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Abstract

All optimization needs some kind of prior over the functions it is optimizing over. We used
a large computing cluster to collect empirical data about the behavior of ML performance,
by randomly sampling hyperparameter values and performing cross-validation. We also
collected information about cross-validation error by performing some evaluations multiple
times, and information about progression of performance with respect to training data size
by performing some evaluations on data subsets. We present how we collected data, make
some preliminary analyses on the surrogate models that can be built with them, and give
an outlook over interesting analysis this should enable.

1. Introduction

Hyperparameter optimization (HPO) is an important aspect of automated machine learning
(AutoML) and is often tackled as a black-box optimization problem. The No Free Lunch
(NFL) theorem for optimization (Wolpert and Macready, 1997) states that the performance
of optimization algorithms, averaged over all possible problem sets, is constant, and that it is
therefore necessary to make a-priori assumptions about the characteristics of the problem at
hand. A well-known manifestation of this is the superiority of random search over grid search
on typical hyperparameter optimization problems, which is a consequence of them often
having low effective dimensionality (Bergstra et al., 2011). Another instance of this is the
favorable performance of model-based optimization (Snoek et al., 2012) for hyperparameter
optimization, which often uses explicit Bayesian priors (Bayesian optimization) to achieve
good performance with few function evaluations. We performed evaluations of different ML
algorithms with randomized hyperparameters on a variety of datasets to gather empirical
data about the influence of these hyperparameters on algorithm performance.

Model-based optimization makes use of surrogate models, which are regression models
fitted to evaluated objective values of the problem. Surrogate models can also be used
to benchmark or tune optimization algorithms (Eggensperger et al., 2013). With the large
amount of performance data that we have collected it is possible to fit high fidelity surrogate
models that can be used to analyse the behavior of classical machine learning algorithms
with respect to their hyperparameters.

The importance of hyperparameter optimization for deep learning (neural architecture
search, Elsken et al. (2019)) has been growing in recent years. Because of their nature — large

hyperparameter spaces and very long model fitting times — they have led to more research
into multi-fidelity approaches for HPO (Li et al., 2017; Tan and Le, 2019). Multi-fidelity
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approaches vary certain fidelity hyperparameters that trade-off between model performance
evaluation cost and model performance. Here, an important prior assumption about the
behavior of ML algorithms with respect to the fidelity parameters is that performance at
low fidelity is somehow predictive for performance at high fidelity. Because this assumption
is so crucial, it is important to conduct empirical studies, and to gather data on the effect
of approaches towards trade-offs between model performance and computation time.

We have done a very large number of performance evaluations of machine learning
algorithms on a diverse set of 119 datasets with randomly sampled hyperparameters to
gather empirical data about the influence of hyperparameter configurations on machine
learning performance. We performed some of these evaluations on different subsamples of
the data, which can be used to empirically evaluate a sub-sampling approach to multi-
fidelity optimization. We further used repeated cross-validation for some evaluations, to
get an estimate of (some of the) uncertainty of the cross-validation estimators.

2. Related Work

The importance of gathering empirical data about hyperparameter influence on performance
has been recognized and several projects exist that do this on different classes of machine
learning algorithms and problems. Collections of experimental results like ours are often
published with papers for new methods (Wistuba et al., 2015a; van Rijn and Hutter, 2018),
but they are rarely as comprehensive and often only suffice for the particular task being pre-
sented. Especially in the context of deep learning, several collections of experimental data
have been made available lately. Kiihn et al. (2018) publish results on 38 tabular datasets
across 6 algorithms for further analysis. NASBENCH-101 (Ying et al., 2019) provide a col-
lection of experimental results across 423.000 convolutional neural network architectures on
CIFAR-10 for faster and more reproducible analysis of neural architecture search strategies.
(Metz et al., 2020) publish experimental results for neural network optimizers across 1162
diverse datasets and propose sets of default configurations.

Experimental data is already being used to improve optimization performance. For
one, the HPOLib benchmark suite for black-box optimization (Eggensperger et al., 2013),
which can be used by researchers to evaluate their black box optimization algorithms,
uses surrogate models for some benchmarks (Eggensperger et al., 2015; Klein et al., 2019).
Optimization algorithms may get tuned on, or at least chosen by their performance on,
these surrogate models. The experimental data — on which the models are based — are thus
influencing the implicit prior assumptions made by these algorithms in an indirect way. A
more direct influence of experimental data on optimization is meta-learning (Brazdil et al.,
2008; Vanschoren, 2019), e.g. by studying the importance of various hyperparameters (van
Rijn and Hutter, 2018; Probst et al., 2018), or try to find initial configurations (Wistuba
et al., 2015b; Pfisterer et al., 2018; van Rijn et al., 2018) that perform well on many datasets.

3. Setup

We executed a large quantity of machine learning performance evaluations on a large grid
of computers of 3168 compute nodes, each with 48 physical (96 logical) CPU cores and 80
GB working memory, for 48 hours.



COLLECTING EMPIRICAL DATA ABOUT HYPERPARAMETERS

The evaluations were performed on a collection of 119 classification task datasets chosen
from the OpenML-CC18 (Bischl et al., 2017) benchmark suite, as well as the AutoML
benchmark (Gijsbers et al., 2019). These datasets cover a large variety of different challenges
for machine learning, such as many missing values, large cardinality of factorial features,
large number of features, or great imbalance of outcome classes. We obtained datasets, as
well as resampling splits from OpenML (Vanschoren et al., 2014).

We investigate an array of classical machine learning algorithms: decision trees, random
forests, svm, gradient boosting, approximate KNN (Malkov and Yashunin, 2020), fully con-
nected neural networks, and regularized logistic regression (Zou and Hastie, 2005). Because
not all these algorithms can natively handle all datasets, we performed data-preprocessing;:
missing value imputation, factorial feature cardinality reduction, and factor one-hot encod-
ing among others. The specific search spaces (including software libraries used) as well as
the preprocessing setup are detailed in Appendix A and B, respectively.

Values for each hyperparameter were sampled independently from individual univariate
distributions. A common problem in previous data collections is a limited hyperparameter
search space. If good values lie on the border of investigated hyperparameter spaces (e.g.
large number of gradient boosting iterations), then meta-learning approaches might miss
important facts about algorithm behavior, such as eventual overfitting beyond the investi-
gated region. Using too broad limits for sampling, on the other hand, can lead to many
evaluations in uninteresting regions where the algorithm crashes or predicts constant. We
alleviate this problem by defining intervals to sample from that were chosen informally and
from previous experience. However, we purposely sample outside of these intervals with a
small probability in order to obtain a more complete picture w.r.t. algorithm behavior be-
yond the regions. For this we sample a mixture distribution: uniformly distributed inside a
specified range with probability 5/6, and normally distributed centered in the middle of this
range and standard deviation half the range width with probability 1/6. The investigator-
chosen ranges were therefore soft bounds that contain about 5/6 + 1/6 x 68% = 95% of
all sampled points!. We made the prior assumption that many hyperparameters contain
more variation close to 0 than further away from it. These were sampled as described
here, but on a log-scale (including mixture uniform-normal sampling) and then exponenti-
ated. Hyperparameters with nominal discrete values were sampled uniformly. The specific
hyperparameters, their bounds and transformation are listed in Appendix A.

The same hyperparameter samples were used on all datasets. This makes it possible
to investigate the direct effect of dataset properties on machine learning performance while
keeping hyperparameters constant, without having to resort to surrogate modelling.

Performance evaluation was performed using 10-fold cross-validation, using pre-defined,
balanced (with respect to the outcome class) cross-validation folds provided by OpenML.
To make it possible to investigate the effect of subsampling before model training, or the
effect of the specific resampling split on the performance estimate, we also performed what
we call super-evals (supererogatory evaluations) on 10% of all sampled hyperparameter
points. (Which configurations were super-evaluated was kept constant across all datasets).
For super-evals, we employed: (1) the 10-fold cross-validation used on all other configura-
tion points; (2) another 10-times-10-fold repeated cross-validation; and (3) a sequence of

1. Some hyperparameter also presented hard bounds, e.g. when negative values are forbidden, in which case
hyperparameter values were sampled from a truncated distributions.



BINDER ET AL.

Algorihtm N #of DS avg. N min N max N OpenML ID
glmnet 104820 114 919 58 2235 42578

ranger 278863 119 2343 356 4754 42580

knn 111753 116 963 146 2792 42582

rpart 92067 115 801 85 1382 42583

svim 540576 106 5100 174 13352 42577

xgboost 2955210 119 24834 2294 41147 42584
feed-forward NN 171691 107 1605 730 4133 42579

Table 1: Information about generated data: Experiment counts across different algorithms,
number of datasets for which data could be generated, average, min, and max number of
values per dataset, and OpenML ID of the performance data. Values not counting super-
evals.

cross-validations with reduced training set size using subsampling (see Appendix C for the
subsample sizes), simulating one approach to multi-fidelity cross-validation. The specific
subsamples are a tower of subsets of the training sets used for (1) and fixed for each dataset.

Performance was evaluated by training the machine learning methods on the chosen
training data subset and predicting on all other data-samples. Individual evaluation threads
were limited w.r.t. the amount of working memory (up to 55 GB; memory limits were
different depending on the algorithm and dataset) they could consume, and the amount of
time they could use for a single cross-validation fold (4 hours). Available resources (both
time and memory) for each learner and dataset were determined beforehand in a small pilot
experiment. Therefore, the amount of data generated varies across them. A small number
of datasets were too large for some ML algorithms and no data could be generated with the
randomly sampled hyperparameters given the time or memory constraints.

Besides machine learning performance data, we also collected information about the
working memory required for each configuration, as well as the training and prediction
runtime. This data can be used to investigate memory and time requirements for different
algorithms based on dataset properties and hyperparameters, and may help to improve
AutoML systems to better adhere to runtime and memory limits in the future. Table 1
gives an overview of the generated data.

4. Analysis

Several routes for the analysis of this data can be envisioned. In this work we decide to
study the quality of resulting surrogate models and the effect of the number of evaluated
configurations on that quality. We use the collected data to fit random forest surrogate
models. The usefulness of a surrogate model depends on its predictive performance, which
we can estimate using cross-validation.

It is often not clear how much experimental data is needed to build sufficiently accurate
surrogate models. The large amount of data that we have gathered makes it possible to
analyse the behavior of surrogate model fidelity with respect to data size, and to estimate
the marginal gain in model quality that would have been possible if even more data had been
collected. We set the resampling error, i.e. the error introduced by using surrogate models
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Figure 1: Resampling error of surrogate models with respect to number of included per-
formance data points (left) and number of trees for the surrogate model (right) across 4
different datasets. Algorithm svm is restricted to the radial kernel. It can be seen that
surrogate model performance varies with dataset as well as the learning algorithm.

instead of actual function evaluations, in relationship to the random noise introduced by
having finitely many trees in the random forest model, by analysing the progression of error
with different number of trees in the model.

Figure 1 shows the (ten-fold cross-validation) resampling error, both in terms of root
mean square error (RMSE) as well as Spearman rank correlation (Spearman Rho), and how
it progresses with different training set sizes, exemplary for a few datasets and algorithms
evaluated on them. Furthermore, the resampling error w.r.t. the number of trees used in
the surrogate model is shown. It becomes obvious that a few hundred random forest trees
are enough for all shown datasets, and that the limiting factor is the sample size.

4.1 Hyperparameter Response Surface

Figure 2 shows the average and standard deviation of the normalized accuracy for the
SVM cost and gamma parameters evaluated on a grid with resolution 200. Accuracy was
normalized to [0, 1] for each task to improve commensurability. Standard deviation seems
to be low in areas with generally good performance and high for larger values of gamma.
As we gathered a large number of evaluations for each dataset, we can build high-fidelity
surrogate models which allow for a more realistic analysis of corresponding response surface.
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Figure 2: Response surfaces of surrogate models for the performance of SVM with respect
to its gamma and cost parameters. Mean (left) and standard deviation (right) of normalized
classification accuracy across the 106 datasets for which SVM generated results.

5. Further Analysis & Future Work

We presented the large collection of resampling performance data which we have generated,
and showed some statistics and illustrative analysis results. There are, however, many
directions to analyse and make use of the produced hyperparameter data in this work. We
would like to use this data in order to reproduce and extend the results of several methods
for the analysis of hyperparameter importance (van Rijn and Hutter, 2018; Probst et al.,
2018). Furthermore the collected data allows for further investigation on hyperparameter
response surfaces. Meta-learning often assumes that knowledge for the optimization of one
task can be transferred to others. This would require a certain degree of similarity across
response surfaces, which can be empirically validated using our data. The runtime and
memory measurement also allows to build models predicting resource requirements (c.f.
Hutter et al. (2014)). This could be used to improve multi-fidelity approaches or to perform
automated scheduling for parallel workflows in AutoML systems.

We make the generated data publicly available on OpenML, with IDs listed in Table 1.
The code used to generate the the data is available online?.
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Appendix A. Search Spaces

The following tables list the learning algorithms and their respective sampled hyperparam-
eter bounds. Besides their natural hyperparameters, algorithms are also equipped with the
num.impute.selected.cpo hyperparameter, which controls imputation for missing values
in numeric features: mean, median, or histogram sampling imputation. All algorithms were
used as implemented or interfaced to the R (R Core Team, 2019) programming language for
statistics and the mlr framework for machine learning in R (Bischl et al., 2016), using the
mlrCPO (Binder et al., 2020) set of composable preprocessing operators for preprocessing.
“KerasFF” is a fully connected neural network implemented via keras (Chollet et al., 2015)
with hyperparameters controlling the architecture (number of neurons and layers, magni-
tude of dropout, ...) and the optimizer (learning rate, weight decay, ...). We additionally
vary the network’s seed in order to obtain more reliable estimates with respect to random-
ness induced by different weight initializations. “RcppHNSW?” is an approximate k-nearest
neighbor implementation based on hierarchical navigable small world graphs (Malkov and
Yashunin, 2020). All other learners directly interface existing implementations, information
on their hyperparameters and meaning can be obtained from the respective software’s doc-
umentation: xgboost: (Chen and Guestrin, 2016), Random Forest: (Wright and Ziegler,
2017), Elastic Net: (Friedman et al., 2010) and Decision Trees: (Therneau and Atkinson,
2018).

Hyperparameter Range

epochs [23,27](log)

optimizer sgd, rmsprop, adam

Ir [57°,5%(log)

decay [578, 5% (log)

momentum [578,5%(log)

layers 1, 4]

batchnorm_dropout batchnorm, dropout, none
input_dropout_rate [375/2,3%(log)
dropout_rate [375/2.3%(log)
units_layerl [23,2%(log)

units_layer2 [23,2%(log)

units_layer3 [23,2%(log)

units_layer4 [23,2%(log)

act_layer relu, tanh

init_layer glorot_normal, glorot_uniform, he_ normal, he_uniform
11_reg_layer 5710572 (log)

12 reg_layer [5710.572](log)
learning_rate_scheduler TRUE, FALSE

init_seed 1, 11, 101, 131, 499

num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 2: Sample bounds of the KerasFF learning algorithm.
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Hyperparameter Range

k [1, 50]
distance 12, cosine, ip
M [18, 50]

ef [23,2%](log)
ef_construction (24,29 (log)

num.impute.selected.cpo

impute.mean, impute.median, impute.hist

Table 3: Sample bounds of the ReppHNSW learning algorithm.

Hyperparameter Range
nrounds [23,21](log)
eta [2710 29 (1og)
gamma 2715 23] (log)
lambda [2710 210](10g)
alpha [2710 210](10g)
subsample [0.1, 1]
max_depth [1, 15]
min_child_weight [29,27](log)
colsample_bytree [0.01, 1]
colsample_bylevel [0.01, 1]

num.impute.selected.cpo

impute.mean, impute.median, impute.hist

Table 4: Sample bounds of the XGBoost learning algorithm.

Hyperparameter Range

num.trees [1, 2000]

replace TRUE, FALSE
sample.fraction [0.1, 1]

mtry.power [0, 1]
respect.unordered.factors ignore, order, partition
min.node.size [1, 100]

splitrule gini, extratrees
num.random.splits [1, 100]

num.impute.selected.cpo

impute.mean, impute.median, impute.hist

Table 5: Sample bounds of the Ranger (random Forest) learning algorithm.
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Hyperparameter Range

kernel linear, polynomial, radial
cost [2712,212](log)

gamma 2712 212](l0g)

degree [2, 5]

tolerance 2712 273](log)

shrinking TRUE, FALSE

num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 6: Sample bounds of the SVM learning algorithm.

Hyperparameter Range

p 219, 2%](log)
maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]

num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 7: Sample bounds of the RPART (decision tree) learning algorithm.

Hyperparameter Range
alpha [0, 1]
s 2719,21%)(log)

num.impute.selected.cpo impute.mean, impute.median, impute.hist

Table 8: Sample bounds of the glmnet (elastic net) learning algorithm.
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Appendix B. Preprocessing

We preprocess data using m1rCPO using the following procedure:

1. fixfactors: Set all categorical features missing not present during training to MISSING
in the prediction phase

2. imputation: Impute using a new level for categorical features and mean, median or
histogram for numerics. The latter is a hyperparameter exposed for all learners and
explored during the sampling procedure.

3. We add indicator columns for missing numeric values.

4. We limit the number of factor levels for a given categorical variable to 32. All other
columns with lower cardinality are collapsed to a ”other” category.

5. We drop constant features.

6. If learners can not handle categorical features natively (xgboost, keras, rcpphnsw),
we encode those using dummy encoding.

Appendix C. Subsampling

We use subsampling with the following factions of the training data:
0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
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