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Abstract
Maintaining continued progress in AutoML research requires that we enable and conduct
thorough evaluations of AutoML systems. We outline several fundamental AutoML evalu-
ation practices and present a unified, open-source machine learning framework, upon which
AutoML systems can be built, to enable such evaluations. This framework formalizes ML
programs as end-to-end pipelines with all the necessary components to support ML algo-
rithms from a wide range of diverse libraries and reference tooling for reproducible pipeline
execution. We demonstrate the usability of this framework by presenting brief evaluation
results of eight AutoML systems that use it. Additionally, we have designed and imple-
mented a service, a metalearning database, that stores information about executed ML
programs generated by systems using this framework. Our approach enables the research
community to test hypotheses about the internals of AutoML systems, e.g., how pipeline
search algorithms used by different AutoML systems compare.

1. Introduction

Progress in machine learning (ML) is being published faster than humans can consume it,
driving the community to rely more on automatic machine learning (AutoML) tools. This
motivates us to analyze the AutoML approaches and systems themselves, not just the ML
algorithms. The complexity of such systems, the diversity of modern problem types, and the
variety of ML algorithms all complicate the comparison of AutoML systems. For example,
how can we compare an AutoML system that searches over neural networks with another
that searches over graphical models? These two AutoML systems may differ in the resources
required to run, the speed at which they can build an ML model, the type of data they use,
and the search algorithm used to search the space of models.

Currently, there exist many AutoML systems in both academia and industry (Section 2),
but to advance the state of the art in AutoML, we need increasingly sophisticated evaluation
methods. We first identify several important practices to consider when comparing different
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AutoML systems (Section 3). We then present an ML framework (Section 4), implemented
in Python, upon which AutoML systems can be built, that facilitates evaluations grounded
in these practices. Our framework formalizes ML programs precisely as end-to-end pipelines
with reference pipeline execution tooling and supports ML algorithms from a wide range
of diverse libraries, potentially raw data, diverse data and problem types, a high degree
of reproducibility and execution logging, and the creation of a cross-system metalearning
database. We provide a public metalearning database populated with executed pipeline
information, including the evaluation results presented here. Finally, we discuss (Section 5)
the contributions of this work in the context of related work. The use of this framework in
AutoML systems enables the community to test scientific hypotheses about system designs
and promotes continuous progress in AutoML research. In Appendix A we present brief
evaluation results of eight AutoML systems that use this framework.

2. Related Work

The AutoML community has produced many academic and non-academic systems: Al-
phaD3M (Drori et al., 2018), Auto-sklearn (Feurer et al., 2019), Google Cloud AutoML
(Google), H20 (H2O.ai, 2017), Hyperopt (Komer et al., 2018), Auto-WEKA (Kotthoff et al.,
2018), SmartML (Maher and Sakr, 2019), Auto-Net (Mendoza et al., 2018), auto_ml (Parry,
2018), ML-Plan (Mohr et al., 2018), TPOT (Olson and Moore, 2018), Mosaic (Rakotoarison
et al., 2019), Auto-Meka (de Sá et al., 2018), RECIPE (de Sá et al., 2017), TransmogrifAI
(Salesforce), Alpine Meadow (Shang et al., 2019), The Automatic Statistician (Steinrucken
et al., 2018), ATM (Drevo et al., 2017), Rafiki (Wang et al., 2018), Adaptive TPOT (Evans
et al., 2020), and Oboe (Yang et al., 2019). Some systems focus on neural networks only:
MetaQNN (Baker et al., 2016), DEvol (Davison et al., 2017), Auto-Keras (Jin et al., 2018),
Neural Network Intelligence (Microsoft, 2018), ENAS (Pham et al., 2018), and Neural Archi-
tecture Search (Zoph and Le, 2016). We observe (Elshawi et al., 2019) that their approaches,
even the programming languages, vary significantly, complicating system comparison.

Existing evaluations, including the AutoML Benchmark (Gijsbers et al., 2019), the Au-
toML Challenge Series (Guyon et al., 2018), and another benchmarking study (Balaji and
Allen, 2018), attempt to help practitioners identify strengths and weaknesses of systems
by taking the practical approach of evaluating systems “as-is”, comparing only the predic-
tions of each system’s chosen pipeline. These comparisons, as well as another benchmarking
suite (Bischl et al., 2017), focus on tabular data, consisting primarily of classification and
regression tasks with numeric and categorical data and some missing values, but the Au-
toML Challenge Series also includes various other problem types that are preprocessed to fit
the tabular paradigm. Notably, the AutoML Benchmark evaluates systems given multiple
time budgets, helping demonstrate how AutoML systems evolve with increasingly avail-
able resources. Another study (Zöller and Huber, 2019) used 137 OpenML datasets to
evaluate multiple AutoML systems (auto-sklearn, TPOT, hyperopt-sklearn, RoBO (Klein
et al., 2017), BTB (Gustafson, 2018)). TUPAQ (Sparks et al., 2015) emphasizes large-
scale distributed and scalable machine learning, focusing their evaluation on scalability and
convergence rates.
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3. Towards Better Evaluation of AutoML Systems

AutoML systems should be evaluated with at least as much care as ML algorithms. We iden-
tify critical AutoML evaluation best practices, including: 1) the separation of datasets used
for system development from those used for evaluation, 2) using the same set of ML building
blocks systems use, and 3) standardizing a common ML program description language.

When ML algorithms themselves are evaluated, a common practice is to report its score
on the test data, which is disjoint from the training data used to build the algorithm’s in-
ternal state. Similarly, AutoML system evaluators should take care to split data, which for
AutoML systems is a dataset of datasets. Any dataset used for system evaluation should
not have already been used for system development and fine-tuning. This practice prevents
overfitting and evaluators can demonstrate that systems are capable of automatically gen-
erating functional ML programs on novel datasets, not just on the datasets used during
development. Ideally, evaluations would use k-fold cross-validation over dataset of datasets,
but this is not always possible. It can be computationally too expensive to build AutoML
systems multiple times. Moreover, not all AutoML systems can be automatically build from
training datasets. As an alternative, evaluators can use blind datasets not known to authors
of AutoML systems in advance.

Configuring systems to use the same collection of ML building blocks enables researchers
to test scientific hypotheses about system designs, for example, comparing strategies for ex-
ploring the ML program search space. When two systems search for ML programs using
different collections of ML building blocks, differences in system scores cannot be attributed
to differences in search strategies alone. One system may have exclusive access to an al-
gorithm that performs better on the evaluation datasets. If the other system were to have
access to that same algorithm, it could potentially create that same (better) ML program,
perhaps even sooner.

ML programs produced by systems should be described in a standardized language. This
ensures that systems generate ML programs that contain only the ML building blocks per-
mitted by the evaluators, without extra “glue code” that could leak into final ML programs.
A common language also structures ML program execution semantics so the ML algorithms
are used and composed in expected ways, e.g. one pass over the data, mini-batching for
neural networks, etc. The execution semantic can be extensible to support various execution
semantics, but fixed for any particular evaluation so that differences in ML program scores
cannot be caused by differences in ML program interpretations. Use of a standard language
promotes reproducibility and allows evaluations where AutoML systems produce only ML
programs, not predictions, so that those programs can be trained and scored outside of
systems, assuring equal access to ML building blocks and other resources.

4. Framework for Auto-generated ML Programs

To enable evaluation of AutoML systems as described in Section 3 and to enable a shared
metalearning database between those AutoML systems, we designed and implemented the
framework for auto-generated ML programs expressed as pipelines. We present the frame-
work in more detail in (Milutinovic, 2019) and provide in this section a high-level overview.
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4.1 Pipeline Language

We defined a pipeline as a Directed Acyclic Graph (DAG) of end-to-end steps to execute,
where every step defines its inputs and outputs. There are two main step types: a primitive
step and a sub-pipeline step. The former represents the execution of a basic building block,
a primitive; the latter represents the execution of another pipeline. Pipelines also contain
metadata. See the example pipeline in Appendix D.

4.2 Primitives

A primitive is an implementation of a function that could have parameters (like a classifi-
cation algorithm) or hard-coded logic. In our framework, primitives can be written in any
programming language, but they must expose Python interfaces that need to be extended
from a set of base classes and additional mix-ins. In addition, a primitive defines metadata
describing itself, defines its parameters (state), which are usually learned from sample input
and output data, defines hyper-parameters, which are general configuration parameters that
do not change during the lifetime of a primitive, and defines types of inputs and outputs.

There are two main types of hyper-parameters a primitive can use to define its hyper-
parameters configuration. Tuning hyper-parameters potentially influence the predictive per-
formance of the primitive, e.g., learning rate, depth of trees in a random forest, an ar-
chitecture of the neural network. Control hyper-parameters control the behavior (logic) of
primitives, e..g, whether or not a primitive is allowed to discard the unused columns.

4.3 Data and Metadata

The framework prescribes data types that can be passed between steps in a pipeline. Cur-
rently, a narrow set is allowed (Numpy ndarrays, Pandas DataFrames, Python lists, and
Datasets). The Dataset data type serves as a starting point for a pipeline and can represent
a wide range of input data, including raw data. Data types are extended to support the
storage of additional metadata, for which the framework provides a standardized schema for
many use cases. For example, semantic types are standardized descriptions of the meaning
of the data, not just its representation in memory.

The dataset data type is a unified representation of the inputs that allow us to describe
the relationships among multiple components and hints about how the data should be read.
Some examples where the dataset representation is essential is when the dataset contains
media (image, audio, video) distributed into multiples resources or datasets that are spread
among multiple tables such as graph or relational data.

4.4 Standard Execution Semantics

We have defined a standard execution semantic named fit-produce. It executes the pipeline
in a data-flow manner in two phases: fit and produce. The run of each phase of a pipeline ex-
ecution proceeds in order of its steps, as in Appendix C. The framework provides a reference
runtime to execute pipelines and log their execution into pipeline run documents.
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4.5 Metalearning Database

By design, our framework allows for metalearning across AutoML systems because all
pipelines share the same set of primitives and use the same language to describe the ML
programs. All pipeline run documents can be contributed to a public metalearning database.

5. Discussion

Existing work (Section 2) has attempted to address some of the best practices identified
in Section 3. The AutoML Challenge Series (ChaLearn) (Guyon et al., 2018) conducted
evaluations by running system-submitted code on blind datasets. The AutoML Benchmark
(Gijsbers et al., 2019) attempts to identify which evaluation datasets were also used for
system building, for example, which datasets Auto-sklearn used to build its internal meta-
model. The datasets used in ChaLearn (6 rounds with 5 datasets each) represented a variety
of tasks, data distributions, and metrics, but were preprocessed into a tabular format, poten-
tially causing generated ML programs to be atypical. A third benchmarking study (Balaji
and Allen, 2018) comparing four popular systems noted that “[m]any open datasets require
extensive preprocessing before use” and limited their study to clean OpenML (Vanschoren
et al., 2013) datasets. All of these benchmark evaluations compared systems that each used
their own set of ML building blocks instead of a shared set, for practical reasons. However,
conclusions about pipeline search and optimization strategies (e.g., is Bayesian optimization
better than genetic optimization?) are limited because differences in system performance is
confounded by the differences in algorithm availability to each system.

Using the pipelines generated in the above studies for automatic warm-starting or met-
alearning between systems is not feasible because each system uses its own pipeline repre-
sentation. There are some popular pipeline languages which might be candidates for such
a purpose. scikit-learn’s (Pedregosa et al., 2011) pipeline allows combining multiple scikit-
learn transforms and estimators, supporting tabular and structured data, but not raw input
files. Common Workflow Language (Amstutz et al., 2016) is a standard for describing data-
analysis workflows with a focus on reproducibility. However, it also focuses on combining
command line programs into workflows, a pattern not generally followed by AutoML-made
ML programs. Kubeflow (kub) simultaneously provides a pipeline language and simple Ku-
bernetes deployments. It supports the combining of components that use different libraries,
but every component is a Docker image, thus requiring inputs and outputs to be serialized
instead of directly passing memory objects between components.

Our proposed framework (Section 4) was designed to support evaluations based on the
best practices outlined in Section 3. As an example, a third-party evaluator evaluated
eight AutoML systems build upon the framework. Blind datasets were used to prevent all
systems from overfitting to known datasets. Evaluation results (Appendix A) thus show
how well systems generalize to new tasks in terms of both pipeline performance and the
number of task types supported. All systems evaluated used the exact same set of ML
building blocks, including same versions. Therefore, differences in scores can be attributed
to system designs. Researchers can isolate design differences and improve system strategies,
thus advancing AutoML research. Note that these advances are limited to the types of ML
building blocks given to systems. E.g., the pipeline search strategies that produce the best
pipelines with Scikit-learn (Pedregosa et al., 2011) algorithms might be different from those
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strategies that produce the best neural network pipelines. A similar caveat can be made for
the types of tasks on which systems are evaluated. Still, evaluation of systems build using
our framework allows us to explore these types of questions and test related hypotheses.

An advantage of using a standardized ML framework across ML systems is that there
are already various tools available. The proposed tool by (Ono et al., 2020) visualizes and
compares pipelines generated by different AutoML systems, which provides insight into
the behavior of various components. Marvin (Mattmann et al., 2018) is an index of all
current and historic primitives and provides a web interface to search for primitives by their
metadata. TwoRavens wrapper (D’Orazio et al., 2019) wraps AutoML systems to expose
the same control interface to make execution of AutoML systems uniform.

Future work could explore aspects of ML programs beyond predictions and scores, such
as complexity, interpretability, generalizability, resource and data requirements, etc. Addi-
tional system strengths could be identified by varying time and resource budgets as well as
evaluation metrics. The next steps could be to collect more pipelines and execution results
into the metalearning database, analyze them, and iterate on AutoML system designs. There
is potential even to automate AutoML design itself via metalearning over the metalearning
database.

6. Conclusion

In this work we identified important best practices for evaluation of AutoML systems. The
ML framework we presented allows systems that are built on it to be evaluated according
to these practices. The use of this framework by eight systems and their evaluation results
presented help demonstrate the framework’s viability. We observed that the framework
can describe a diverse set of ML programs solving many ML task types. More important
than the actual results obtained from any one particular evaluation is the ability to identify
strengths and weaknesses specific to AutoML system designs and make improvements.

Documentation and Source Code

Documentation for our ML framework is available at https://docs.datadrivendiscovery.
org/, including detailed description of all components. Source code is open source and is
available at https://gitlab.com/datadrivendiscovery, in particular at https://gitlab.
com/datadrivendiscovery/d3m.
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Appendix A. Evaluation Results

AutoML System Known Datasets Blind Datasets

CMU 93% 95%
ISI 92% 87%
MIT 92% 77%
NYU 91% 76%
SRI 76% 77%
TAMU 93% 74%
UCB 92% 87%
Uncharted 73% 55%

Table 1: Percentage of the 106 known datasets and 62 blind datasets for which each evaluated
AutoML system successfully created a functional pipeline.

Our framework has been used by eight AutoML systems. An impartial 3rd party or-
ganization (Data Machines) evaluated them using a suite of 106 known datasets and 62
blind datasets, representing 15 different task types. Another 3rd party organization (MIT
Lincoln Laboratory) prepared these datasets (Appendix B) and corresponding, expert-made
baseline solutions. Systems had identical computing resources allocated.

Figure 1 shows the results on tabular datasets and on some non-tabular datasets. Each
dot on sub-figures of Figure 1 show how well system’s best solution performed in compari-
son with the expert-made baseline solution. Because we are aggregating multiple datasets
together, we show only relative distance from the baseline of each of those datasets. Higher
is always better, for all metrics. Note as well that dots are shown only for datasets a system
succeeded in producing pipelines for.

We can observe the worse overall performance of AutoML systems on blind datasets.
Not easily visible in Figure 1 AutoML systems have produced much less successful pipelines
on blind datasets as well. Success rates are shown in Table 1. Non-tabular datasets, while
supported by our framework, presented a greater challenge to evaluated systems, leading to
sparse results with only few AutoML systems succeeding on a particular dataset.

All pipelines and pipeline run documents made during evaluation by all AutoML sys-
tems have been stored into the metalearning database, as standardized documents for 168
datasets, 519 primitives, 160,999 pipelines, and 65,866 pipeline runs.
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(b) Blind tabular binary classification
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(c) Known tabular multi-class classification
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(d) Blind tabular multi-class classification
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(e) Known tabular regression
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(f) Blind tabular regression
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(g) Known graph vertex classification
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(h) Blind graph vertex classification
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(i) Known tabular semi-supervised
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(j) Blind tabular semi-supervised

Figure 1: Evaluation results on known and blind datasets, aggregated for select task types.
Note that some systems failed to produce any pipelines for some datasets, so individual plots
may contain fewer data points. Higher is always better.
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Dataset Task type Metric

CIFAR Image classification4 Accuracy
Geolife Classification Accuracy
Mice protein Classification F1
Wikiqa Text classification F1
ElectricDevices Time-series classification F1
Arrowhead Time-series classification F1
Stock data Time-series forecasting MAE
Monthly sunspots Time-series forecasting MAE
TERRA canopy height Time-series forecasting MAE
Facebook Graph matching Accuracy
Retail sales Regression RMSE
Hand geometry Image regression MSE
Amazon Community detection NMI
Jester Collaborative filtering MAE
Net nomination Vertex classification Accuracy

Table 2: A subset of known datasets, their task type, and metric used. Achieved scores are
not shown because scores on known datasets can be overfitted.

Appendix B. Datasets Used for Evaluation

There were 106 known datasets and 62 blind datasets used for evaluation, which are a subset
of those available to the evaluated AuotML systems. Overall, those datasets span a wide
range of task types, including (i) classification, (ii) regression, (iii) semi-supervised classifica-
tion, (iv) time-series forecasting, (v) graph matching, (vi) link prediction, (vii) collaborative
filtering, (viii) community detection, (ix) object detection and (x) vertex classification. List
of raw data types present include (i) tabular data, (ii) text, (iii) time-series, (iv) graphs, (v)
images, (vi) audio, (vii) video. Table 2 shows a subset of known datasets.
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Appendix C. Reference Runtime Semantics

The reference runtime provided by the ML framework uses a fit-produce execution semantic
as shown in Figure 2.

Function FitPipeline(pipeline, inputs)
env ← inputs
state ← ∅
for step ∈ pipeline do

if step ∈ PrimitivesStep then
state ← state + FitPipeline(step, env)
env ← env + ProducePipeline(state, step, env)

else
state ← state + FitPipeline(step, env)
env ← env + ProducePipeline(state, step, env)

end
end
return env, state

end

Function ProducePipeline(pipeline, state, inputs)
env ← inputs
for step ∈ pipeline do

if step ∈ PrimitivesStep then
env ← env + ProducePipeline(state, step, env)

else
env ← env + ProducePipeline(state, step, env)

end
end
return env

end

Figure 2: Pseudo-code describing execution semantics of the reference runtime.

Appendix D. Example Pipeline

A visual representation of an example pipeline is presented in Figure 3. The example pipeline
is described in more detail in (Milutinovic, 2019).
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