
7th ICML Workshop on Automated Machine Learning (2020)

‘Algorithm-Performance Personas’ for Siamese
Meta-Learning and Automated Algorithm Selection

Bryan Tyrrell tyrrelbr@tcd.ie
Trinity College Dublin, Ireland

Edward Bergman ebergman@tcd.ie
D-REAL, ADAPT Centre, Trinity College Dublin, Ireland

Gareth J. F. Jones gareth.jones@dcu.ie
ADAPT Centre, School of Computing, Dublin City University, Ireland

Joeran Beel joeran.beel@uni-siegen.de

University of Siegen, Department of Computer Science, Germany

& Trinity College Dublin, School of Computer Science and Statistics, ADAPT, Ireland

Abstract

We propose a new method of per-instance algorithm selection which can improve overall
performance on machine learning tasks, surpassing traditional methods which often search
and a select a single algorithm for use over an entire dataset. A prevailing challenge with
algorithm selection however is to provide an accurate performance ranking of algorithms
given some new instance or dataset with common methods involving meta-learning, clas-
sification and regression. Our proposed method, Siamese Algorithm Selection, is to train
a Siamese Network to learn an embedding of instances, clustering according to both fea-
ture similarity and prior algorithm performances. These clusters which we dub Algorithm
Performance Personas (APP) enable classic neighbourhood methods to then be used in
generating an algorithm ranking for new instances. We find that our method works and
successfully outperformed the best single algorithm by reducing MAE by 15%, on par with
the performance of our baseline. We then investigate individual algorithm selection rates
and conclude with directions for future work.

1. Introduction

The idea of meta-learning for automatic algorithm selection is by no means new and has
shown to be effective in machine learning (Feurer et al., 2015; Mohr et al., 2018; Tu, 2018),
information retrieval (Beel and Kotthoff, 2019; Ferro et al., 2018; He and Ounis, 2004;
Mackenzie et al., 2018), recommender systems (Beel et al., 2019; Im and Hars, 2007; Luo
et al., 2020), data mining (Tripathy and Panda, 2017) and material sciences (Jain et al.,
2020). Often the problem is presented as a ranking one, given some new dataset, how
do you predict the performance rankings of a pool of algorithms. Some early techniques
worked to regress algorithm performances directly (Bensusan and Kalousis, 2001) with later
work instead predicting relative rankings (Todorovski et al., 2002), incorporating dataset
metafeatures (Matuszyk and Spiliopoulou, 2014) and learning dataset similarity with prior
algorithm performances (Kim et al., 2017). Recently, there has been some work to instead
focus on a per-instance approach which aims to make use of the fact that empirically, no
single algorithm will perform best across all tasks (Kotthoff et al., 2015).

c©2020 .

Tyrrell et al.

Our proposed method Siamese Algorithm Selection 1 contributes in three main ways,
(1) A novel per-instance selection method incorporating Siamese Neural Networks to learn
instance similarity trained on algorithm performances. (2) The concept of an ’Algorithm
Performance Persona’ (APP), which corresponds to clusters of similar performing instances.
(3) A normalization of algorithm performances, accounting for cases of only small differ-
ences in their relative performances.

2. Related Work

One approach to per-instance selection we draw from is to incorporate algorithm char-
acteristics. The work of Pulatov and Kotthof (2019a) investigates this in the domain of
SAT solvers, training a regression model on algorithm source code and instance features
to predict a solver for each instance. From this, they achieved a 95% reduction in time
spent solving when compared to the single best algorithm, however, later experiments (Pu-
latov and Kotthoff, 2019b) found mixed and inconsistent results for other datasets, these
inconsistencies motivate us to try a Siamese Architecture instead.

The prior performance of algorithms have also shown to be a useful characteristic as
shown by Lobjois and Lemaitre (1998) and Bensusan and Giraud-Carrier (2000) who both
model prior evaluations of algorithms to infer which algorithm is best for unseen instances.
Xu et al. (2008) put this to great use in the 2008 SAT competition, training on histor-
ical algorithm performances from previous competitions to create a winning per-instance
selection model. This is however quite domain specific, warranting further investigation.

The use of Siamese Neural Networks (SNN) was originally used to identify signature
similarity (Bromley et al., 1994) but has since found its way with success in object tracking
(Bertinetto et al., 2016), sentence similarity (Mueller and Thyagarajan, 2016) and speaker
recognition (Chen and Salman, 2011). The work of Kim et al. (2017) trains a SNN to
recognize dataset similarity by the performance of different acquisition functions, allowing
them to warm-start algorithm configuration for new datasets. We extend this idea, consider
the use of SNN for algorithm selection on a per-instance level rather than a per-dataset one.

3. Siamese Algorithm Selection

Siamese Algorithm Selection consists of two main parts, a Siamese Neural Network (SNN)
that embeds instances to a space S and a nearest-neighbours algorithm to assign to each un-
seen embedded instance si ∈ S an algorithm from a pool of algorithms A = {A(1), . . . ,A(m)}.
We train our SNN from Algorithm Performance Personas (APP), clusters of points for which
algorithms performed similarly to create said clusters in the embedding space S. For an
unseen instance dnew, to select an algorithm to run on said instance, we embed it with our
SNN to get its embedding snew and select the algorithm A(j) which most often performed
best for the embeddings k-nearest neighbours.

1. We originally propose the idea in Beel et al. (2020) but this paper marks the first implementation and
evaluation of this method.

2

AutoML@ICML Algorithm Performance Personas

3.1 Training

To train our SNN we first take each instance di in Dtrain and evaluate the performance of

every algorithm in A to obtain a vector of performances pi = [p
(1)
i , . . . , p

(m)
i] where p

(j)
i is

the performance of algorithm A(j) on instance di. We then train our SNN with instance-
performace pairs (da, pa) , (db, pb), with a contrastive loss function (Hadsell et al., 2006) to
classify positive and negative pairs, positive pairs having their embeddings sa, sb brought
closer while negative pairs have their embeddings drawn apart. This classification of pairs
is determined by a margin of both their feature distance and performance vector distance.

3.2 Normalizing performances

Instead of directly using pi when classifying points, we normalize them first. We combine
what we refer to as relative intra-instance performance (RIIP) and max-possible relative
error (MPRE). RIIP and MPRE are to account for relative algorithm performances and
the possible scale of performances respectively, helping to separate performances with little
difference between each algorithm. These metrics target error specifically and are reliant on
a label for each instance but this can be dataset dependant. For an extended discussion on
why the use of standard cosine distance and euclidean distance do not suffice, please refer
to Appendix C.

The maximum possible error an algorithm can make for an instance di is factored in

by MPRE and is defined as p
(j)
i /εi with the maximum possible error expressed as εi =

max (Bmax − yi, yi −Bmin), the greatest possible difference a prediction can have from the
label yi bounded in [Bmin, Bmax].

RIIP is calculated as mink p
(k)
i /p

(j)
i , scaling prediction errors to the range [0, 1] with

the minimum algorithm error at 1 and greater errors approaching 0. If we represent our

final normalized performances as p̃i = [p̃
(1)
i , . . . , p̃

(m)
i] we have that each performance is

normalized according to

p̃
(j)
i =

(
1−

p
(j)
i

εi

)
·

mink p
(k)
i

p
(j)
i

(1)

3.3 Learned APPs through Example

We train our SNN to take a pair of instances da, db to their embeddings sa, sb whose dis-
tance encode their APP similarity to one another. As training relies on pair comparisons
(Appendix A), if we were to consider all n2 possible pairs, training time would become
cost prohibitive. We instead choose to identify 4 kinds of pairs for training, easy-positive,
hard-positive, easy-negative and hard-negative. Using the distance between their normalized
performance vectors ‖p̃i − p̃j‖, we classify the pair as positive if they are close and negative
if they are far. Depending on the distance distance of their features ‖di − dj‖, we similarly
classify them as being easy if they are close and hard in far. These margins for far and
close are considered hyperparemeters of the model and can also be used to reduce training
time though a finer selection of pairs considered.

3

Tyrrell et al.

3.4 Per-Instance Algorithm Selection

We have trained our SNN to embed instances to their APPs such that they are in close
proximity. If we reconsider our problem of per-instance algorithm selection, we have a
straightforward method to evaluate algorithm selection for any unseen instance. For some
unseen instance di in Dtrain, Siamese Algorithm Selection will obtain its embedding si,
consider its k-nearest neighbours in S and choose the algorithm which performed best over
all neighbours, counting lower ranks in cases of a tie.

4. Methodology

For our implementation, we use the Lending Club Loan dataset (Kan, 2019). We chose
this dataset due to its large number of columns and rows, 145 and 2.26 million respectively.
As our prediction label we chose the interest rate. Our final processed dataset, consisted
of 2.13 million rows and 74 columns, detailed preprocessing steps can be found in the
provided code (Appendix E). We further select 50,000 instances to create Dalgo for training
the algorithms with the remaining data randomly split 90/10 where Dtrain consists of 1.872
million instances and Dtest with 208 thousand instances.

We considered 8 regression algorithms which were optimized and trained using Dalgo.
Each trained algorithm was then evaluated and their predictions recorded for every instance
in Dtrain and Dtest. The performance of each algorithm was considered as the absolute error
between the algorithms prediction and the label. We then normalize these performances
according to our RIIP metric (eq. 1). the final performance ranks of all algorithms can be
seen in table D of the appendix. Further details of algorithms used, the size of Dalgo and
their r-squared accuracies are listed in Appendix D.

Instances from similar performance personas where identified and paired as positive
training pairs for our Siamese Neural Network. To achieve this, we implemented the idea
discussed in section 3.3 of hard and easy positives by using distance thresholds.

The SNN architecture consisted of 4 layers with 40, 20, 20, 8 respectively. All layers used
a ReLU activation function with the exception of the final layer which is our output layer.
The contrastive loss function, also known as pairwise ranking loss, was used to train the
network’s weights using the standard ADAM optimizer.

We then generated the embedding of each instance in Dtrain, serving as points for our
k-nearest neighbours algorithms. We also modify the amount of neighbours considered
with k ∈ {3, 5, 16, 32, 128}. To choose the algorithm for instances of Dtest we obtain their
k-nearest neighbours and do a most often vote, choosing the algorithm that most often
performed best across all of its neighbours. In the event of a tie, lower ranks were taken
into consideration to select a suitable algorithm.

For comparison, our approach was measured against a Random Forest (RF) regression
baseline which we implemented based on work from Pulatov and Kotthof (2019a). This
baseline was trained to predict the error vectors directly, trained on the set Dtrain and
evaluate on Dtest, the same as our SNN. We also consider an oracle baseline, a theoretically
perfect algorithm with 100% selection accuracy on Dtest. The oracle produces the lowest
possible MAE for a perfect algorithm selection given our fixed set of algorithms A.

4

AutoML@ICML Algorithm Performance Personas

5. Results

We find that our Siamese Algorithm Selection method works and successfully outperforms
any single algorithm. We compare and discuss its performance with the three single best
performing algorithms with the remaining 5 omitted due to worse performance. We also
compare this with the RF baseline and oracle baseline.

Algorithm MAE Reduction in MAE Selection Accuracy

RF Regressor 0.549 −158.96% 8.5%
CatBoost 0.236 −11.32% 31.9%
MLP Regressor 0.212 0% 34.7%

SNN with 3-NN 0.211 0.47% 41.8%
SNN with 5-NN 0.201 5.18% 42.5%
SNN with 16-NN 0.194 8.49% 42.8%
SNN with 32-NN 0.186 12.26% 43.0%
SNN with 128-NN 0.180 15.09% 43.2%
RF baseline 0.176 16.98% 50.0%
Oracle Selection 0.088 58.49% 100.0%

Table 1: The mean absolute error (MAE), the percentage reduction in MAE from the best
performing algorithm MLP Regressor, selection accuracy of our Siamese Algorithm
Selection and baseline.

We found that an oracle baseline, one which correctly selects the best performing algo-
rithm for each instance, would lead to a 58% reduction in MAE over choosing the single
best algorithm, MLP Regressor. Siamese Algorithm Selection with 128 neighbours manages
to achieve a 15% reduction in MAE, a definite improvement over the single best algorithm.
The RF baseline performed slightly better than our Siamese Algorithm Selection approach,
reducing possible MAE by 17% with a higher selection accuracy of 50%.

Algorithm Oracle RF Baseline Siamese Algorithm Selection

MLP Regressor 34.73 % 47.33 % 47.07 %
CatBoost 31.90 % 31.95 % 44.43 %
Random Forest 8.56 % 7.57 % 3.57 %
Lasso 7.04 % 4.27 % 1.85 %
SGD 5.91 % 4.75 % 1.36 %
RANSAC 5.64 % 1.16 % 1.07 %
Gradient Boosting 3.36 % 1.46 % 0.36 %
AdaBoost 2.85 % 1.51 % 0.25 %

Table 2: A comparison between the algorithm selections of Siamese Algorithm Selection
with 128 neighbours, the Random Forest baseline and an oracle selection.

5

Tyrrell et al.

We can see that the SNN has learned to identify some APPs with its selection accuracy
from table 1 of 8.5% above choosing the single best algorithm. While increasing neighbours
we found that selection accuracy remains around 42% for 3, 5, 16, 32, 128 neighbours but its
MAE begins to improve. As part of our investigation as to why, we consider the percentage
that each single algorithm was selected in Table 2.

From table 2, 91% of the total algorithm selection for Siamese algorithm selection con-
sisted of CatBoost and MLP Regressor. While these algorithms should be selected most
often due to their high performance, it shows an over reliance on stronger performing algo-
rithms. This would explain why accuracy did little to improve but MAE decreased as these
two algorithms generally provided a good prediction for each instance, even if not the best.

6. Summary and Future Work

Our Siamese Algorithm Selection method, consisting of a Siamese Neural Network trained
with ’Algorithm Performance Personas’ (APP) and a novel normalization method success-
fully identified APPs of instances, to reduce the MAE by 15% over that of the single best
algorithm. We have shown that distance in the performance space can be leveraged for
training a neural network to transform instance features into embeddings, where distance
of embeddings correlates with distance in performance space. This approach has shown to
be useful and a promising future direction for per-instance algorithm selection.

While the results show promise for further optimization on our dataset, a comprehensive
look over multiple datasets are required to assess the generality of our method. The OpenML
dataset (Bischl et al., 2019) would be a promising direction for both standardized datasets
but also to incorporate more information regarding algorithm performances.

We proposed a new metric to normalize performances, taking into account both the
maximum possible error and the relative sizes of error. In practice this has worked for us
but we recognize a potential divide by 0 in the case of an algorithm achieving no error.
Improvements to the metric should be considered for future work.

We used a k-nearest neighbours with fixed neighbour sizes to determine APP clusters in
the embedding space. APP clusters have no upper or lower bound on size and as such we
would like to explore alternative approaches such as distance weighted k-nearest neighbours
and variable sized clustering approaches.

Acknowledgments

This research was partly conducted with the financial support of the ADAPT SFI Research
Centre at Trinity College Dublin. The ADAPT SFI Centre for Digital Media Technology
is funded by Science Foundation Ireland through the SFI Research Centres Programme
and is co-funded under the European Regional Development Fund (ERDF) through Grant
#13/RC/2106. This work was also conducted with the financial support of the Science
Foundation Ireland Centre for Research Training in Digitally-Enhanced Reality (D-REAL)
under Grant No. 18/CRT/6224. We are further grateful for the support from and discus-
sions with Andrew Collins and Shahad Nagoor.

6

AutoML@ICML Algorithm Performance Personas

References

Joeran Beel and Lars Kotthoff. Preface: The 1st interdisciplinary workshop on algorithm
selection and meta-learning in information retrieval (amir). In Proceddings of The 1st
Interdisciplinary Workshop on Algorithm Selection and Meta-Learning in Information
Retrieval (AMIR), pages 1–9, 2019.

Joeran Beel, Alan Griffin, and Conor O’Shey. Darwin & goliath: Recommendations-as-a-
service with automated algorithm-selection and white-labels. In 13th ACM Conference
on Recommender Systems (RecSys), 2019.

Joeran Beel, Bryan Tyrell, Edward Bergman, Andrew Collins, and Shahad Nagoor. Siamese
meta-learning and algorithm selection with ‘algorithm-performance personas’ [proposal].
arXiv:2006.12328 [cs.LG], 2020.

Hilan Bensusan and Christophe Giraud-Carrier. Discovering Task Neighbourhoods through
Landmark Learning Performances. In Djamel A. Zighed, Jan Komorowski, and Jan
Żytkow, editors, Principles of Data Mining and Knowledge Discovery, Lecture Notes
in Computer Science, pages 325–330. Springer, 2000. ISBN 978-3-540-45372-7. doi:
10.1007/3-540-45372-5 32.

Hilan Bensusan and Alexandros Kalousis. Estimating the Predictive Accuracy of a Classi-
fier. In Luc De Raedt and Peter Flach, editors, Machine Learning: ECML 2001, Lecture
Notes in Computer Science, pages 25–36. Springer, 2001. ISBN 978-3-540-44795-5. doi:
10.1007/3-540-44795-4 3.

Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S.
Torr. Fully-Convolutional Siamese Networks for Object Tracking. 2016. URL http:
//arxiv.org/abs/1606.09549.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. OpenML Benchmarking Suites.
2019. URL http://arxiv.org/abs/1708.03731.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Sig-
nature verification using a” siamese” time delay neural network. In Advances in neural
information processing systems, pages 737–744, 1994.

Ke Chen and Ahmad Salman. Extracting Speaker-Specific Information with a Regularized
Siamese Deep Network. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
24, pages 298–306. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4314-extracting-speaker-specific-information-with-a-regularized-siamese-deep-network.
pdf.

Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A Konstan, Pablo Castells, Eliz-
abeth M Daly, Thierry Declerck, Michael D Ekstrand, Werner Geyer, Julio Gonzalo,
et al. From evaluating to forecasting performance: How to turn information retrieval,
natural language processing and recommender systems into predictive sciences. Dagstuhl
manifestos, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2962–2970. Curran Associates, Inc., 2015.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an Invariant
Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Volume 2 (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006. ISBN
978-0-7695-2597-6. doi: 10.1109/CVPR.2006.100. URL http://ieeexplore.ieee.org/
document/1640964/.

Ben He and Iadh Ounis. Inferring query performance using pre-retrieval predictors. In
International symposium on string processing and information retrieval, pages 43–54.
Springer, 2004.

7

http://arxiv.org/abs/1606.09549
http://arxiv.org/abs/1606.09549
http://arxiv.org/abs/1708.03731
http://papers.nips.cc/paper/4314-extracting-speaker-specific-information-with-a-regularized-siamese-deep-network.pdf
http://papers.nips.cc/paper/4314-extracting-speaker-specific-information-with-a-regularized-siamese-deep-network.pdf
http://papers.nips.cc/paper/4314-extracting-speaker-specific-information-with-a-regularized-siamese-deep-network.pdf
http://ieeexplore.ieee.org/document/1640964/
http://ieeexplore.ieee.org/document/1640964/

Tyrrell et al.

Il Im and Alexander Hars. Does a one-size recommendation system fit all? the effectiveness
of collaborative filtering based recommendation systems across different domains and
search modes. ACM Trans. Inf. Syst., 26(1), #nov# 2007. ISSN 1046-8188. doi: 10.
1145/1292591.1292595. URL http://doi.acm.org/10.1145/1292591.1292595.

Vivek Jain, Alex Tyrrell, Hud Wahab, Lars Kotthoff, and Patrick Johnson. In-situ raman
investigation of laser-induced graphene using machine learning. Bulletin of the American
Physical Society, 2020.

Wendy Kan. Lending club loan data, 2019. URL https://www.kaggle.com/wendykan/
lending-club-loan-data.

Jungtaek Kim, Saehoon Kim, and Seungjin Choi. Learning to warm-start bayesian hyper-
parameter optimization. In NIPS 2017 Workshop on Bayesian Optimization, 2017.

Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Trautmann. Improving the State of
the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection. In Clarisse Dhae-
nens, Laetitia Jourdan, and Marie-Eléonore Marmion, editors, Learning and Intelligent
Optimization, Lecture Notes in Computer Science, pages 202–217. Springer International
Publishing, 2015. ISBN 978-3-319-19084-6. doi: 10.1007/978-3-319-19084-6 18.

Lionel Lobjois and Michel Lemaitre. Branch and Bound Algorithm Selection by Performance
Prediction. page 6, 1998.

Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng, and Zhen-
guo Li. Metaselector: Meta-learning for recommendation with user-level adaptive model
selection. arXiv preprint arXiv:2001.10378, 2020.

Joel Mackenzie, J Shane Culpepper, Roi Blanco, Matt Crane, Charles LA Clarke, and
Jimmy Lin. Query driven algorithm selection in early stage retrieval. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining, pages
396–404, 2018.

Pawel Matuszyk and Myra Spiliopoulou. Predicting the Performance of Collaborative Fil-
tering Algorithms. In Proceedings of the 4th International Conference on Web Intelli-
gence, Mining and Semantics (WIMS14), WIMS ’14, pages 1–6. Association for Com-
puting Machinery, 2014. ISBN 978-1-4503-2538-7. doi: 10.1145/2611040.2611054. URL
https://doi.org/10.1145/2611040.2611054.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8-10):1495–1515, 2018. doi: 10.1007/
s10994-018-5735-z. URL https://doi.org/10.1007/s10994-018-5735-z.

Jonas Mueller and Aditya Thyagarajan. Siamese Recurrent Architectures for Learning
Sentence Similarity. In Thirtieth AAAI Conference on Artificial Intelligence, 2016. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12195.

Damir Pulatov and Lars Kotthof. Utilizing software features for algorithm selection. In
COSEAL Workshop, co-located with the 15th ACM/SIGEVO Workshop on Foundations
of Genetic Algorithms, 2019a.

Damir Pulatov and Lars Kotthoff. Modelling Algorithmic Performance. 2019b.

Ljupco Todorovski, Hendrik Blockeel, and Saso Dzeroski. Ranking with Predictive Clus-
tering Trees. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen, editors, Machine
Learning: ECML 2002, Lecture Notes in Computer Science, pages 444–455. Springer,
2002. ISBN 978-3-540-36755-0. doi: 10.1007/3-540-36755-1 37.

Murchhana Tripathy and Anita Panda. A study of algorithm selection in data mining using
meta-learning. Journal of Engineering Science & Technology Review, 10(2), 2017.

Wei-Wei Tu. The 3rd automl challenge: Automl for lifelong machine learning. In NIPS
2018 Challenge, 2018.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm
Selection for SAT. 32:565–606, 2008. ISSN 1076-9757. doi: 10.1613/jair.2490. URL
https://jair.org/index.php/jair/article/view/10556.

8

http://doi.acm.org/10.1145/1292591.1292595
https://www.kaggle.com/wendykan/lending-club-loan-data
https://www.kaggle.com/wendykan/lending-club-loan-data
https://doi.org/10.1145/2611040.2611054
https://doi.org/10.1007/s10994-018-5735-z
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12195
https://jair.org/index.php/jair/article/view/10556

AutoML@ICML Algorithm Performance Personas

Appendix A. Siamese Neural Networks for Few-Shot Image Classification

Siamese Neural Network architectures are successful in few-shot learning, particularly for
metric learning for image classification. The goal of few-shot image classification is to
classify images for which only few labelled samples exist – too few to train a model in the
traditional way. Figure 1 illustrates this concept. The labelled dataset has images of the
two persons ‘Arnold Schwarzenegger’ (photos 1 and 2) and ‘Joeran Beel’ (photos 3, 4, and
5), and there could be hundreds of classes more, each with only a few labelled images.
A traditional (deep) machine learning algorithm (e.g. a CNN) would have difficulties in
learning the classes with just few samples per class. In the example, the unlabeled image 6
likely would be misclassified as its features (pixels, color space, etc.) are more similar with
photos of the class ‘Arnold Schwarzenegger’ then the correct class ‘Joeran Beel’.

Figure 1: Illustration of a few-shot image classification dataset with only few images for
each class.

To address this challenge, Siamese Neural Networks learn to calculate the similarity
between any two data points, instead of learning to predict a class directly. This learned
similarity function can be applied to any two datapoints including one unlabeled and one
labelled data-point. If the distance between the unlabeled data point and the know data
point is smaller than the margin α, the unabelled data point is assumed to be of the same
class as the data point within close distance.

In the example, the Network would learn that images 1 and 2 are similar/identical and
that images 3, 4 and 5 are similar – even if their actual features (color etc.) differ. Such
a similarity function would more likely be able to predict that the unlabeled image 6 is
similar to image 3, 4, and 5 and consequently assign the correct class to image 6. When
trained on many classes, each having a few samples, Siamese Neural Networks achieve high
accuracies.

9

Tyrrell et al.

Figure 2: Siamese Neural Network Illustration for Image Classification

The training of the Siamese Neural Network is conducted as follows. One network
received an ‘anchor’ image and a ‘positive’ training sample as input. The other network
receives the same anchor image and a negative sample as input. The two networks are then
trained to output embeddings that are close to each other (< α) in the embedding space
for the positive example, and far from each other (> α) for the negative example. For new
unlabelled instances, the network transforms the image features into an embedding, and
predicts the class based on the class of those image(s) being closest to the input image in
the embedding space.

A.1 Illustration of the Architecture and Example

The overall idea of our approach is illustrated in 3. Given is a dataset D with n data points
dpi (figure 3, Top-Left). Each data point dpi has m features and a target t (in our case a
discrete number, e.g. the rating of a movie). Given is further the predicted targets of two
algorithms a1 and a2, their corresponding absolute prediction errors (—target-predicted
target—) and the rank, i.e. which of the two algorithms performed best on the given data
point.

In the given example, data points dp1 and dp2 are not similar in terms of features (red),
but the algorithms a1 and a2 perform alike on them (green). By “perform alike” we mean
that the same algorithm performs best (a2), and prediction errors of the two algorithms
are similar (e.g. a1 and a2 have errors of 9 (a1) and 1 (a2) on dp1 and of 8.5 (a1) and 1.5
(a2) on dp2). In contrast, dp4 and dp5 have similar features, but the algorithms perform
different on them.

The overall goal is to make a network learn that e.d. dp1 and dp2 are similar regardless
of their features. Or, in other words, given that, based on the performance dp1 and dp2
are similar by definition, the network shall learn to transform the not-similar features into
embedding vectors that actually are similar.

All instances in the dataset are plotted in the performance space (3, Top-Right). In
this example, the performance space has only two dimensions and uses the prediction error
as metric. Instances that are close to each other in the performance space represent the
same Algorithm-Performance-Persona. For instance, dp3 and dp4 are very close in the

10

AutoML@ICML Algorithm Performance Personas

performance space and represent APP 1. Both these datapoints are then taken as inputs
dpA and dpP for the Siamese Neural Network (3, Bottom-Left). Another datapoint (e.g.
dp1) is taken as negative input dpN to the network. The network then learns to transform
dpA, dpP , dpN into the embeddings a,p,n so that d(a, p) < α and d(a, n) > α.

Figure 3: Illustration of Algorithm Performance Persona

Appendix B. APP vs Cluster

On first glance, an Algorithm Performance Persona may seem similar or identical to a
cluster. However, as we will show later, clustering is not a suitable technique to identify
Algorithm Performance Personas. Also, we believe that a novel term is needed to express
our idea as the term ‘cluster’ is associated to the machine learning clustering techniques,
and we are optimistic that in the future many different concepts may be proposed to identify
APPs. The approach we will propose is just one of potentially many.

Clustering may seem as obvious choice to identify Algorithm Performance Personas,
and hence training pairs. The data points in the performance space could be clustered, and
data points of the same cluster could be used as positive training pairs (figure 4). Data
points from other clusters could be used as negative samples. We would expect though
that clustering will not perform optimally for two reasons (5). First, there likely would be
clusters with data points for which different algorithms perform best. This likely would not
lead to precise prediction later about which algorithms will perform best for a new data

11

Tyrrell et al.

Figure 4: Clustering data points in the performance space to identify positive and negative
training samples

point. Second, the distance between two data points in the same cluster might be larger
than the distance between data points in different clusters. Treating data points in different
clusters but close distance as different Personas is counter-intuitive.

centering

Figure 5: Potential problems when using clustering

In image classification, the selection of positive and negative training pairs is relatively
straight forward. Two photos either are of the same class, i.e. they show the same person
(positive sample), or they are not (negative sample). For algorithm selection, the sample
selection is not that clearly given, i.e. an equivalent is needed to a ‘person’ in image
classification

12

AutoML@ICML Algorithm Performance Personas

Appendix C. MAE vs our Novel Metric

There are two rather obvious metrics for the performance space: the ranking of algorithms
from 1 to n and the actual performance of an algorithm (e.g. MAE, Accuracy, Precision,
. . .). However, we consider both choices as suboptimal and will demonstrate in the following
section why that is. We then present a novel metric. Since we define the performance space
as a vector space, Cosine and Euclidian distance are two rather obvious choices to measure
similarity.

Figure 6: Performance Space based on Absolute Error

The relative intra-instance performance (RIIP) measures how well an algorithm performs
compared to the other algorithms. For every data point, the best performing algorithms
achieves a RIIP of 1 (or 100%). The other algorithms receive values between 0 and 1,
indicating how close their original performance is to the best performing one. For instance,
a1 has an error of 8.5 on dp2 while a2 has an error of 1.5. This means, a1 only is 18%
as good as algorithm 2, and hence RIIP is 0.18 or 18%. RIIP is inspired by other similar

13

Tyrrell et al.

metrics for pairwise comparisons and landmarkers, which are relatively commonly used for
automated algorithm selection. However, to the best of our knowledge the metrics were
used in different contexts, and typically for binary comparisons. Also, RIIP alone is not
sufficient for our purpose.

Figure 7: Performance Space based on our novel metric

The Max-Possible Relative-Error (MPRE) takes into consideration that for different
data points the scale may vary. This is true for many regression problems, particularly in
the field of recommender systems. For instance, for movie recommendations, ratings are
often made on a scale between 1 and 10 (or other bounded scales). If the actual target rating
is 4, then the maximum possible error an algorithm could make is 6 (if the algorithm predicts
10). However, if the actual rating is 9, then the maximum possible error an algorithm can
make is 8 (if 1 is predicted). In our example, the absolute errors for dp5 and dpn are
identical (0.9 and 0.1 respectively). However, the target for dp5 is 10, and for dpn is 5.
Hence, we would argue that the algorithms performed better on dp5 than on dpn. For dp5,
the algorithms are only 9% and 1% off the actual target, while for dpn the algorithms are off

14

AutoML@ICML Algorithm Performance Personas

18% and 2% respectively. MPRE takes this into consideration by expressing an algorithm’s
performance based on the error relative to the maximum possible error. Of course, this
metric is only relevant for scenarios where different data points have different maximum
possible errors.

Figure 8: 1,000 Samples Plotted to the Performance Spaces (2 Dimensions Each); Mean
Absolute Error

Appendix D. Algorithm Training

A varied suite of algorithms was selected to try minimize the absolute error of each predicted
label using the strengths of each algorithm. Each algorithm was optimized using gridsearch
cross validation where possible to find the optimal hyper parameters. The final performance
of each algorithm was measured using R squared accuracy shown in table 3 below.

15

Tyrrell et al.

Algorithm R-Squared Accuracy

Lasso 0.96 %
SGD 0.95 %
MLP Regressor 0.99 %
CatBoost 0.99 %
Random Forest 0.97 %
AdaBoost 0.86 %
RANSAC 0.96 %
Gradient Boosting 0.84 %

Table 3: The R-Squared accuracy of each algorithm on the 50,000 instances they were
trained on.

It is clear that the MLP Regressor and Catboost perform considerably better compared
to other regression algorithms in the suite. A learning curve was created to measure a
saturation point in terms of amount of data supplied to the models. A final value of
50,000 instances was chosen as training data for the algorithm suite. Above this value
little to no accuracy increase was observed at the cost of increased training time. Once
each algorithm was trained, it was asked to predict a label for the remaining 1.8 million
instances. The absolute error from each prediction was calculated and the performance
rank of each algorithm measured against its peers is shown in Table 4.

Rank Lasso % SGD % CatBoost % MLP % Random Forest % Ada Boost % RSNAC % Gradient Boosting %

-1st 5.91 7.04 31.90 34.73 8.56 2.85 5.64 3.36
2nd 7.38 7.45 29.32 28.68 10.20 4.27 7.42 5.28
3rd 10.85 9.84 16.36 16.14 19.05 6.41 12.16 9.19
4th 18.66 12.37 9.60 9.41 19.04 6.71 17.54 6.67
5th 25.12 12.22 6.43 5.53 17.25 6.35 22.43 4.67
6th 21.00 21.59 4.14 3.48 15.28 8.69 20.67 5.15
7th 9.14 22.83 2.04 1.71 7.64 29.07 10.91 16.65
8th 1.93 6.67 0.21 0.32 2.98 35.64 3.24 49.01

Table 4: Performance of each algorithm at each rank, with 1st being the optimal rank.

Appendix E. Codebase

The codebase along with results for the most recent run presented in the paper is available
at the

link below:
https://github.com/BeelGroup/Algorithm-Performance-Personas

16

	Introduction
	Related Work

	Siamese Algorithm Selection
	Training
	Normalizing performances
	Learned APPs through Example
	Per-Instance Algorithm Selection

	Methodology
	Results
	Summary and Future Work
	Siamese Neural Networks for Few-Shot Image Classification
	Illustration of the Architecture and Example

	APP vs Cluster
	MAE vs our Novel Metric
	Algorithm Training
	Codebase

