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AutoML Process
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Who is using AutoML?
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Are ML-Experts using AutoML?

● Bouthillier and Varoquaux [2020] showed that authors of NeurIPS and ICLR papers:

○ a) they often optimize their hyperparameters (>75%)

○ b) they often do it manually and don’t use AutoML tools

● Crisan and Fiore-Gartland [2021] interviewed data scientists and concluded:

○ a) experts don’t necessarily trust AutoML

○ b) visualization of results and processes 
can help to increase the acceptance 
of AutoML results
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https://hal.archives-ouvertes.fr/hal-02447823/document
https://arxiv.org/abs/2101.04296
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Previous Approach-Agnostic 
xAutoML Methods
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Note: Of course, approach-specific methods
are also possible, e.g. [Ru et al. 2021].

https://arxiv.org/pdf/2006.07556.pdf
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General Setup
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Visualization of Pipelines
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Source: [Ono et al. 2020]

● Visualization of sampled pipelines (incl. 
algorithms and hyperparameters) and 
their performance

● More descriptive analysis

https://arxiv.org/pdf/2005.00160.pdf
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Parallel Coordinate Plots
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● Visualization of sampling in high-dimensional hyperparameter spaces [Golovin et al. 2017]
● Allows to identify:

○ optimization focus of AutoML optimiziers
○ well-performing combination of settings
○ Interaction effects between settings (to some degree)

● Rather qualitative, less quantitative analysis
● Follow up: Conditional parallel coordinate plots [Weidele et al. 2019]

PPO on cartpole; Source: [Lindauer et al. 2019]

https://research.google/pubs/pub46180/
https://arxiv.org/pdf/1912.06723.pdf
https://arxiv.org/abs/1908.06756
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Ablation Studies
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● AutoML can start from some default settings
a. Defined by the algorithm developer
b. User expertise

● Question: Which settings (λ) changes had the bigger 
impact on the performance?

● Characteristic:
a. Quantitative analysis
b. Hard to visualize in high-dimensional spaces
c. Rather local: subspace between default and 

incumbent setting

● Efficiency in high-dimensional spaces:
a. Greedy approach [Fawcett and Hoos 2016] 
b. Use of surrogate models 

instead of expensive function evaluations
(e.g., from Bayesian Optimization) [Biedenkapp et al. 2017]

http://www.cs.ubc.ca/labs/beta/Projects/Ablation/papers/FawcettHoos-joh2016-ablationAnalysis.pdf
https://ml.informatik.uni-freiburg.de/papers/17-AAAI-Surrogate-Ablation.pdf
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ICE Curves and LPI
● ICE Curve [Goldstein et al. 2017]: individual effect of 

one feature for an individual observation
○ Slice through the space in one dimension 

at a given observation

● LPI: Local (Hyper-)Parameter Importance 
[Biedenkapp et al. 2018]

○ Same idea as ICE curves, but single ICE 
curve centered at the incumbent setting 
returned by an AutoML tool

○ Quantitative importance of hyperparameters:
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PPO on cartpole
Source: [Lindauer et al. 2019]

https://arxiv.org/abs/1309.6392
https://www.tnt.uni-hannover.de/papers/data/1410/18-LION12-CAVE.pdf
https://arxiv.org/abs/1908.06756


ELLIS AutoML SeminarM. Lindauer Leibniz University Hannover

fANOVA for Hyperparameter Importance 

● Fraction of explained variance by main 
and interaction effects of 
hyperparameters can be quantified by 

● Efficient computation on a RF as 
surrogate model [Hutter et al. 2014]

● Allows to study importance across 
datasets [van Rijn & Hutter 2018, Sharma et al. 2019]
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PPO on cartpole
Source: [Lindauer et al. 2019]

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment.pdf
https://www.kdd.org/kdd2018/accepted-papers/view/hyperparameter-importance-across-datasets
https://link.springer.com/chapter/10.1007%2F978-3-030-33778-0_10
https://arxiv.org/abs/1908.06756
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Explaining HPO 
via Partial Dependence Plots
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PDP: Partial Dependence Plots [Friedman 2001]
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For, a subset S of the hyperparameters, the partial dependence function is:

and can be approximated by Monte-Carlo integration:

where                                                               and       for a set 
                                                                        of grid points.

→ Average of ICE curves.

Green: PDP
Black: Ground truth

[Hutter et al. 2014] showed how to do this efficiently for RFs as surrogate models.

https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment.pdf
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Quantifying Uncertainties in PDPs
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→ requires a kernel correctly specifying the 
covariance structure (e.g., GPs).

Approximation:

→ Model-agnostic (local) approximation

Ground truth
PDP
Uncertainty
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Problem: Biased Sampling

● PDPs assume that the data is i.i.d.
● Obviously not the case for efficient AutoML tools 

with a focus on high-performance regions

● Example:
○ BO with GPs and LCB
○ Different exploration rate 

for LCB to show different
sampling bias
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Impact of the Sampling Bias

● Simply using all observations 
from AutoML tools might lead 
to misleading PDPs

● Uncertainty estimates help to 
quantify the poor fits

→ of course, sampling bias is 
wanted and the solution cannot be 
to change the sampling behavior

16
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Ground truth
PDP
incumbent

Partitioning of Space

Partition space to obtain interpretable 
subspaces      .

Uncertainty variation across all ICE estimates:

→ Uncertainty structure of ICE curves 
should maximally agree
Split Loss = Aggregation over all grid points:

Note (i): Partition only along the marginalized dimensions
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Empirical Results
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Effect of Splitting on an Artificial Function
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Styblinski-Tang function

Main Insights:

● For higher-dimensional problems, 
PDPs are potentially more 
uncertain

● Mean Confidence (MC) increases 
with deeper trees

● More to gain for high-sampling bias 
cases
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Explaining LCBench [Zimmer et al. 2021]
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Setting:

● Small configuration space of Auto-PyTorch Tabular
● Training of a RF as surrogate on LCBench with 2000 

randomly sampled configurations
● Bayesian Optimization with 200 function evaluations

Take-away:

→ the confidence of PDPs improves across all 
hyperparameters and metrics

Improvement of mean confidence (MC), confidence close to 
incumbent (OC), and negative log-likelihood (NLL) 

after 6 splits

https://arxiv.org/abs/2006.13799
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Explaining Auto-PyTorch (cont’d) [Zimmer et al. 2021]
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https://arxiv.org/abs/2006.13799
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Future Work and Conclusion
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Take-Home

Summary:

● Explaining AutoML is important to create trust in them
● Common iML methods such as PDPs can be used to explain AutoML
● However, i.i.d assumptions might be violated
● PDPs can be extended to uncertainty estimates
● Split into subspaces with better interpretability

Future Work:

● Additional samples to efficiently reduce sampling bias
● Extension to multi-fidelity setting AutoML
● Other iML methods

24



ELLIS AutoML SeminarM. Lindauer Leibniz University Hannover

Goal: Human-Centered AutoML
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Thank you!
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