AutoML 101

Marius Lindauer

* Slides available at automl.org/talks

M. Lindauer

AutoML 101

Leibniz University Hannover

Why AutoML?

 /
 Leibniz

 Z
 Universität

 4
 Hannover

0--

2

Leibniz University Hannover

Success of Machine Learning

Astronomy	Robotic	Creative	Teachi	ing N	Material Design	
Energy	Game Play	Search	(Chemistry	U	100
Image	Weather		Health Care	_	Physics	2 Univer 4 Hanno
Recognition	Prediction	Product Recommendation	Di	Drug iscovery		sität ver
Manufacturing	Service		Financial Services			
	Traffic Prediction	Retail		Cred Assignn	it nent	
Maintenance Prediction	S M	Media ocial ledia	Summary Generation			AutoML.
3 M. Lindauer		AutoML 101	Leibniz Unive	rsity Hannover		

Machine Learning Pipeline

5

AutoML.org

Preprocessing?

 \rightarrow We might want more than 1 data preprocessor!

AutoML.org

AutoML 101

Complexity of Choosing the Preprocessing

- Naive Assumptions: only 3 decisions at each level
- **Possible options**: 3 x 3 x 3 = **27**
- More realistic assumption: at least 10 decisions at leach level
- **Possible options:** 10 x 10 x 10 = **1000**
- Still naive!

 \rightarrow Hyperparameters are often continuous and not discrete \rightarrow infinite amount of settings!

Leibniz Universität Hannover

Classification Algorithms

				LARS	l east	
Recurrent		Kernel	Linear SVM	Elastic-net	Squares	
Network	DecNet	SVM	Poly	Least-Angle	Lasso	1001
Feedforward	Resnet		SVM	Ridge		~94 707
Network		Naive Bayes	SGD	Logistic Regression	Bayesian Regression	eibniz niversität annover
Boosting Trees	XGB	Gaussian Process	Nearest Neighbor	→ There are more classification a	re than 100 Igorithms!	
Decision R Trees F	andom Forests			→ Each of thes hyperparan	e has 2-50 neters	AutoML.org
M Lindau	Jer		AutoMI 101	Leibniz University Ha	nnover 7	

Challenges in Designing ML Pipelines

From Manual ML to Automated ML

Collection

Task

Design Decisions taken care by AutoML

M. Lindauer

Importance of Design Decisions in ML

(example on one specific dataset)

Choosing the correct algorithm \rightarrow 17% improv.

Benefits of AutoX Methods

Domain	Default vs. Optimized
Answer Set Solving [Gebser et al. 2011]	up to $14 imes$ speedup
Al Planning [Vallati et al. 2013]	up to $40 imes$ speedup
Mixed Integer Programming [Hutter et al. 2010]	up to $52 imes$ speedup
Satisfiability Solving [Hutter et al. 2017]	up to $3000 imes$ speedup
Minimum Vertex Cover [Wagner et al. 2017]	up to 9% absolute impr.
Machine Learning [Feuer et al. 2015]	up to 35% absolute impr.
Deep Learning [Zimmer et al. 2020]	up to 49% absolute impr.

AutoML.org

0~

Leibniz Universität

Topics

Multi-Objective Optimization

Gradient-based NAS

Hyperparameter Optimization

Neural Architecture Search

Reinforcement Learning

Evolutionary

Strategies

Bayesian

Optimization

AutoML

Performance Predictions

Dynamic Algorithm Configuration

Explainability

Portfolio Construction

Q ---

Leibniz Universität Hannover

Bandit Algorithms

M. Lindauer

Meta Learning

AutoML 101

Transfer Learning

Leibniz University Hannover

Success Stories in AutoML

AutoML 101

Leibniz University Hannover

International Challenge on AutoML I + II

Shape Error Prediction in Milling Processes

[Denkena et al. 2020]

16

- D

00-

AN-

Leibniz Universität Hannover

AutoML.org

Main Ideas

M. Lindauer

17

AutoML 101

Leibniz University Hannover

CC BY-SA 4.0 from AI-Campus.org and AutoML.org

toML.org AutoML.org

18

AutoML 101

CC BY-SA 4.0 from AI-Campus.org and AutoML.org

g and AutoML.org

AutoML.org

19

AutoML 101

AutoML Optimizer

AutoML 101

AutoML: Model Selection

23

M. Lindauer

AutoML 101

Warmstarting via Meta-Learning

[Feurer et al. 2015, Lindauer & Hutter. 2017]

Leibniz Universität Hannover

M. Lindauer

Warmstarting via Meta-Learning [Lindauer & Hutter. 2017]

Leibniz Universität Hannover

Leibniz University Hannover

00-- M4

CC BY-SA 4.0 from AI-Campus.org and AutoML.org

s.org and AutoML.c

AutoML.org

26

AutoML 101

AutoML Ensembles

- If ensemble members make uncorrelated errors Already a diverse set of ensemble members can perform well
- AutoML can help to find even better ensembles

9 -

Open Source Software Projects

Auto-Sklearn [Feurer et al. 2015, 2018, 2020]

Takes care of well-performing ML-pipeline

Easy-to-use

import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)

- Winner of 1st and 2nd AutoML Challenge
- Improved efficiency in Version 2.0 by
 - Meta-learning, multi-fidelity optimization, automating AutoML

M. Lindauer

AutoML 101

Leibniz Universität Hannover

AutoML.org

Auto-PyTorch [Mendoza et al. 2019, Zimmer et al. 2021]

- Strong performance against other state-of-the AutoML tools on tabular data
- Even competitive on image data against gradient-based methods
- Efficiency due to meta-learning, multi-fidelity optimization and ensembling

% Fork

144

Leibniz Universität Hannover

☆ Star

1,164

SMAC [Hutter et al. 2011, Lindauer et al. 2017]

- Working horse for Auto-Sklearn
 - Soon also for Auto-PyTorch
- Implements state-of-the-art approaches for
 - Bayesian optimization
 - Multi-fidelity optimization
 - E.g., successive halving, hyperband, BOHB
 - Algorithm configuration
 - Robust configurations across many tasks

AutoML.orc

Pros and Cons of AutoML

M. Lindauer

32

AutoML 101

Leibniz University Hannover

Pros and Cons

Saves human developer time

Costs compute time

AutoML.org

AutoML vs. Expert Knowledge

Leibniz University Hannover

Use the Gained Time for Feature Engineering

- All of these steps are important
- Often iterative cycle between these
- If one of these gets automated, more time for others available
- Feature engineering is often one of the best places to consider expert knowledge
 - Nevertheless, it can also be automated

G n -

Leibniz Universität Hannover

Cut Down the Search Space

10 -

00-+M-

Expert Knowledge as Probability Distributions

AutoML.org

What's next?

AutoML 101

Leibniz University Hannover

M. Lindauer

AutoML + Meta-Learning

- Amount of data is continuously increasing
 - \rightarrow Models have to be updated or

even trained from scratch

if a concept drift occurs

 \rightarrow ML pipeline needs adjustments

0 ---

AN-

Leibniz Universität Hannover

5

AutoML.org

- AutoML could help to enable maintainability also in the long run [Celik & Vanschoren 2020]
- Similarly, AutoML can help even if the underlying ML algorithm changes [Stoll et al. 2020]

AutoML 101

xAutoML: Explainable AutoML

[Biedenkapp et al. 2017, 2018, 2019, Moosbauer et al. 2021]

- Users want to know more than the result For example:
 - Which design decisions were important?
 - Why was the returned pipeline chosen?
 - Was the approach of the AutoML tool appropriate for the dataset at hand?
 - o ...
- What would be interesting for you?

fANOVA	LPI
19.32	38.88
3.70	35.4
15.77	21.5
1.86	0.07
0.39	0.01
	fANOVA 19.32 3.70 15.77 1.86 0.39

Dynamic Algorithm Control via RL

[Biedenkapp et al. 2019 + 2020, Shala et al. 2020, Speck et al. 2021]

0 -

00-

- M4

Learning more about AutoML?

AutoML 101

Leibniz University Hannover

42

M. Lindauer

Further Material

The Springer Series on Challenges in Machine Learning

Frank Hutter Lars Kotthoff Joaquin Vanschoren *Editors*

Automated Machine Learning Methods, Systems, Challenges

KI-Campus

AutoML online course starting April 2021

43

OPEN

Our Vision: Democratization of Al

- 1. We need tools s.t. Al is easy-to-use
- 2. Efficient development of new AI applications
- 3. AutoML will leverage interdisciplinary applications: ML + ?
- 4. Improved understanding of AI systems

Thank you!

