
7th ICML Workshop on Automated Machine Learning (2020)

AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data

Nick Erickson˚ neerick@amazon.com

Jonas Mueller˚ jonasmue@amazon.com

Alexander Shirkov ashyrkou@amazon.com

Hang Zhang hzaws@amazon.com

Pedro Larroy pllarroy@amazon.de

Mu Li mli@amazon.com

Alexander Smola smola@amazon.com

Amazon Web Services

Abstract

We introduce AutoGluon-Tabular, an open-source1 AutoML framework that requires only
one line of Python to train highly accurate machine learning models on a raw tabular dataset
such as a CSV file. Unlike existing AutoML frameworks that focus on model/hyperparameter
selection, AutoGluon-Tabular ensembles multiple models by stacking them in multiple layers.
Experiments reveal that our multi-layer combination of many models offers better use of
allocated training time than seeking out the best. Using a suite of 50 classification/regression
tasks from Kaggle and the OpenML AutoML Benchmark, we compare AutoGluon with
various AutoML platforms including TPOT, H2O, AutoWEKA, auto-sklearn, and GCP
AutoML Tables, and find that AutoGluon is faster, more robust, and more accurate.
AutoGluon often even outperforms the best-in-hindsight combination of all of its competitors.
In two popular Kaggle competitions, AutoGluon beat 99% of the participating data scientists
after merely 4h of training on the unprocessed data.

1 Introduction

The most common application of machine learning today involves classification/regression
with data stored in a structured table of numeric/string values (as in a CSV file). Automated
Machine Learning (AutoML) frameworks enable painless deployment of machine learning that
is accurate, robust, and easy to use/maintain. Due to their immense potential, many
AutoML frameworks have emerged to automate such tasks (He et al., 2019; Truong et al.,
2019). Prior AutoML focused almost exclusively on the task of Combined Algorithm
Selection and Hyperparameter optimization (CASH), offering strategies to find the best
model and its hyperparameters from a sea of possibilities (Thornton et al., 2013). CASH
algorithms rely on brute-force search that often expends significant compute evaluating poor
model/hyperparameter configurations no reasonable data scientist would consider.

We introduce AutoGluon-Tabular, an easy to use and highly accurate Python library for
AutoML with tabular data. Instead of focusing on CASH, AutoGluon relies on advanced
data processing, deep learning, and multi-layer stack ensembling. It automatically recognizes
the data type in each column for fully automated ML, including special handling of text
fields. AutoGluon ensembles many models in a multi-layered fashion via stacking/bagging.

1. github.com/awslabs/autogluon
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2 AutoGluon-Tabular

Consider a structured dataset of raw values in a CSV file, train.csv, with the label values
stored in a column named class. Here’s how to train and test a model with AutoGluon:

1 from autogluon import TabularPrediction as task
2 predictor = task.fit("train.csv", label="class")
3 predictions = predictor.predict("test.csv")

Within fit(), AutoGluon automatically: preprocesses the raw data, identifies what type
of prediction problem this is (binary/multi-class classification or regression), infers feature
types, partitions data into various folds for model-training vs. validation, individually fits
various models, and creates an optimized model ensemble that outperforms the individual
trained models. fit() provides many additional options that may be specified, including:

• hyperparameter tune = True optimizes hyperparameters of the individual models.
• auto stack = True applies bagging and (multi-layer) stacking.
• time limits controls the runtime of fit().
• eval metric specifies the metric used to evaluate predictive performance.

When comparing AutoGluon with other frameworks, we utilize auto stack, eval metric,
time limits (the latter two are matched in all frameworks), but we do not utilize hyperpa-
rameter tuning to demonstrate CASH is not necessary in a successful AutoML system. By
default, auto stack is recommended to maximize AutoGluon’s predictive accuracy (it is left
optional for users who want to quickly train smaller ensembles at the expense of accuracy).

Data Processing. When left unspecified by the user, the type of prediction problem at
hand (binary vs. multi-class classification vs. regression) is first inferred by AutoGluon based
on the types of values present in the label column, and we also infer the variable-types
of the other features. AutoGluon relies on both model-agnostic data preprocessing that
transforms the inputs to all models, and model-specific preprocessing that is only applied to
a copy of the data used to train a particular model. Model-agnostic preprocessing begins by
categorizing each feature numeric, categorical, text, or date/time. Uncategorized columns
are discarded from the data, comprised of non-numeric, non-repeating fields with presumably
little predictive value (e.g. UserIDs). Date/times are transformed into ordered numbers and
the values of each text column are transformed into numeric vectors of n-gram features (only
retaining n-grams with the highest occurrence to save memory). Missing discrete variables
are assigned an Unknown category rather than being imputed, which helps AutoGluon handle
unknown categories at test-time.

Types of Models. AutoGluon trains a curated set of models: neural networks, LightGBM
boosted trees (Ke et al., 2017), CatBoost boosted trees (Prokhorenkova et al., 2018), and
scikit-learn implementations of: Random Forests, Extremely Randomized Trees, and k-
Nearest Neighbors. The neural network used by AutoGluon is depicted in Figure 1A and is
similar to the models of Howard and Gugger (2020); Cheng et al. (2016). Our network applies
a separate embedding layer to each categorical feature (Guo and Berkhahn, 2016) which
enables this model to separately learn about each categorical feature before its representation
is blended with other variables. These categorical embeddings are concatenated with the
(normalized) numerical features into a large vector which is both fed into a 3-layer feedforward
network and directly connected to the output predictions via a linear skip-connection.
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Figure 1: (A) Architecture of AutoGluon’s neural network for numerical and categorical
features. Blue layers contain learnable parameters. (B) AutoGluon’s multi-layer
stacking strategy, shown here using two stacking layers and n types of base learners.

Multi-Layer Stack Ensembling. Top AutoML frameworks all rely on model ensembles
based on bagging, boosting, stacking, or weighted combinations (Dietterich, 2000). In
particular, various AutoML frameworks utilize shallow stack ensembling (Wolpert, 1992).
Here a collection of individual “base” models are individually trained in the usual fashion.
Subsequently, a “stacker” model is trained using the aggregated predictions of the base
models as its features. Multi-layer stacking feeds the predictions output by the stacker
models as inputs to additional higher layer stacker models (Michailidis, 2018).

AutoGluon’s multi-layer stacking strategy is depicted in Figure 1B. Here the first layer
has multiple base models, whose outputs are concatenated and then fed into the next layer,
which itself consists of multiple stacker models. These stackers then act as base models
to an additional layer. AutoGluon simply reuses all of its base layer model types (with
identical hyperparameters) as stackers. Like Chen et al. (2018), our stacker models take as
input not only the predictions of the models at the previous layer, but also the original data
features themselves (input vectors are data features concatenated with lower-layer model
predictions). Our final stacking layer applies ensemble selection (Caruana et al., 2004) to
aggregate the stacker models’ predictions in a weighted manner.

Repeated k-fold Bagging. AutoGluon further improves its stacking performance by
utilizing all of the available data for both training and validation, through k-fold ensemble
bagging of all models at all layers of the stack. We randomly partition the data into k
disjoint chunks (stratified based on labels), and subsequently train k copies of a model with
a different data chunk held-out from each copy. AutoGluon bags all models and each model
is asked to produce out-of-fold (OOF) predictions on the chunk it did not see during training.
As every training example is OOF for one of the bagged model copies, this allows us to
obtain OOF predictions from every model for every training example.

In stacking, it is critical that higher-layer models are only trained upon lower-layer OOF
predictions. Our use of OOF predictions from bagged ensembles instead allows higher-layer
stacker models to leverage the same amount of training data as those of the previous
layer. While k-fold bagging efficiently reuses training data, it introduces a slight mismatch:
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Algorithm 1 AutoGluon Training (with multi-layer stacking + n-repeated k-fold bagging)

Require: data (X, Y ), family of models M, # of layers L
1: Preprocess data to extract features
2: for l “ 1 to L do {Stacking}
3: for i “ 1 to n do {n-repeated}
4: Randomly split data into k chunks tXj , Y jukj“1

5: for j “ 1 to k do {k-fold bagging}
6: for each model type m in M do
7: Train a type-m model on X´j , Y ´j , and ask it for predictions Ŷ j

m,i on OOF data Xj

8: Average OOF predictions over repeated bags Ŷm “ t
1
n

ř

i Ŷ
j
m,iu

k
j“1

9: X Ð concatenatepX, tŶmumPMq

stacker models receive single models’ OOF predictions as features during training, but
during inference operate on lower-layer predictions averaged over the full bag. We propose a
repeated bagging process to mitigate this, where if training time remains after k-fold bagging,
we repeat the k-fold bagging process on n different random partitions of the training data,
averaging all OOF predictions over the repeated bags (n chosen to fill specified time budget).

Overall Training Strategy. Our overall training strategy is summarized in Algorithm 1,
where each stacking layer receives time budget Ttotal{L. By default (if auto stack is
specified), AutoGluon utilizes 2-layer stacking (L “ 2) with repeated 10-fold bagging
(k “ 10), where the number of bagging repeats, n, is chosen to fill remaining time in the
budget after the first round of k-fold bagging. In Step 7, AutoGluon first estimates the
required training time and if this exceeds the remaining time for this layer, we skip to the
next stacking layer (skipping any remaining models). After each new model is trained, it
is immediately saved to disk for fault tolerance. This design makes the framework highly
predictable in its behavior: both the time envelope and failure behavior are well-specified.

This approach guarantees that we can produce predictions as long as we can train at least
one model on one fold within the allotted time. As we checkpoint intermediate iterations of
sequentially trained models like neural networks and boosted/bagged trees, AutoGluon can
still produce a model under meager time limits. We additionally anticipate that models may
fail while training and skip to the next one in this event. Many AutoML frameworks train
multiple models in parallel on the same instance. While this may sometimes save time, it
leads to many out-of-memory errors on larger datasets without careful tuning. AutoGluon
instead trains models sequentially and relies on their individual implementations to efficiently
leverage multiple cores. This allows us to train where other frameworks may fail.

3 Experiments

We compare AutoGluon with popular AutoML frameworks: Auto-WEKA (Thornton et al.,
2013), auto-sklearn (Feurer et al., 2015), TPOT (Olson et al., 2016), H2O AutoML (H2O.ai,
2017), GCP-Tables (Google, 2019). We run these tools on 50 curated datasets, spanning
binary/multiclass classification and regression problems collected from two sources2. All

2. Code to reproduce our benchmarks is available at: github.com/Innixma/autogluon-benchmarking
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Table 1: Comparing AutoML frameworks (with 4h training time) on: 39 datasets from
OpenML AutoML Benchmark (top), 11 datasets from Kaggle (bottom). Listed are
the number of datasets where each framework produced: better predictions than
AutoGluon (Wins), worse predictions (Losses), a system failure/error (Failures), or
better predictions than all of the other 5 frameworks (Champion). The latter 3
columns show the average: rank of the framework (among the 6 AutoML frameworks
applied to each dataset), predictive performance (higher is better), and actual
training time (in minutes). Averages are computed over the subset of datasets where
all frameworks ran successfully. For Kaggle, predictive performance “ percentile
rank on each competition’s leaderboard (proportion of teams beaten by AutoML).
For OpenML, predictive performance “ 1´ rescaled loss, where we rescale the loss
values for each dataset such that they span r0, 1s among our AutoML frameworks.

Framework Wins Losses Failures Champion Rank Performance Time

O
p

en
M

L

AutoGluon - - 1 23 1.8438 0.8615 201
H2O AutoML 4 26 8 2 3.1250 0.7553 220
TPOT 6 27 5 5 3.3750 0.7966 235
GCP-Tables 5 20 14 4 3.7500 0.6664 195
auto-sklearn 6 27 6 3 3.8125 0.6803 240
Auto-WEKA 4 28 6 1 5.0938 0.1999 244

K
a
g
g
le

AutoGluon - - 0 7 1.7143 0.7041 202
GCP-Tables 3 7 1 3 2.2857 0.6281 222
H2O AutoML 1 7 3 0 3.4286 0.5129 227
TPOT 1 9 1 0 3.7143 0.4711 380
auto-sklearn 3 8 0 1 3.8571 0.4819 240
Auto-WEKA 0 10 1 0 6.0000 0.2056 221

AutoML frameworks were run with the same time limit on the same type of AWS EC2 cloud
instance (except GCP-Tables which uses 92 GCP servers). As some frameworks only loosely
respected specified time limits, we also report actual training times.

OpenML AutoML Benchmark. 39 binary and multi-class classification datasets curated
by Gijsbers et al. (2019) to serve as a representative benchmark for AutoML frameworks. As
in the original benchmark, we train for both 1h as well as 4h, and test set loss is calculated
via 1´AUC or log-loss for binary or multi-class classification tasks, respectively.

Kaggle Benchmark. 11 regression and binary/multiclass classification datasets chosen
from recent Kaggle competitions to reflect real modern-day applications (see Table S1).

Results. Table 1 compares each framework against AutoGluon in these benchmarks,
showing how often one framework is better than another. Figure 2 depicts the performance
of each framework on individual datasets from our benchmarks, showing how much better
each framework is than the others for particular applications. Overall, AutoGluon is much
more accurate than all of the other AutoML frameworks, and it is the only framework with
average rank ď 2, indicating no other framework could beat AutoGluon consistently. On
over half of the datasets in each benchmark, AutoGluon performed better than all of the
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Figure 2: (A) Performance of AutoML frameworks relative to AutoGluon on the AutoML
Benchmark (with 1h training time). (B) Proportion of teams in each Kaggle
competition whose scores were beat by each AutoML framework (with 4h training
time). The color of each dataset name indicates the task: binary classification
(black), multi-class classification (purple), regression (orange).

Table 2: Ablation study of AutoGluon on the AutoML Benchmark (4h training time).

Framework Avg. Rank Avg. Loss

AutoGluon 2.122 0.144
NoRepeat 2.365 0.204
NoMultiStack 3.216 0.443
With-HPO 4.095 0.618
NoBag 4.446 0.658
NoNetwork 4.757 0.731

other frameworks. AutoGluon is additionally more robust (with less system failures) and
better at adhering to the specified training time limits (Table 1, Figures S2-S3). After just 4
hours of training, AutoGluon placed 42 / 3505 and 39 / 2920 on the official leaderboards of
the otto and bnp-paribas Kaggle competitions, respectively.

AutoGluon’s performance continues to improve with additional training time, and does
so more reliably than other frameworks which may start over-fitting (Table S3). We also
study ablated AutoGluon variants with components sequentially removed: First, we omit
repeated bagging, just using one round of k-fold bagging (NoRepeat). Second, we omit multi-
layer stacking, so the resulting model ensemble only uses bagging and ensemble selection
(NoMultiStack). Third, we omit bagging and rely on ensemble selection with only a single
training/validation split of the data (NoBag). Fourth, we omit our neural network from the
set of base models (NoNetwork). Table 2 shows how each component boosts performance.
We also run NoBag-AutoGluon with hyperparameter tuning via random-search (With-HPO).
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Appendix: AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data

Appendix A. AutoGluon Implementation Details

Default hyperparameter values for each model can be found in the AutoGluon source code:
github.com/awslabs/autogluon, in directory: autogluon/utils/tabular/ml/models/.
These default hyperparameter values were chosen a priori and not tuned based on the
particular datasets used for benchmarking in this paper.

While boosted trees are often more accurate than neural networks on tabular datasets,
properly trained neural networks can substantially improve accuracy when ensembled
with other models, in particular providing useful diversity to the axis-aligned geometry of
trees. Implemented using MXNet Gluon, the neural network in AutoGluon employs ReLU
activations, dropout regularization, batch normalization, Adam with a weight decay penalty,
and early stopping based on validation performance. While not tuned via hyperparameter
optimization, the size of the hidden layers is nonetheless scaled adaptively based on properties
of the training data (in a fixed manner). In particular, the feedforward branch of our model
uses hidden layers of size 256 and 128 which are additionally scaled up based on the number
of classes in multi-class settings. The width of the numeric embedding layer ranges between
32 - 2056 and is determined based on the number of numeric features and the proportion of
numeric vs. categorical features. Inspired by Howard and Gugger (2020), a discrete feature
with k unique categories observed in the training data is processed by an embedding layer of
size: 1.6ˆ k0.56 (up to threshold of size 100). AutoGluon using our proposed neural network
architecture outperforms AutoGluon using an analogous standard feedforward network on
22 datasets of the AutoML Benchmark (and is outperformed on only 12 datasets).

To infer the type of prediction problem at hand (when unspecified), AutoGluon considers
the label column’s values. Non-numeric string values indicate a classification problem (with
the number of classes equal to the number of unique values observed in this column), whereas
numeric values with few repeats indicate a regression problem. This simple feature is just
one example of the many AutoGluon optimizations that help users quickly translate raw
data into accurate predictions. AutoGluon classifies each column’s data type with the
help of the pandas library, which it uses to load the raw data into Python. For string
columns, how missing values are represented does not really matter since AutoGluon treats
missing values as an extra Unknown category. For numerical columns, AutoGluon requires
missing values be loaded by pandas as NA, and each model individually handles numerical
missing values (for example, the Random Forest and Neural Network impute them, whereas
CatBoost/LightGBM utilize special strategies listed in their documentation).

AutoGluon considers text features to be columns of mostly unique strings, which on
average contain more than 3 non-adjacent whitespace characters. Columns with mainly
repeated strings are treated as categorical. Columns with mostly unique strings and fewer
whitespaces are dropped (as presumably ID-type columns with little predictive signal). Our
n-gram text featurization ensures AG is lightweight and works well with any vocabulary
(v.s. say contextual embeddings from bulky models like BERT).

1

https://github.com/awslabs/autogluon


Erickson, Mueller, Shirkov, Zhang, Larroy, Li, Smola

Appendix B. Data used in Kaggle Benchmark

Table S1: 11 Kaggle competitions used in our benchmark, including: date of each com-
petition, how many teams participated, and the number of rows/columns in
training data. Metrics used to evaluate predictions in each competition include:
root mean squared logarithmic error (RMSLE), coefficient of determination (R2),
mean absolute error (MAE), logarithmic loss (log-loss), area under the Receiver
Operating Characteristic curve (AUC), and normalized Gini index (Gini).

Competition Task Metric Year Teams Rows Colums

house-prices-advanced-regression-techniques regression RMSLE 2020 5100 1460 80
mercedes-benz-greener-manufacturing regression R2 2017 3800 4209 377
santander-value-prediction-challenge regression RMSLE 2019 4500 4459 4992
allstate-claims-severity regression MAE 2017 3000 1.8E+5 131
bnp-paribas-cardif-claims-management binary log-loss 2016 2900 1.1E+5 132
santander-customer-transaction-prediction binary AUC 2019 8800 2.2E+5 201
santander-customer-satisfaction binary AUC 2016 5100 7.6E+4 370
porto-seguro-safe-driver-prediction binary Gini 2018 5200 6.0E+5 58
ieee-fraud-detection binary AUC 2019 6400 5.9E+5 432
walmart-recruiting-trip-type-classification multi-class log-loss 2016 1000 6.5E+5 7
otto-group-product-classification-challenge multi-class log-loss 2015 3500 6.2E+4 94

Table S1 describes the datasets that comprised our Kaggle benchmark. Data for compe-
tition x can be obtained from: kaggle.com/c/x/. To select competitions for the benchmark,
we first included those for which Google (2019); Rishi (2019) found GCP-Tables could pro-
duce strong results (indicating these are suitable candidates for AutoML). We omitted three
datasets from Google (2019) in our benchmark because either the competition data/scores
are unavailable, or the data require manual transformations to be formatted as a single
table.

The remaining benchmark data were selected by optimizing for a mix of regression and
binary/multiclass classification tasks with IID data (i.e. without temporal dependence),
while favoring competitions that were either more recent (more timely applications) or had
a large number of teams competing (more prominent applications). For each competition,
every AutoML framework was trained on the provided training data, and its predictions
on the provided (unlabeled) test data are submitted to Kaggle’s server to evaluate their
accuracy (using secret test labels). The performance reported in this paper is based on the
private (rather than public) score from each Kaggle competition, which is used to decide the
official leaderboard (except for house-prices which only offers public leaderboard).

Appendix C. Details Regarding Usage of AutoML frameworks

Our evaluations are based on running each AutoML system on every dataset in the exact
same manner. Having to manually adjust tools to particular datasets would otherwise

2
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undermine the purpose of automated machine learning. Before training, every frameworks is
informed of the metric by which predictions will be evaluated.

Only H2O and GCP-Tables could robustly handle training with CSV files of raw data
in our experiments (each utilizing their own automated inference of feature types). While
Auto-WEKA aims to do the same, our experiments produced numerous errors when applying
Auto-WEKA to raw data (e.g. when a new feature-category appeared in test data). To
enhance its robustness, we provided Auto-WEKA with the same preprocessed data that
we provided to TPOT and auto-sklearn. Lacking end-to-end AutoML capabilities, these
packages do not support raw data input and require the data to be preprocessed. Thus, we
provided Auto-WEKA, TPOT, and auto-sklearn with the same preprocessed version of each
dataset, producing via the same steps AutoGluon uses to transform raw data into numerical
features that are fed to certain models: Inferred categorical features are restricted to only
their top 100 categories, then one-hot encoded into a vector representation with additional
categories to represent rare categories, missing values, and new categories only encountered
at inference-time. Inferred numerical features have their missing values imputed and then
are rescaled to zero mean and unit variance. We find that given the AutoGluon-processed
data, Auto-WEKA, TPOT, and auto-sklearn are able to match their performance in the
original AutoML benchmark (Table S2), this time without requiring that the feature types
have been manually specified for each package.

Where available, we used newer versions of each open-source AutoML framework than
those Gijsbers et al. (2019) evaluated in the original AutoML Benchmark. In particular, we
used TPOT version 0.11.1, Auto-WEKA 2.6, H2O 3.28.0.1, and auto-sklearn version3 0.5.2.
For each of these AutoML libraries, we confirmed with the original package authors that
any modifications we made to the default AutoML benchmark settings would be expected
to maximize their predictive performance.

We followed the protocol of the original AutoML Benchmark and trained frameworks
with 1h and 4h time limits. The Kaggle datasets tend to be larger than those of the AutoML
Benchmark and posed memory issues for some of the baseline AutoML tools. To ensure no
AutoML framework is resource-limited, we ran the Kaggle benchmark for longer than the
AutoML datasets (4h and 8h time limits), and used more powerful AWS m5.24xlarge EC2
instances (384 GiB memory, 96 vCPU cores). For the AutoML Benchmark, we used the
same machine as in the original benchmark, an AWS m5.2xlarge EC2 instance (32 GiB
memory, 8 vCPU cores).

To ensure averaging over different datasets remains meaningful in the AutoML Benchmark,
we report loss values over the test data that have been rescaled. We rescale the loss values
for each dataset such that they span r0, 1s among our AutoML frameworks. The rescaled
loss for a dataset is set = 0 for the champion framework and = 1 for the worst-performing
framework. The remaining frameworks are linearly scaled between these endpoints based
on their relative loss. To ensure all head-to-head comparisons between frameworks remain
fair, our reported averages/counts are taken only over those datasets where all frameworks
trained without error.

3. While a newer 0.6.0 auto-sklearn version exists, it has sckit-learn dependency that is incompatible
with AutoGluon preventing them from being installed together. There does not appear to be any updates
to auto-sklearn’s ML/modeling process between versions 0.5.2 and 0.6.0
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Table S2: Comparing our usage of AutoML systems against the results from the original
AutoML Benchmark (Gijsbers et al., 2019). Out of the 39 datasets, we count how
often our implementation exceeded the original performance (ą), or fell below the
original performance (ă), or was equally performant (“). Since there were no ties
here, all missing counts are datasets where one framework failed. Rather than
providing TPOT, auto-sklearn, and Auto-WEKA with information about the true
feature types (as done in the original benchmark), we instead provided them with
data automatically preprocessed by AutoGluon (without additional information
about the ground-truth feature types). This shows AutoGluon’s preprocessing is
broadly useful, enabling these other AutoML methods to be applied in a more
automated/robust manner to other datasets, without harming their performance.

System ą Original ă Original “ Original

H2O AutoML (1h) 18 16 0
auto-sklearn (1h) 16 14 0
TPOT (1h) 17 13 0
Auto-WEKA (1h) 18 12 0
H2O AutoML (4h) 15 15 0
auto-sklearn (4h) 15 17 0
TPOT (4h) 13 16 0
Auto-WEKA (4h) 17 12 0

Appendix D. Additional Results

Table S3: Performance of AutoML frameworks after 1h training vs. 4h training on each of
the 39 AutoML Benchmark datasets. We count how many times the 1h variant
performs better (ą), worse (ă), or comparably (“) to the 4h variant.

System ą 4h ă 4h “ 4h

AutoGluon (1h) 5 30 3
GCP-Tables (1h) 8 16 1
H2O AutoML (1h) 6 16 9
auto-sklearn (1h) 12 16 1
TPOT (1h) 6 24 2
Auto-WEKA (1h) 7 16 10
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Table S4: Comparing each AutoML framework against AutoGluon on the 39 AutoML
Benchmark datasets (with 1h training time). Listed are the number of datasets
where each framework produced: better predictions than AutoGluon (Wins),
worse predictions (Losses), a system failure during training (Failures), or better
predictions than all of the other 5 frameworks (Champion). The latter 3 columns
show the average: rank of the framework (among the 6 AutoML tools applied to
each dataset), (rescaled) loss on the test data, and actual training time. Averages
are computed over the subset of datasets where all methods ran successfully.

Framework Wins Losses Failures Champion Rank Rescaled Loss Time (min)

AutoGluon 0 0 0 19 1.5455 0.0474 57
GCP-Tables 6 20 13 5 2.8182 0.2010 90
H2O AutoML 8 30 1 5 3.1818 0.1914 58
auto-sklearn 8 26 5 4 3.7273 0.2176 60
TPOT 5 30 4 4 4.0909 0.2900 67
Auto-WEKA 4 31 4 2 5.6364 0.9383 62
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Figure S1: Performance of AutoML frameworks relative to AutoGluon on each dataset from
the AutoML Benchmark (under 4h training time limit). Failed runs are not
shown here (and we omit a massive loss of Auto-WEKA on cars as an outlier).
Loss is measured via 1´AUC for binary classification datasets (black text), or
log-loss for multi-class classification datasets (purple text), and is divided by
AutoGluon’s loss here.
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(A) 1h time limit specified (60 min) (B) 4h time limit specified (240 min)

Figure S2: Actual training times of each framework in the AutoML Benchmark, which varied
despite the fact that we instructed each framework to only run for the listed time
limit. Unlike AutoGluon, some frameworks vastly exceeded their training time
allowance (TPOT in particular). In these cases, the accuracy values presented
in this paper presumably represent optimistic estimates of the performance that
would be achieved if training were actually halted at the time limit. Datasets
are colored based on whether they correspond to a binary (black) or multi-class
(purple) classification problem.

Table S5: Ablation analysis of AutoGluon trained without various components on the
AutoML Benchmark under 1h and 4h time limits. The ablated variants of
AutoGluon are defined in the main text, columns are defined as in Table S4
(averaged columns are relative to this table and should not be compared across
tables). Even after 4h, the NoMultiStack variant cannot outperform the full
AutoGluon trained for only 1h.

Framework Wins Losses Champion Rank Rescaled Loss Time (min)

AutoGluon (4h) 0 0 15 2.6757 0.1416 192
NoRepeat (4h) 17 20 11 3.3919 0.2106 114
AutoGluon (1h) 5 30 2 4.6351 0.3323 55
NoMultiStack (4h) 7 28 3 4.6622 0.4361 173
NoRepeat (1h) 5 32 2 4.9595 0.3600 43
NoMultiStack (1h) 6 31 2 6.1351 0.5868 53
NoBag (1h) 5 33 1 6.6351 0.6513 15
NoBag (4h) 5 33 1 7.0405 0.6605 27
NoNetwork (1h) 4 34 0 7.4189 0.7475 10
NoNetwork (4h) 5 33 0 7.4459 0.7431 16
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Table S6: Comparing the open-source AutoML frameworks over all 10 different train/test
splits of the AutoML Benchmark (with 4h training time limit). These results
are based on the average performance across all 10 folds. A framework failure
on any of the 10 folds is considered an overall failure for the dataset. Columns
are defined as in Table S4, where averaged columns are relative to the particular
table and should not be compared across tables. AutoGluon outperforms all other
frameworks in 27 of the 38 datasets (Dionis dataset is excluded from this table
because all frameworks failed on this massive dataset). Evaluating over 10 folds
reduces variance and thus frameworks are less likely to get a strong/poor result
by chance.

Framework Wins Losses Failures Champion Rank Rescaled Loss Time (min)

AutoGluon 0 0 1 27 1.3684 0.0303 197
H2O AutoML 7 23 9 6 2.4737 0.0955 224
auto-sklearn 4 28 7 3 2.9474 0.1589 240
TPOT 3 27 9 2 3.3158 0.2093 236
Auto-WEKA 1 31 7 0 4.8947 0.9902 242

Table S7: Comparing open-source AutoML frameworks on all 10 folds of the AutoML
Benchmark (with 4h training time limit). We include scores reported from the
original AutoML Benchmark, indicated with (O). These results are based on
the average performance across all 10 folds. A framework failure on any of the
10 folds is considered an overall failure for the dataset. Columns are defined
as in Table S4, where the averaged columns are relative to the particular table
and should not be compared across tables. AutoGluon outperforms all other
frameworks in 24 of the 39 datasets. Even without access to the original feature
type information which was provided in the original benchmark, AutoGluon is
still able to outperform the other frameworks. Our runs of the other AutoML
frameworks perform similarly to their original results, indicating feature type
information can be inferred effectively in most cases. Note that the original runs
failed fewer times than our runs. This is likely because the original AutoML
Benchmark runs performed multiple retries of failed frameworks in an attempt to
get a result, which we did not consider here.

Framework Wins Losses Failures Champion Rank Rescaled Loss Time (min)

AutoGluon 0 0 1 24 1.8889 0.0391 195
H2O AutoML (O) 8 29 2 4 3.4444 0.0972 208
H2O AutoML 7 23 9 2 3.5000 0.0851 223
auto-sklearn (O) 6 31 1 2 4.6667 0.1385 246
auto-sklearn 4 28 7 2 4.7778 0.1427 240
TPOT (O) 7 29 3 5 4.7778 0.1519 247
TPOT 3 27 9 0 5.3889 0.1949 237
Auto-WEKA (O) 1 33 4 0 8.2222 0.8284 237
Auto-WEKA 1 31 7 0 8.3333 0.7194 242
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(A) 4h time limit specified (240 min) (B) 8h time limit specified (480 min)

Figure S3: Actual training times of each framework in the Kaggle Benchmark, which varied
despite the fact that we instructed each framework to only run for the listed time
limit. Unlike AutoGluon, some frameworks vastly exceeded their training time
allowance (TPOT in particular). In these cases, the accuracy values presented
in this paper presumably represent optimistic estimates of the performance that
would be achieved if training were actually halted at the time limit. The color of
each dataset name indicates the corresponding task: binary classification (black),
multi-class classification (purple), regression (orange).

Table S8: Comparing each AutoML framework against AutoGluon on the 11 Kaggle com-
petitions (under 8h time limit). Listed are the number of datasets where each
framework produced: better predictions than AutoGluon (Wins), worse pre-
dictions (Losses), a system failure during training (Failures), or more accurate
predictions than all of the other 5 frameworks (Champion). The latter 3 columns
show the average: rank of the framework (among the 6 AutoML tools applied to
each dataset), percentile rank achieved in on the competition leaderboard (higher
= better), and actual training time. Averages are computed over only the subset
of 8 competitions where all methods ran successfully.

Framework Wins Losses Failures Champion Rank Percentile Time (min)

AutoGluon 0 0 0 6 2.1250 0.6176 425
GCP-Tables 4 6 1 3 2.5000 0.5861 426
H2O AutoML 2 7 2 1 3.0000 0.5068 448
TPOT 2 8 1 0 3.5000 0.4793 565
auto-sklearn 3 8 0 1 3.8750 0.4851 480
Auto-WEKA 0 10 1 0 6.0000 0.2161 435
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Figure S4: (A)-(B): Difference in leaderboard ranks achieved by each AutoML framework
vs. AutoGluon in the Kaggle competitions (under listed training time limit).
These values quantify how much better one framework is vs. another, in terms of
how many data scientists could beat one but not the other. (C)-(D): Ratio of loss
achieved by AutoML frameworks vs. AutoGluon loss on each Kaggle competition
(under listed training time limit). Loss is a competition-specific metric (e.g.
RMSLE, 1´Gini, etc.). In both plots, points ą 0 indicate worse performance
than AutoGluon and failed runs are not shown. The color of each dataset name
indicates the task: binary classification (black), multi-class classification (purple),
regression (orange).
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