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Why AutoML?
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Success of Machine Learning
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Machine Learning Pipeline
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Reduction

Preprocessing?
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Preprocessing

Standardization

Feature Selection

Outlier Removal

Missing Feature 
Imputation

Embeddings

Feature 
Reduction 

...

PCA

Kernel PCA

ICA

LDA

NMF

Truncated SVD

...

Hyperparameters

#components

Kernel

degree

coeff

alpha

solver

...

→ We might want more than 1 data preprocessor!
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Complexity of Choosing the Preprocessing
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...

Preprocessing
Area

Technique
Hyperparameters

● Naive Assumptions: 
only 3 decisions at each level

● Possible options: 3 x 3 x 3 = 27

● More realistic assumption:
at least 10 decisions at leach level

● Possible options: 10 x 10 x 10 = 1000

● Choose 3 preprocessors instead of 1
→ 1000 x 1000 x 1000 = 
     1 000 000 000

● Still naive!
→ Hyperparameters are often 
continuous and not discrete
→ infinite amount of settings!
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Classification Algorithms
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Recurrent 
Network

ResNet
Feedforward 

Network

LGB

XGB

Random 
Forests

Boosting 
Trees

Decision 
Trees

Naive 
Bayes

Gaussian 
Process

Nearest 
Neighbor

SGD

Kernel 
SVM

Poly. 
SVM

Linear SVM

Logistic 
Regression

Bayesian 
Regression

LARS

Least-Angle

Elastic-net

Lasso

Ridge

Least 
Squares

→ There are more than 100 
classification algorithms!

→ Each of these has 2-50 
hyperparameters
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Challenges in Designing ML Pipelines
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Black-Box 
Problem

Complex 
Search Space

Expensive 
Evaluations 

Noise on 
observations
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From Manual ML to Automated ML
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Design Decisions taken care by AutoML

Algorithms Pre-
processing

Architecture
Design

Hyper- 
parameters

...

1010
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Importance of Design Decisions in ML
(example on one specific dataset)
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Choosing the 
correct algorithm 
→ 17% improv.

Optimized 
hyperparameters
→ 20% - 29% 
improvement
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Benefits of AutoX Methods
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Topics
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Success Stories in AutoML
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Problem Setting

Results

Constraints

● Time budget (only minutes)
● Memory constraint (few GB)
● Compute power (few CPUs)

International Challenge on AutoML I + II
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Remarks

● More than 100 teams in first 
challenge

● 44 teams in second challenge
● Both AutoML and human teams

Auto-Sklearn
[Feurer et al. 
2015, 2018, 2020]

https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://ml.informatik.uni-freiburg.de/papers/18-AUTOML-AutoChallenge.pdf
https://arxiv.org/abs/2007.04074
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Problem Setting

Results

Search Space

Shape Error Prediction in Milling Processes 
[Denkena et al. 2020]
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Image Source: Dittrich et al. 2018

Remarks

● Application of AutoML out-of-box
● Better results than Phd student of 

machining after spending 
substantial time

● Reading in the data format cost the 
most dev. time to let AutoML run

State of the art

AutoML

https://www.tnt.uni-hannover.de/papers/data/1478/SSRN-id3724234%20(1).pdf
https://www.sciencedirect.com/science/article/abs/pii/S1755581718300713
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Main Ideas
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Evolutionary 
Algorithms

● Population based- 
approach

● Strong 
performance for 
longer budget

● Easy to parallelize

AutoML Optimizer

20

 Bayesian Optimization

● Global optimization 
strategy

● Very sample 
efficient

● Very efficient for 
small/med. config. 
spaces

Mutation Cross-
Over

Selection

Reinforcement 
Learning

● Learning of a 
policy

● Can learn a 
generalizable 
policy

● Human-like 
approach

Env. Agent

State
Reward

Action



AutoML 101M. Lindauer Leibniz University Hannover21



AutoML 101M. Lindauer Leibniz University Hannover

AutoML: Model Selection

22

ValidationTraining

Fold 1 Fold 2 Fold 3 Fold 4

Hold-Out

Cross Validation

E
rr

or

Epochs

E
rr

or

Epochs

Successive Halving
[Jamieson & Talwaker 2015, Li et al. 2018]

Full Evaluation

https://arxiv.org/abs/1502.07943
https://jmlr.org/papers/v18/16-558.html


AutoML 101M. Lindauer Leibniz University Hannover23



AutoML 101M. Lindauer Leibniz University Hannover

Warmstarting via Meta-Learning
[Feurer et al. 2015, Lindauer & Hutter. 2017]
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https://ml.informatik.uni-freiburg.de/papers/15-AAAI-MI-SMBO.pdf
https://arxiv.org/abs/1709.04636
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Warmstarting via Meta-Learning  [Lindauer & Hutter. 2017]
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https://arxiv.org/abs/1709.04636
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AutoML Ensembles
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● If ensemble members make uncorrelated errors
● Already a diverse set of ensemble members 

can perform well
● AutoML can help to find even better ensembles

● Different opinions on best possible ensemble method
● Increases memory consumption
● Slows down inference time
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Open Source 
Software Projects

28
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Auto-Sklearn [Feurer et al. 2015, 2018, 2020]

Takes care of 
well-performing ML-pipeline

● Winner of 1st and 2nd AutoML Challenge
● Improved efficiency in Version 2.0 by

○ Meta-learning, multi-fidelity optimization, 
automating AutoML

Easy-to-use

29

https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://ml.informatik.uni-freiburg.de/papers/18-AUTOML-AutoChallenge.pdf
https://arxiv.org/abs/2007.04074
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Auto-PyTorch [Mendoza et al. 2019, Zimmer et al. 2021]

● Strong performance against other state-of-the-art 
AutoML tools on tabular data

● Even competitive on image data against 
gradient-based methods

● Efficiency due to meta-learning, multi-fidelity 
optimization and ensembling

30

Auto-PyTorch

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter7.pdf
https://arxiv.org/abs/2006.13799
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SMAC [Hutter et al. 2011, Lindauer et al. 2017]

● Working horse for Auto-Sklearn
○ Soon also for Auto-PyTorch

● Implements state-of-the-art approaches for
○ Bayesian optimization
○ Multi-fidelity optimization

■ E.g., successive halving, hyperband, BOHB
○ Algorithm configuration

■ Robust configurations across many tasks

31
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Pros and Cons of AutoML

32
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Pros and Cons

● Saves human developer time
● Better than non-experts
● Supports you in finding a 

well-performing ML pipeline
● Supports you in finding better 

data preprocessing
● Supports ML experts

● Less expert knowledge needed

33

● Costs compute time
● Not always better than experts
● Cannot help you with defining the 

underlying task or business case
● Cannot (directly) help you with 

getting more and better data
● Adds another layer of a black-box 

on top of ML (?)
● Harder to consider expert 

knowledge (?)
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AutoML vs. Expert Knowledge

34
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Use the Gained Time for Feature Engineering
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ML Pipeline 
Design

● All of these steps are important

● Often iterative cycle between these

● If one of these gets automated, more 

time for others available

● Feature engineering is often one of 

the best places to consider expert 

knowledge

○ Nevertheless, it can also be 

automated

ML Pipeline 
Design

Collect
Data

Feature 
Engineering

Data Science 
Life Cycle
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Cut Down the Search Space

36
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Expert Knowledge as Probability Distributions
[Luis et al. 2020]
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SVM

RF

Resnet

FF-Net

linear

SVM

RF

Resnet

FF-Net

linearExpert 
Knowledge

→ Increases efficiency of AutoML

https://arxiv.org/abs/2006.14608
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What’s next?

38
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AutoML + Meta-Learning

39

● Amount of data is continuously 

increasing

→ Models have to be updated or 

even trained from scratch 

if a concept drift occurs

→ ML pipeline needs adjustments

● AutoML could help to enable 

maintainability also in the long run

[Celik & Vanschoren 2020]

● Similarly, AutoML can help even if 

the underlying ML algorithm 

changes [Stoll et al. 2020]

Data properties changed 
over time

Concept Drift

From new customers, 
sensors, ….

New Data

Use of AutoML to adapt 
ML pipeline to new data 
properties

Adapting ML 

https://arxiv.org/abs/2006.06480
https://arxiv.org/pdf/2010.13117.pdf
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xAutoML: Explainable AutoML
[Biedenkapp et al. 2017, 2018, 2019, Moosbauer et al. 2021]

● Users want to know more than the result
For example:

○ Which design decisions were important?
○ Why was the returned pipeline chosen?
○ Was the approach of the AutoML tool 

appropriate for the dataset at hand?
○ …

● What would be interesting for you?
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https://www.tnt.uni-hannover.de/papers/data/1396/17-AAAI-Surrogate-Ablation.pdf
https://ml.informatik.uni-freiburg.de/papers/18-LION12-CAVE.pdf
https://arxiv.org/abs/1908.06756
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Dynamic Algorithm Control via RL 
[Biedenkapp et al. 2019 + 2020, Shala et al. 2020, Speck et al. 2021]
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Algorithm

AutoML

Traditional AutoML:
Blackbox-Optimization

Algorithm

Configure once

Internal 
Heuristics

Dynamic 
Configurator

Future: Reinforcement learning to learn 
to adjust hyperparameters over time

http://ecai2020.eu/papers/1237_paper.pdf
https://ml.informatik.uni-freiburg.de/papers/20-PPSN-LTO-CMA.pdf
https://arxiv.org/abs/2006.08246
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Learning more about AutoML?
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Further Material
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AutoML online course 
starting April 2021

https://www.automl.org/book/
https://ki-campus.org/
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Our Vision: Democratization of AI

1. We need tools s.t. AI is easy-to-use

2. Efficient development of new AI applications

3. AutoML will leverage interdisciplinary applications: ML + ?

4. Improved understanding of AI systems

44
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Thank you!
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@LindauerMarius
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