λθ∇θLlearn(θt, ηt) (2)

The metagradient method adapts the value of η by optimizing them w.r.t. a meta loss:

ηt+1 ← ηt − λη∇ηLmeta(θt+1(ηt)) (3)

where λθ and λη are the respective learning rates. Note that the learnable parameters θ and
the metaparameter η are updated in an alternative fashion iteratively.

2.2 SAC

SAC (Haarnoja et al., 2018a) augments the standard RL objective with expected entropy of
the policy by J(π) :=

∑T
t=0 γ

tEst,at∼ρπ [r(st,at) + αH(π(·|st))].
SAC is an off-policy algorithm, where it stores a collection of {(st,at, rt, st+1}Ni=1 transition

tuples in a replay buffer D. It uses a neural network with parameter φ for the policy as πφ,
and uses another neural network with paramter ω for the Q-value as Qω. For training φ and
ω, it randomly samples a batch of transition tuples from the replay buffer, and performs
stochastic gradient descent on minimizing the following loss objectives for φ and ω:

LQ(ω) := Est,at∼D

[
1

2
(Qω(st,at)−Qtar(st,at))

2

]
where Qtar(st,at) := r(st,at) + γE st+1∼pe

at+1∼πφ
[Q̂(st+1,at+1)− α log(πφ(at+1|st+1))]

(4)

Lπ(φ) := Est∼D,at∼πφ [α log πφ(at|st)−Qω(st,at)] (5)

where Q̂ is target Q function whose parameters are periodically copied from the learned Qω.
SAC-v2 (Haarnoja et al., 2018b) makes the first step towards automating the tuning of

α online. It casts the policy entropy term into a constraint that requires the policy to have
a minimal expected entropy:

max
π0:T

Est,at∼ρπ

[
T∑
t=0

r(st,at)

]
s.t. Est,at∼ρπ [− log(πt(at|st))] ≥ H ∀t (6)

α then becomes the dual variable in the dual problem. The optimal policy to this problem
is time-varying. The authors derived an approximated update formula w.r.t. α using
dual gradient descent on L(α) := Est∼D,at∼ρπ [−α log π(at|st)− αH] and dropping the time
dependencies. This update formula is empirically proved to work well on Mujoco tasks.

However, there are some issues with it. First, it has several key assumptions that is
generally not true in real applications. For example, the derivation and convergence of the
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rule requires convexity, which does not hold for neural networks. The time dependency for
the optimal solution is dropped for approximation. Second, for updating α, this formula
introduces another hyperparameter H, the minimal expected entropy. The authors give an
empirical formula for the value of H = −dim(a), i.e. the negative dimension of the action
space, but it remains unknown how this is derived and whether it would work for each task.
Besides, it seems contradictory to introduce an extra adaptive hyperparameter in the way of
trying to free the tuning of the original one.

In the next section, we will introduce our proposed method of using metagradient to
automate the turning of α, which has minimal assumptions and introduces no more adaptive
hyperparameters.

3. Meta-SAC

We now demonstrate how the learning loss and meta loss is instantiated when applying
metagradient to adapt the entropy temperature α in SAC. Using the notations in the
subsection 2.1, the learnable parameters are θ = {φ, ω}, and the metaparameter is η = {α}.
Therefore, the learning loss for θ are LQ(ω) and Lπ(φ), and Eq. 2 becomes:

φt+1(αt)← φt − λφ∇φLπ(φt, αt)

ωt+1(αt)← ωt − λω∇ωLQ(ωt, αt)
(7)

The choice of meta loss is critical for updating the metaparameter η. Most of the previous
works (Zheng et al., 2018; Xu et al., 2018; Zahavy et al., 2020) use policy gradient loss as the
meta loss. However, in our initial experiments, we find that policy gradient loss performs
poorly. Instead, we propose to use the following meta loss:

Lmeta(αt) := Es0∼D0

[
−Qωt(s, πdetφt+1(αt)

(s))
]

(8)

In this meta loss, πdetφt+1(αt)
(s) denotes the deterministic version of the updated policy (e.g.,

when the policy is parameterized as a Gaussian, the deterministic version always chooses
the mean of the Gaussian), and D0 denotes a special replay buffer that stores the initial
states of the environments.

The main intuition is to make the meta loss consistent with the evaluation metric
M(π), i.e. the standard RL objective that only considers the task reward, as this is the
quantity of concern to us:

M(π) := Est,at∼ρπ

[
T∑
t=0

γtr(st,at)

]
= Es0∼pe,a0∼π [Qπ(s0,a0)] (9)

where Qπ is the classic Q-value function for policy π without considering the entropy term,
and the initial state s0 is sampled from the environment. We now elaborate on how the
evaluation metric leads to the design of our meta loss:

1. The evaluation metric M(π) does not consider the policy entropy, thus we drop the
entropy term in the SAC loss (Eq. 5). Moreover, normally during evaluation we cast
the stochastic policy into a deterministic one, and this leads to the design of using
πdetφt+1(αt)

(s).
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2. As shown in Eq. 9, the evaluation metric is expectation over initial state distribution.
Therefore, we collect and store some initial states into a special buffer D0, and sample a
batch of initial states s0 from D0 to train meta loss. This method performs much better
than sampling from arbitrary states, as shown by our ablation studies in appendix D.1.

3. The evaluation metric is based on the classic Q-value that does not consider the entropy
term. However, in our meta loss we still use the soft Q value as it helps exploration,
and our experiments show that using the classic Q-value performs worse in appendix
D.3. This is the key discrepancy between our meta loss and the DDPG loss (Lillicrap
et al., 2015). Our meta loss actually lies between the DDPG loss (we use soft-Q instead
of classic Q) and the SAC loss (we drop the entropy term).

4. We use the old soft Q function Qωt instead of the updated one Qωt+1(αt). The main

reason is that taking derivative of Qωt+1(αt)(s, π
det
φt+1(αt)

(s)) w.r.t. α is very numerically
unstable in our early experiments.

The full algorithm of Meta-SAC is provided in appendix A.

4. Experiments

We compare Meta-SAC with three state-of-the-art off-policy RL algorithms, including SAC-
v1, SAC-v2, and TD3 (Fujimoto et al., 2018) which made several improvements upon DDPG
(Lillicrap et al., 2015). The main competitor is SAC-v2, as it is the only existing method
that automatically tunes the value of α.

Our experiments aim to answer the following questions: (1) How does Meta-SAC perform
across a range of different environments? (2) How does the entropy temperature α evolve
during the learning process? (3) How effective is the proposed new meta objective?2

Our source code is available online3. All the hyperparameters are listed in appendix C.

4.1 Mujoco Learning Curves

To answer the first question, we select four representative environments from the Mujoco
benchmarking continuous control tasks (Todorov et al., 2012), namely Ant-v2, Hopper-v2,

Humanoid-v2, Walker2d-v2. The environment details can be found in appendix B. Among
them, Humanoid-v2 is one of the most challenging tasks that can be solved by current RL
algorithms (Salimans et al., 2017), with a very high-dimensional state space (376).

The first row of Figure 1 shows the average return of evaluation rollouts through training
process for Meta-SAC (blue), SAC-v1 (red), SAC-v2 (black) and TD3 (green). We follow
the evaluation standard of SAC-v2: we run five different instances of each algorithm with
different random seeds, do 10 evaluation rollouts every 10000 training environment steps, and
report the mean of the return of these 10 rollouts. As shown in the figure, Meta-SAC achieves
comparable performance with SAC-v2 on the easy tasks (Ant-v2,Hopper-v2,Walker2d-2),
and performs slightly worse than SAC-v1 which uses grid search for the value of α for each
task. In the most difficult task Humanoid-v2, Meta-SAC performs significantly better than
all the other methods. It not only achieves a final return that is 10% higher than the others,

2. Due to space limit, the third question is answered in appendix D as ablation studies.
3. https://github.com/twni2016/Meta-SAC
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but also demonstrates faster convergence. These results show that Meta-SAC can be a
strong alternative to SAC-v2, especially for complex tasks.
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Figure 1: The first row shows the average test returns during the training process on the
4 Mujoco tasks of all compared algorithms. The curves show the mean and the
shaded regions show half of the std over 5 random seeds. The curves are smoothed
over the last 20 evaluations for better visualization. The second row shows the
average test returns (solid) and the corresponding logα curves (dashed) for the 4
tasks during the training process in SAC-v2 and Meta-SAC.

4.2 How Entropy Temperature Changes during Learning?

The second row of Figure 1 shows how differently logα changes during the training process
between SAC-v2 and Meta-SAC. In SAC-v2, the change of logα is mild, which reaches
a plateau after just a few learning steps. On the contrast, logα changes dramatically in
Meta-SAC along with a much larger scale. Generally in the later learning stages, α almost
converges to zero, which means almost no entropy bonus is given and the SAC objective
becomes almost equivalent to the DDPG objective. This might explain why Meta-SAC
performs much better in the Humanoid-v2, as large entropy could indeed help exploration in
the early stage of the training, but in the later stages when the policy has been trained well,
a smaller exploration bonus would help the policy exploit better what it already learned. We
verify this by decaying the temperature in SAC-v1 shown in appendix E. This phenomenon
also matches how DQN-style method adjusts the value of ε in ε-greedy strategy, where it
gradually decays to zero during the training.

5. Conclusion

In this paper, we present an auto-tuning method on the entropy temperature of the SAC
algorithm using metagradient, with a novel meta loss aimed to be consistent with the
evaluation metric. We verify its effectiveness in Mujoco benchmarking tasks, where it
achieves state-of-the-art performance on one of the most difficult tasks, Humanoid-v2.
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Appendix A. Meta SAC Algorithm

Algorithm 1: Meta-SAC

Initialize Q network parameters ω0, policy network parameters φ0, and alpha α0.
Empty replay buffer D, learning rates λω, λφ, λα, batch size B, start step TS
Collect a buffer D0 of initial states s0 from environment resets
for each training timestep t do
at ∼ πφ(at|st)
st+1 ∼ p(st+1|st,at)
D ← D ∪ {(st,at, r(st,at), st+1)}
if t > TS then

Sample a batch of transitions B = {(s,a, r(s,a), s′)}Bi=1 from D.

ωt+1 ← ωt − λω∇̂ωLQ(ω, αt) using B and Eq. 4

φt+1 ← φt − λφ∇̂φLπ(φt, αt) using B and Eq. 5
αt+1 ← αt − λαLmeta(αt) using D0 and Eq. 8

end

end

In practice, we do resampling on a new minibatch B′ from replay buffer D for updating
Q value Qω and policy πφ to avoid overfitting on the minibatch B used for metaparameter
α updates. This trick is also applied in (Finn et al., 2017; Zheng et al., 2018) for online
cross-validation. The ablation study on resampling is in appendix D.2.

Appendix B. Environment Details

We carry out experiments on the locomotion tasks of simulated robots in Mujoco environments
(Todorov et al., 2012) wrapped in OpenAI Gym (Brockman et al., 2016). The states are the
robots’ generalized positions and velocities, and the actions are joint torques. The reward is
defined to be proportional to the speed regularized with the acceleration in order to make
locomotion more smooth. Early termination is added when the robot falls over, determined
by thresholds on the height and torso angles. The locomotion tasks are challenging due
to the high-dimensional state and action space, non-smooth dynamics, and underactuated
systems (Schulman et al., 2015; Lillicrap et al., 2015).

Figure 2 shows the rendering of two of the locomotion tasks, Ant-v2 and Humanoid-v2

at one frame (figure sources4).

Table 1 shows the dimensionality on state (dim(s)) and action (dim(a)), along with
a brief description of the tasks (Brockman et al., 2016) . The state space is unbounded,
and the action space is in general bounded within (−1, 1) in each dimension, except for
Humanoid-v2 whose action is bounded within (−0.4, 0.4).

4. https://gym.openai.com/envs/Ant-v2/ and https://gym.openai.com/envs/Humanoid-v2/
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Figure 2: Rendering of simulated environments in Ant-v2 (left) and Humanoid-v2 (right).

Task name dim(s) dim(a) Description

Ant-v2 111 8 Make a 3D four-legged robot walk forward as fast as possible.
Hopper-v2 11 3 Make a 2D one-legged robot hop forward as fast as possible.
Humanoid-v2 376 17 Make a 3D bipedal robot walk forward as fast as possible.
Walker2d-v2 17 6 Make a 2D bipedal robot walk forward as fast as possible.

Table 1: Brief information of the locomotion tasks.

Appendix C. Hyperparameters

C.1 SAC Hyperparameters

For SAC-v1 and SAC-v2, we directly use their original hyperparameters (refer to Section
D in the appendix of SAC-v2 (Haarnoja et al., 2018b)). Specifically, we parameterize the
policy network θ and the Q network φ both with a MLP of two hidden layers, with 256
neurons and the ReLU (Nair and Hinton, 2010) activation for each layer. The action output
of the policy network is parameterized by a squashed Gaussian (Haarnoja et al., 2018a) with
the same output range as the action space, where the mean and the diagonal covariance
matrix are learnable parameters.

We use a batch size of 256 and the Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 3 · 10−4. The discount factor γ is 0.99, the target smoothing coefficient τ is
0.05, and the replay buffer size is 106. The start step TS is 10000 for each task.

Table 2 shows the hyperparameters that are different for each task in the baseline SAC
algorithms.

Ant-v2 Hopper-v2 Humanoid-v2 Walker2d-v2

temperature α for SAC-v1 0.2 0.2 0.05 0.2
entropy target H for SAC-v2 -8 -3 -17 -6
training timesteps (in Million) 3 1 10 3

Table 2: Hyperparameters that are different for each task in SAC.

C.2 Meta-SAC Hyperparameters

The hyperparameters that are different from SAC to Meta-SAC are listed as follows:
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• We change the policy optimizer to RMSProp (Hinton et al.) with ε = 10−12 for better
performance, and keep the same learning rate in Meta-SAC. Note that SAC performs
similarly under both Adam and RMSProp. The main reason that we use RMSProp
is that our implementation requires backpropagating through the update process of
the optimizer, and the update rule of RMSProp is more numerically stable during
backpropagation compared with Adam.

• The metaparameter, the entropy temperature α is parameterized in the form of logα,
and we clip its value to be below zero. This ensures 0 < α ≤ 1.

• The learning rate for logα is 3 · 10−4, which is kept to be the same as the learning rate
of the policy or the Q function. Its gradient norm is clipped below 0.05 to stabilize
training.

• The size of replay buffer D0 is same as batch size 256.

It should be emphasized that though we introduce several extra hyperparameters, we
keep all of them the same value across different tasks, whereas SAC-v1 and SAC-v2 have to
choose different values of the entropy temperature α or the entropy target H in each task.

Appendix D. Ablation Studies on Meta Objective

In this section, we aim to answer the third question that we proposed in the main paper:
How effective is the proposed new meta objective? We do the ablative analysis under the
same experiment setting as Meta-SAC except for the meta objective.

D.1 Ablation Study on Using Initial States

First we test the effectiveness of using the environment initial states instead of arbitrary
states in the meta loss. The result is shown in the first row of Figure 3. As can be seen, using
the environment initial states significantly boost the performance of Meta-SAC, especially
in Ant-v2 and Humanoid-v2.

D.2 Ablation Study on Resampling

Then we test how the Meta-SAC performs if we change the soft-Q value used in Eq. 8 to
the classic Q-value. The result is shown in the second row of Figure 3. As can be seen,
when using the classic Q-function in the meta-loss, the performances degrades obviously
in Ant-v2 and Walker2d-v2. We suspect the reason is that such a meta loss discourages
exploration and thus hurts the performance.

D.3 Ablation Study on Using Soft-Q Value

Finally, we test how the Meta-SAC performs if we change the soft-Q value used in Eq. 8
to the classic Q-value. The result is shown in the third row of Figure 3. As can be seen,
when using the classic Q-function in the meta-loss, the performances degrades obviously
in Ant-v2 and Walker2d-v2. We suspect the reason is that such a meta loss discourages
exploration and thus hurts the performance.
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(a) Ablation study on using arbitrary states (red curve) in the meta loss.
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(b) Ablation study on not using resampling (red curve) in the meta loss.
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(c) Ablation study on using classic Q (red curve) in the meta loss.

Figure 3: Ablation studies on meta objective.
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Appendix E. Ablation Study on Small Alpha in SAC-v1 on Humanoid

Figure 4 shows the result of SAC-v1 with different fixed alpha varying from e−3 ≈ 0.05
to e−7 ≈ 0.001 by grid search on log scale on Humanoid-v2 task. We can see that simply
decaying alpha will only worsen the final performance. Therefore, the early stage of meta-
SAC where it maintains a high value of alpha to help exploration does contribute to its good
performance.
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Figure 4: Ablation study on small alpha in SAC-v1 in Humanoid-v2.
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