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Abstract

A novel method to identify salient computational paths within randomly wired neural net-
works before training is proposed. The computational graph is pruned based on a node
mass probability function defined by local graph measures and weighted by hyperparam-
eters produced by a reinforcement learning-based controller neural network. We use the
definition of Ricci curvature to remove edges of low importance before mapping the compu-
tational graph to a neural network. We show a reduction of almost 35% in the number of
floating-point operations (FLOPs) per pass, with no degradation in performance. Further,
our method can successfully regularize randomly wired neural networks based on purely
structural properties, and also find that the favourable characteristics identified in one
network generalise to other networks. The method produces networks with better perfor-
mance under similar compression to those pruned by lowest-magnitude weights. To our
best knowledge, this is the first work on pruning randomly wired neural networks, as well
as the first to utilize the topological measure of Ricci curvature in the pruning mechanism.

1. Introduction

At birth, the construction of the most important networks is largely random and random
graph modelling is heavily used in the study of the human brain (Bullmore and Sporns,
2009; Bassett and Sporns, 2017). Recent work on randomly wired neural networks has
emulated this in the field of deep learning, and moves away from the wiring approach that
has typically dominated NAS (Xie et al., 2019). Randomly wired networks display com-
parable performance to state-of-the-art architectures (eg. ResNet, DenseNet), and provide
a relatively unrestricted space on which to perform further optimisation. We propose a
search method that takes place within a low-dimensional search space; a pruning method-
ology which operates on networks produced by a successful random network generator. It
is based on the discrete Ricci curvature of a graph, with estimates of a node’s community,
contribution to robustness and computational demand contributing to the identification
of salient computational paths in the network. A curvature-guided diffusion process, Ricci
flow, deforms the discrete space of the graph, and edges within the graph are removed based
on their local deformation. A reinforcement learning controller parameterises the Ricci flow
process. To the best of the authors’ knowledge, this is the first work to take inspiration
from the physics concept of space curvature deformation, in combination with reinforcement
learning, to drive the process of neural network pruning.
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The technique proposed has three key advantages: (1) it is a successful form of regu-
larisation which promotes sparse network connectivity, and as a result low computational
demand; (2) it operates with no degradation in baseline performance; (3) a successful hyper-
parameter state can be applied, without further optimisation, to similarly produced random
networks. The process operates before training, saving compute during both training and
inference. This is the first known work to investigate the pruning of randomly wired neural
networks. Using RicciNets, we demonstrate novel, efficient generation of compact neural
architectures.

2. Related Work

Ricci curvature is the definition of curvature used in Einstein’s Field Equations. Loosely, it
measures the deformation of a volume on the surface of a manifold relative to the volume
in Euclidean space (see Appendix A). Unlike other ML works, in which continuous Ricci
curvature is used to visualise high-dimensional loss landscapes (Li et al., 2018) or in novel
characterisations of structural features (Chazal and Michel, 2017; Rieck et al., 2018), we use
a measure of Ricci curvature within the discrete space of a graph. In order to do this, we
relate Ricci curvature to optimal transport (Ollivier, 2009). Given a probability measure
at each node, optimal transport can be formulated on a graph and Ricci curvature can
be calculated. For a metric space (X, d) equipped with probability measure mx for each
x ∈ X, the Ollivier-Ricci curvature, κ, along the shortest path xy is given by Eq. (1), where
W (mx,my) is the Wasserstein distance, and d(x, y) is the path distance:

κ(x, y) = 1− W (mx,my)

d(x, y)
. (1)

Similar to Ni et al. (2019), we use a curvature-guided diffusion process, Ricci flow, to detect
community structures within a network. The probability distribution used here includes
further terms to estimate the computational demand of an individual node as well as its
contribution to the overall network’s robustness with respect to damage. In both works,
the curvature evolves under discrete time intervals, Eq. (2).

wk+1
ij = (1− κ(k)

ij )d(k)(i, j). (2)

Successful efforts in NAS may require months or even years of compute time. Zoph and Le
(2017) demonstrated a computationally expensive process in which a RL controller param-
eterised a search within a high-dimensional search space. Resultant architectures match
state-of-the-art performance. We optimise a combination of three hyperparameters for
our search. Randomly wired networks offer a relatively unrestricted initial search space
with good baseline performance. Xie et al. (2019) found a Watts-Strogatz graph gen-
erator (Watts and Strogatz, 1998) produced networks with the best performance, with
WS(K = 4, P = 0.75) and N = 32 (see Appendix B). Their simple graph-to-network
mapping allowed a focus on wiring and structural features. The successful generator and
straightforward mapping are both used here.
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3. Method

Random computational graphs are generated using the Watts-Strogatz model. First, we
use a controller neural network to predict a hyperparameter state. Second, we propose a
node mass distribution based on local graph measures weighted by the predicted hyperpa-
rameters. Then, we use the process of Ricci flows to compute weights associated with each
edge and prune the computational graph based on an edge threshold value. The pruned
computational graph is mapped to a neural network and trained on the dataset. Accuracy
and FLOPs per pass are combined to yield a reward then passed to the controller network,
which is updated via a policy gradient method (see Appendix C). The code is publicly
available at https://github.com/seglass5/RicciNets.

3.1 Mass Distribution

We calculate the curvature within a network using a hypothesised probability (mass) dis-
tribution as Eq. (3):

mα,β,γ,δ
x (xi) =


α for x = xi

(1− α)
[
β( 1

Deg(x)) + γ(Input(x)) + δ(Output(x)
Input(x) )

]
for x ∈ π(x)

0 Otherwise.

(3)

Input(x) defines the input degree of node x, Output(x) the output degree and Deg(x) the
total degree. π(x) defines the immediate neighbours of x. α gives the proportion of mass to
remain on a node. β, γ and δ control the contribution of each of the three terms. The first
term promotes a well-defined community structure, 1

Deg(x) yields a lower mass for a node
with more neighbours. The second term promotes low input degree. Taking the transfor-
mation operation at a node to be of linear complexity in input degree, this approximates
to promoting low computational burden at each node. The final term promotes a smaller
ratio of output degree to input degree. A greater loss in accuracy is observed for removal of
a node with high output degree, and an edge with low target node input degree (Xie et al.,
2019). A smaller ratio of output degree to input degree is therefore taken to indicate better
robustness with respect to graph damage. By requiring that the masses of a node and its
neighbours sum to unity, this can be reduced to an equation in three hyperparameters.

3.2 Pruning Threshold

The weight associated to each edge in the graph is updated via Ricci flow from an initial
value of zero, Eq. (2). The weights are normalised to prevent expansion to infinity and
checked for convergence on each iteration. The process of Ricci flow ran for 50 iterations
and typically reached convergence well within this limit. The threshold for pruning was
set to the mean of all the weights in the network following Ricci flow. Hyperparameter
selection can alter the skewness of the distributions of curvatures and weights, and adjusting
the distribution of weights is interpreted as the controller network learning a definition of
saliency; if very few paths can be considered salient, parameter prediction can lead to
negative skewness in the weight distribution and more edges are removed. Similarly, if the
drop in accuracy is too high for removing a group of paths, a set of hyperparameters that
adjusts the mean to save this group can be learnt.
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3.3 Controller

An auxiliary controller network generates hyperparameter states. The controller is imple-
mented as a simple feed forward network. The parameter states are one-hot encoded and
discretised in the range [0, 1]. The output parameters, [α, β, δ] are passed to the pruning
function. The controller seeks to maximise its expected reward, Eq. (4), where J(θc) in-
dicates the expected reward at a parameter state θc. a1:T represents the list of actions
(possible hyperparameter combinations) for T hyperparameters,

J(θc) = EP (a1:T ;θc)[R]. (4)

Since the reward signal is non-differentiable, we use a policy gradient method to iteratively
update θc. We use the REINFORCE rule (Williams, 1992), Eq. (5).

∇θcJ(θc) =
T∑
t=1

EP (a1:T ;θc)[∇θc log(P (at|a(t−1):1; θc))R]. (5)

An empirical approximation of the above quantity is given in Eq. (6). m is the number of
parameter states sampled in one batch by the controller. The reward that the network in
the kth parameter state achieves after training is Rk,

1

m

m∑
k=1

T∑
t=1

[∇θc log(P (at|a(t−1):1; θc))Rk]. (6)

The reward used to update policy is given in Eq. (7). The top one accuracy, A, is regularised
by the FLOPs per pass of the network F using a regularisation parameter µ.

J(θc) = A− µ F

Fbaseline
. (7)

Episode rewards are discounted according to Eq. (8), where v(θc) is the episode reward for
a state θc, γ a discount parameter, and k the number of iterations within an episode. This
encourages prolonged episodes.

v(θc) =
N∑
k=0

γkJ(θc+k). (8)

4. Experiments and Results

Experimentation is based on the classification of images from the CIFAR-10 dataset, with
50,000 training images and 10,000 test images. The images are batched in groups of 64.
Each network is trained for 4 epochs, and the policy gradient controller ran over 20 episodes,
with episodes batched in pairs to update policy.

4.1 Evaluation Procedure

Network performance is evaluated using the top-one accuracy and the number of FLOPs
per pass of the network produced. Performance is measured in relation to a baseline set by
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an unpruned network produced using the same generator parameters. To assess the impor-
tance of considering the topology of randomly wired networks in the pruning procedure, we
compare RicciNets against pruning weights by lowest magnitude (Zhu and Gupta, 2017).
The combination of hyperparameters learnt for a given graph is applied to other graphs of
the same random graph generator. We note that while this implementation of randomly
wired neural networks yielded an accuracy of 91.5 ± 0.2% on CIFAR-10 over 100 training
epochs, we only report results achieved after 4 epochs owing to resource constraints.

4.2 Results

Fig. 1 (a) shows the variation in top-one accuracy of the resultant networks for regulari-
sation parameter µ in the range [0, 1.5]. The methodology produces better-than-baseline
performance under compression across the range of µ, with a small variance in top one ac-
curacy (σ2 = 0.21). (b) shows the top-one accuracy of architectures against the FLOPs per
pass expressed as a percentage of baseline. All networks produced operated using 68− 91%
of the baseline FLOPs per pass. For small networks, more severe compression would result
in a chain-like structure and a sharp drop off in accuracy, which would be discouraged by
the controller (see Appendix D). An exploratory step carried out with probability p within
the controller, or further fine-tuning of the policy gradient network could result in a larger
range of compression. RicciNets demonstrates a restricted range of compression when com-
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(a) Accuracy against µ. Pruned net-
works display better-than-baseline per-
formance, with almost 3% increase in ac-
curacy on baseline when averaged across
the range of µ.
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baseline. Overlapping errorbars appear
darker.

Figure 1: The pruned networks show no degradation in performance under compression.

pared to pruning via lowest-magnitude weights. Within this range, however, the networks
produced by RicciNets demonstrate better performance than those pruned by weight, Ta-
ble 1. Future work includes incorporating more control over the level of compression via
alternative ways to regularize the reward objective.

The combination of hyperparameters that produced the greatest accuracy usingWS(4, 0.75)
generalised to other Watts-Strogatz graphs. Pruned networks generated with different K
and P displayed an increase in performance and moderate compression, Fig. 2. RicciNets
maintained the salient computational paths identified in the learnt case.
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Table 1: Average top one accuracy and average percentage baseline weights remaining after
pruning for RicciNets, pruning via lowest magnitude weights and baseline. Average taken
within the 40− 50% range of weights remaining.

Pruning Top One Accuracy (%) Weights Remaining (%)

RicciNets 87.59± 0.11 41.90± 0.47

Lowest Magnitude 84.77± 0.55 45.00± 3.54

Baseline 85.23± 0.09 100.00
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(a) Top one accuracy against the value
of parameter K in WS(K,P ), with P =
0.75 and N = 32.
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(b) Top one accuracy against the value
of parameter P in WS(K,P ), with K =
4 and N = 32.
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(c) FLOPs per pass through the net-
work against parameter value K in
WS(K,P ), with P = 0.75 and N = 32.
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(d) FLOPs per pass through the net-
work against parameter value P in
WS(K,P ), with K = 4 and N = 32.

Figure 2: Pruning WS graphs without specific optimisation showed no drop in performance.

5. Conclusions

Our model combines the principle of curvature with ML to carry out neural architecture
search. It successfully identifies salient computational paths, and demonstrates a reduction
in computational cost for no degradation in baseline performance. It outperforms pruning
via lowest-magnitude weights on randomly wired neural networks. A combination of hy-
perparameters learnt with a given network generalises to others from the same generator
with no specific optimisation, offering compression for no drop in performance. The results
obtained suggest a successful novel methodology for compact NAS, and are the first on the
compression dynamics of randomly wired neural networks. Future work will develop more
comparative methods against other pruning procedures, and investigate off-policy controller
algorithms.
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Appendix A. Ricci Curvature

The notion of curvature was introduced by Gauss and Riemann over 190 years ago; it is a
measure of how space is curved at a point in that space. Given an n-dimensional manifold,
which we define as a space that locally looks n-dimensional, we may form a Riemannian
metric; this assigns each tangent space of the manifold a Euclidean metric, which in turn
gives the ”standard” distance between any two vectors in the space. A manifold together
with its corresponding Riemannian metrics forms a Riemannian manifold (Ni et al., 2019).

For a surface S, the Gaussian map from S to the unit sphere sends a point on S to the
unit normal vector of S at p, a point on the unit sphere. The Gaussian curvature of the
surface at a point p is the Jacobian of the Gaussian map at p, the signed area distortion
of the Gaussian map at p. Hence, the plane has zero curvature, the sphere has positive
curvature, and the hyperboloid of one sheet has negative curvature. The curvature depends
only on the induced Riemannian metric on the surface and does not depend on how the
surface is embedded in space.

Riemann generalised Gaussian curvature to higher dimensions. For a Riemannian man-
ifold (M,g), the sectional curvature assigns each 2-dimensional linear subspace P in the
tangent space of M at p a scalar, the Riemannian sectional curvature. The scalar is equal
to the curvature of the image of P under the exponential map. A positively curved space
tends to have small diameter and is geometrically crowded; a sphere, for example. Con-
versely, a negatively curved space is geometrically spreading out.

The Ricci curvature assigns each unit tangent vector v at a point p a scalar which is
the average of the sectional curvatures of planes containing v.

There have been various approaches to generalize the concept of curvature to non-
manifold spaces. Here, we look to assign curvature to a graph, G(V, E, w), with vertices V,
edges E and edge weights w. Ollivier-Ricci curvature Ollivier (2009) relates Ricci curvature
to optimal transport, allowing a mapping to discrete spaces. Given a probability measure
at each point, optimal transport can be formulated on general metric spaces and may be
used to define Ricci curvature on a network with edge weights and probability measures at
each vertex.

Appendix B. Watts-Strogatz Random Graph Generator

The Watts-Strogatz method demonstrated the most success within Xie et al. (2019). This
operates by first placing N nodes regularly in a ring, with each node connected to its K/2
neighbours on both sides, where K is an even number. Then, in a clockwise loop, for every
node v, the edge that connects v to its clockwise ith next node is rewired with probability
P . ”Rewiring” is defined as uniformly choosing a random node that is not v and that is
not a duplicate edge. This loop is repeated K/2 times for 1 ≤ i ≤ K/2. K and P are the
only two parameters of the Watts-Strogatz model. Any graph generated by a state (K,P )
has exactly N ·K edges. (K,P ) only covers a small subset of all possible N -node graphs,
and a different subset than that covered by other random graph generators with equal N .
Random graph generators present a relatively unrestricted initial search space, but a prior
is introduced in the choice of random graph generator. Watts-Strogatz graphs display small
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world properties; the typical distance between randomly chosen nodes is proportional to
log(N).

Appendix C. Method Overview

Controller	network
generates

parameter	state.

Random	graphs
generated.

Random	graphs	are
pruned	according

to	state.

Graphs	mapped	to
neural	network.

Network	trained	on
CIFAR-10	dataset.

Accuracy	and
FLOPs	combined
to	calculate	reward.

Graphs	reset	to
initial	unpruned

state.

Acc.	above
threshold?

Terminate	the
episode.

Batch	output	data
and	update	policy.

Output	final	state,
accuracy	and
FLOPs.

Yes

No

Have	20
episodes
passed?

No

Yes

Figure 3: An overview of the methodology. Pruning takes place before the graph-to-network
mapping. The pale blue box indicates a single step within a policy gradient episode.
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Appendix D. Extensive Pruning
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Figure 4: The unpruned state of a graph, WS(4, 0.75) with N = 32, left, and the same
graph following pruning under a selected combination of hyperparameters, right. We observe
increased sparsity whilst still retaining some clustering and skipped connections. Since both
nodes and paths are removed, the node labels do not carry over from the unpruned to the
pruned state, and are shown here for the purposes of information flow; in both cases data
is carried in the direction of increasing node label.
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Figure 5: Sparser, chain-like architectures typically give a lower top one accuracy and so
are discouraged by the controller network.
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