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Abstract

Bayesian optimization (BO) is a class of global optimization algorithms ubiquitous in
hyperparameter optimization (HPO). BO budgets are typically given in iterations, which
implicitly measures convergence in terms of the number of hyperparameter evaluations. In
practice, evaluation costs may vary in different regions of the search space. For example,
the cost of neural network training increases quadratically with layer size. Cost-aware BO
measures convergence with alternative cost metrics such as time, for which vanilla BO
methods are unsuited. While the standard cost-aware heuristic in the black-box setting is
to normalize the acquisition function by the cost, we show that this often underperforms,
and adopt a different approach by scheduling cheaper evaluations before expensive ones.
We do so through two improved heuristics: a cost-effective initial design and a cost-cooled
optimization phase which depreciates a learned cost model as iterations proceed.

1. Introduction

Consider minimizing a black-box function f(x) : Ω→ R over a set Ω ⊂ Rd whose analytical
form and gradients are unavailable, and that can only be queried through noisy evaluations.
Bayesian optimization (BO) is a well-established class of methods to address this problem,
and has been applied with success to hyperparameter optimization (HPO) (Snoek et al., 2012;
Shahriari et al., 2016; Frazier, 2018). BO is sample efficient, taking fewer steps to converge
than competing methods. Evaluations f(x1), . . . , f(xn) are used to model f , typically with
a Gaussian process (GP) (Rasmussen and Williams, 2006), and an acquisition function
balances exploration and exploitation to determine the next evaluation. A popular choice is
the Expected Improvement (EI) (Mockus et al., 1978).

BO’s sample efficiency leads to fast convergence only if evaluations cost the same, an
assumption that is often not true in practice. Figure 1 illustrates this by randomly evaluating
5000 hyperparameter configurations for five popular HPO problems. Unsurprisingly, resulting
evaluation times vary, often by an order of magnitude or more. Moreover, the bulk of each
problem’s search space tends to be cheap, suggesting significant cost savings may be achieved
by using a cost efficient rather than a sample efficient optimizer.

2. Background and Related Work

Most prior approaches to cost-aware BO occur in the grey-box setting, in which additional
information about the objective is available. Multi-fidelity BO is one such widely studied
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Figure 1: Runtime distribution, log-scaled, of 5000 randomly selected points for the K-
nearest-neighbors (KNN), Multi-layer Perceptron (MLP), Support Vector Machine
(SVM), Decision Tree (DT), and Random Forest (RF) HPO tasks. Their runtimes
vary, often by an order of magnitude or more.
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Figure 2: We compare EI and EIpu on KNN. EIpu evaluates many more cheap points than
EI, which evaluates more expensive points. The optimum’s cost, one of the most
expensive points, is a black star. EIpu performs poorly as a result.

approach in which fidelity parameters s ∈ [0, 1]m are assumed to be a noisy proxy for
high-fidelity evaluations (Forrester et al., 2007; Kandasamy et al., 2017; Poloczek et al.,
2017; Wu et al., 2019). Multi-fidelity methods are often application-specific. For example,
Hyperband (Li et al., 2017; Falkner et al., 2018; Klein et al., 2016, 2017) cheaply trains many
neural network configurations for only a few epochs, and then train a selected subset for
further epochs. In multi-task BO, HPO is run on cheaper training sets before more expensive
ones. While these methods demonstrate strong performance, they sacrifice generality and
do not directly apply to black-box BO.

Cost-aware BO in the black-box framework is under-explored. The de-facto heuristic in
this setting is to normalize the acquisition by the cost, typically predicted with a GP cost
model (Snoek et al., 2012). This extends EI to EI per unit cost (EIpu):

EIpu(x) :=
EI(x)

c(x)
. (1)

Snoek et al. (2012) showed that EIpu can boost performance on a variety of HPO problems.
In our experiments, EIpu demonstrated underwhelming performance: as we will show, out
of twenty HPO problems, EIpu performs worse than EI on nine. EIpu’s poor performance
on certain problems is explained in Figure 2, in which EIpu (green) is slower than EI (red)
at HPO of a K-nearest-neighbor model. The empirical optimum, namely the best point
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Figure 3: Median evaluation time per iteration using each method’s median number of
iterations for an SVM HPO problem. We shade the iterations that consume the
first τ/8 cost (initial design budget). CArBO clearly starts with many cheap
evaluations and gradually evaluates more expensive points.

over all trials (black star), has high cost. As a result, dividing by the cost steers EIpu away
from the optimum and diminishes its performance. This is evidenced by the evaluation
time histograms: EIpu evaluates far more very cheap points compared to EI, which instead
evaluates fewer but more expensive points. Due to this bias, EIpu is likely to only display
strong results when optima are relatively cheap. This is a problem in the black-box setting
as we do not know the global optima’s cost a priori.

3. Improved Heuristics in the Cost-Aware Setting

We argue that a better cost-aware strategy can be introduced. Grey-box approaches
outperform their black-box counterparts by scheduling cheap points before expensive ones.
This early and cheap, late and expensive strategy is accomplished by leveraging additional
cost information inside the optimization routine. We attempt to do the same in the black-box
setting with two novel strategies. The first one is a cost-effective initial design, which aims to
maximize coverage of the search space with cheap evaluations. The second one is cost-cooling,
which starts the optimization with EIpu and ends it with EI by deprecating the cost model
as iterations proceed. We call the combination of the two strategies cost apportioned BO
(CArBO). In Figure 3, we contrast CArBO’s explicit scheduling with EI and EIpu.

3.1 Cost-effective initial design

BO is typically warm-started with an initial design. A design is a set of points selected to
learn variation in data, and BO evaluates one before optimization to provide starting data
for its GP. Initial designs consume some budget, and must balance information gain with
sample efficiency. They must therefore be evenly spaced throughout the domain, and are
often low-discrepancy sequences (Kirk, 2012; Ryan and Morgan, 2007).

In cost-aware BO we aim to design a cost-effective initial design, which balances infor-
mation gain with cost efficiency. A cost-effective design fills Ω with more evaluations than
a traditional initial design within the same warm-start budget τinit. We devote significant

3



Lee, Perrone, Archambeau, and Seeger

Algorithm 1 Cost-effective initial design

1: Input: initial budget τinit, optimization domain Ω.
2: Cumulative time ct = 0, initial design Xinit = {}.
3: Discretize Ω into Ω̃.
4: while ct < τinit do
5: while size Xcand > 1 do
6: exclude most expensive point from Ω̃.
7: exclude point closest to Xinit from Ω̃.
8: end while
9: add remaining point to Xinit and evaluate.

10: Update ct, cost surrogate.
11: end while
12: return Xinit.

Normal Design Cost-effective Design

Figure 4: Two initial designs with the same cost, plotted over a contour of the synthetic cost
function. Left: a grid of four points. Right: a cost-effective solution containing 15
points, which covers the search space better than the grid.

time to the initial design (1/8th of the total budget in practice), and select a cost-effective
initial design through the following optimization subproblem:

arg min
X∈2Ω

fill(X) , fill(X) := sup
x∈Ω

min
xj∈X

‖xj − x‖2.

subject to
∑
xi∈X

c(xi) < τinit.
(2)

Intuitively, fill(X) is the radius of the largest empty sphere one can fit in Ω, and measures
the spacing of X in Ω (Pronzato and Müller, 2012). The smaller a set’s fill, the better
distributed it is within Ω. The argmin of Eq. (2) is the initial design within τinit cost with
the smallest fill. Solving Eq. (2) is challenging. In the discrete setting with constant cost, it
is an NP-complete vertex cover problem. Approximations described in Damblin et al. (2013);
Pronzato (2017) are greedy and have a worst-case approximation factor of 2. Algorithm 1
is a variation of these and reduces to the standard greedy approach given a constant cost
function. Figure 4 shows that a cost-effective design gains far more information than a
standard grid, with fifteen points compared to four.

4



Cost-aware Bayesian Optimization

20% 40% 60% 80%
Percent Wallclock Used

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
KNN MLP SVM Decision Tree Random Forest

RS EI EIpu CArBO

20% 40% 60% 80%
Percent Wallclock Used

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or

EI3 EIpu3 CArBO3 EI7 EIpu7 CArBO7

Figure 5: Top: Sequential comparison. Bottom: Batch comparison. The median is plotted,
with one standard deviation shaded above and below. In almost all cases, CArBO
converges significantly faster than all competing methods.

3.2 Cost-cooling

Assume that at the kth BO iteration, τk of the total budget τ has been used (at k = 0,
τk = τinit). Cost-cooling, which we call EI-cool when using EI, is defined as:

EI-cool(x) :=
EI(x)

c(x)α
, α = (τ − τk)/(τ − τinit). (3)

Cost c(x) is assumed to be positive and modeled with a warped GP that fits the log cost
γ(x). The cost is predicted by c(x) = exp(γ(x)) as in the standard EIpu (Snelson et al.,
2004; Snoek et al., 2012). Learning c(x) requires a warm-start, for which we use five points
drawn from the search space uniformly at random.

As the parameter α decays from one to zero, EI-cool transitions from EIpu to EI. As a
result, cost-cooling de-emphasizes the cost model as the optimization progresses and cheap
evaluations are performed before expensive ones. The idea of cost-cooling bears connections
to previous work on multi-objective, cost-preference BO (Abdolshah et al., 2019), where
cost constraints are loosened to ensure that the entire Pareto frontier is explored.

4. Empirical Evaluation

We investigate cost-aware BO through the problem of tuning five popular algorithms, each
trained on four different datasets, yielding twenty total benchmarks. Each HPO problem is a
model in scikit-learn (Pedregosa et al., 2011). We train on four classification datasets: splice,
a1a, a3a, and w2a, all available in the UCI machine learning repository (Dua and Graff,
2017). Each benchmark is replicated 50 times on independent AWS m4.xlarge machines
to ensure consistent evaluation times. The search spaces and budgets are in the appendix.
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Figure 6: Impact of initial budget.
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Figure 7: Initial design vs. cost-cooling.

Kernel hyperparameters for both the objective and cost GPs are calculated via maximum
marginal likelihood estimation (Rasmussen and Williams, 2006).

We compare CArBO, EI, EIpu, and random search in the sequential case, as well as
with batch sizes three, seven, and eleven. In the batch setting, we use the batch fantasizing
technique described in Snoek et al. (2015) to get a batch from the sequential optimizer.

To condense the large number of run benchmarks, we plot performance for each HPO
problem by averaging the classification error for each model over the four datasets used
(Figure 5). We average as follows: first we normalize performance so that the worst optimizer
starts optimization at 1.0 and the best optimizer ends at 0.0, then we take the mean over
all datasets. We plot sequential results in the first row and batch results in the second.
CArBO outperforms both EI and EIpu by a large margin across all batch sizes. A table of
the concrete time saved is given in the appendix. Averaged across all benchmarks and batch
sizes, CArBO provides a roughly 40 percent performance boost over the next-best method.

Ablation study Finally, we illustrate the CArBO’s behavior relative to its internal design
choices. In all experiments we fixed CArBO’s cost-effective design budget to τinit = τ/8,
with τ being the total budget. Figure 6 varies this budget from 1/8 up to an extreme value
of 6/8 of the total. CArBO’s performance was relatively unchanged; using 6/8 of the total
budget for the initial design degraded performance slightly. Figure 7 shows an ablation study
in which we remove each component and re-run optimization, comparing CArBO to CArBO
using just EI or EIpu. The initial design contributes the larger performance increase, and
CArBO with cost-cooling performs best.

5. Conclusion

When budget is money or time, BO needs to be cost efficient, not evaluation efficient. We
demonstrated that simple initialization and cost-cooling strategies significantly speed up
cost-aware BO, outperforming EIpu and EI in both the sequential and batch setting. A
number of future directions are open. Adapting CArBO’s initial design and cost-cooling
to other acquisition functions, such as predictive entropy search (Hernández-Lobato et al.,
2014) or max-value entropy search (Wang and Jegelka, 2017), is straightforward. Combining
CArBO with multi-fidelity to learn fidelity parameters and their relationship to cost is also
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of interest. More principled approaches, such as the non-myopic methods of Lam et al.
(2016), are another promising direction but come with significant overhead. Developing
principled, cost-aware strategies with lower overhead is a key avenue for future work.
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Appendix A. HPO Experiment Search Spaces

• K-nearest-neighbors (KNN). We consider a 5d search space: dimensionality reduc-
tion percentage and type in [1e-6, 1.0] log-scaled and {Gaussian, Random}, respectively,
neighbor count in {1, 2, ..., 256}, weight function in {Uniform, Distance}, and distance
in {Minkowski, Cityblock, Cosine, Euclidean, L1, L2, Manhattan}.

• Multi-layer perceptron (MLP). We consider a 11d search space: number of layers
in {1, 2, 3, 4}, layer sizes in {10, 11, ..., 150 } log-scaled, activation in {Logistic, Tanh,
ReLU}, tolerance in [1e-5, 1e-2] log-scaled, and Adam parameters (Kingma and Ba,
2015): step size in [1e-6, 1.0] log-scaled, initial step size in [1e-6, 1e-2] log-scaled, beta1
and beta2 in [1e-3, 0.99] log-scaled.

• Support Vector Machine (SVM). We consider a 6d search space: iteration count
in {1, 2, ..., 128}, penalty term in {L1, L2, ElasticNet}, penalty ratio in [0, 1], step
size in [1e-3, 1e3] log-scaled, initial step size in [1e-4, 1e-1] log-scaled, optimizer in
{Constant, Optimal, Invscaling, Adaptive }.

• Decision tree (DT). We consider a 3d search space: tree depth in {1, 2, ..., 64}, tree
split threshold in [0.1, 1.0] log-scaled, and split feature size in [1e-3, 0.5] log-scaled.

• Random forest (RF). We consider a 3d search space: number of trees in {1, 2, ...,
256}, tree depth in {1, 2, ..., 64}, and tree split threshold in [0.1, 1.0] log-scaled.

Appendix B. Performance Table

We calculate CArBO’s total cost savings, defined as the time needed by CArBO to achieve
comparable results to the next best optimizer (Table 1). We consider Table 1 the most
instructive comparison because it provides quantitative savings instead of a qualitative
ranking. We list the median cost savings for each benchmark, as well as net savings over all
benchmarks, for each batch size. CArBO achieves large cost savings of roughly 40 percent,
averaged over all benchmarks and batch sizes.
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Objective Budget (s) CArBO CArBO3 CArBO7 CArBO11

KNN a1a 150 60% 49% -10% -11%
KNN a3a 300 52% 58% 22% 28%
KNN splice 10 73% 75% 52% 49%
KNN w2a 400 59% 55% 60% 59%
MLP a1a 100 21% 69% 67% 69%
MLP a3a 160 -9% 50% 61% 56%
MLP splice 50 34% 62% 66% 59%
MLP w2a 200 4% 27% 20% -7%
SVM a1a 20 22% 42% 53% 39%
SVM a3a 30 67% 66% 65% 52%
SVM splice 4 -1% 50% 67% 67%
SVM w2a 90 74% 78% 22% 72%
DT a1a 2.5 -2% -7% 17% -8%
DT a3a 2.5 15% 22% -22% 35%
DT splice 2 10% 2% -25% 2%
DT w2a 8 -18% -41% 95% 96%
RF a1a 30 44% 28% 63% 61%
RF a3a 35 40% 54% 49% -24%
RF splice 10 16% 33% 27% 33%
RF w2a 80 52% 48% 82% 84%
Net Saving 32.5% 45.1% 41.6% 40.6%

Table 1: For each batch size and objective, we calculate the median cost savings as a
percentage of budget. Negative numbers indicate that CArBO performed worse
than the best optimizer. CArBO performs strongly on the large majority of
problems. Furthermore, when it does worse, it only does worse by a small amount.
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