

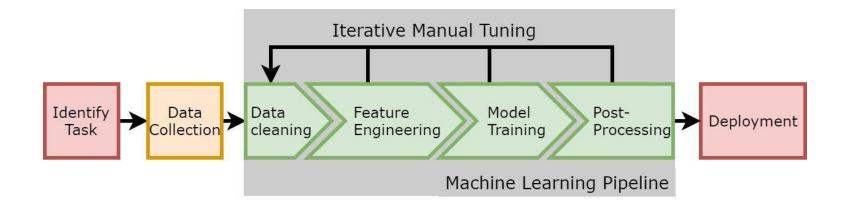
Efficient and Explainable AutoML

Marius Lindauer Leibniz University Hannover

Big Success of AI in Recent Years

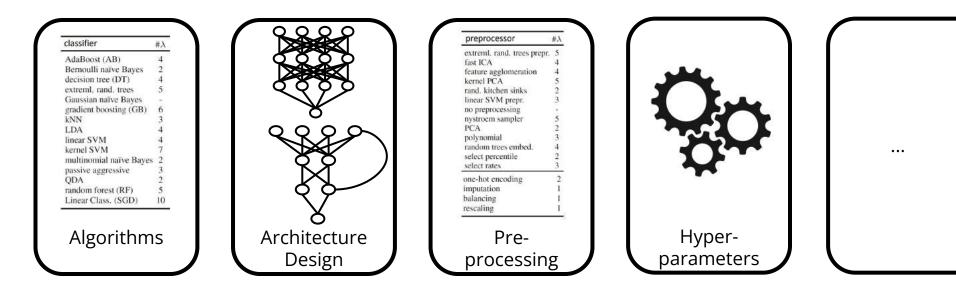
Images courtesy of Shutterstock

From Manual to Automated Machine Learning



Mission Statement: Enabling users to efficiently apply ML!

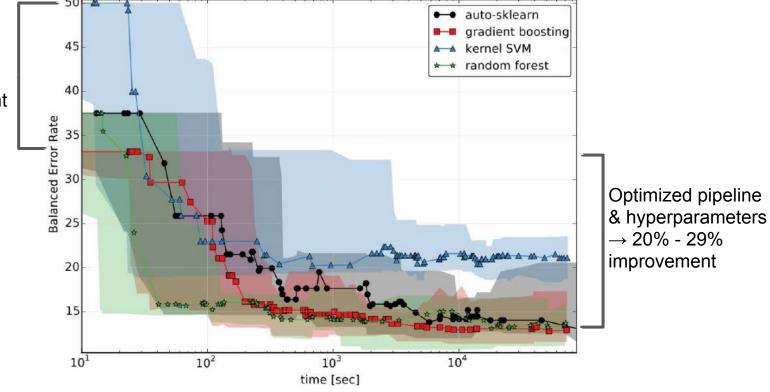
Design Decisions taken care by AutoML



Automated Machine Learning AutoML.org Hannover

Using AutoML Matters! (example on a specific dataset)

Choosing the correct algorithm → 17% improvement



Exemplary Success Story: Can DNNs outperform classical approaches on tabular data?

[Kadra et al. NeurIPS'21]

Previous Belief

1. Deep Neural Networks are especially well performing on high-dimensional data modalities (incl. images and text)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

2. Gradient-Boosted Decision Trees are state of the art on tabular data

	f ₁	f ₂	f ₃	f ₄	у	$\bullet \bullet \bullet \bullet$
0 ₁	1	2	323	21	1	
0 ₂	42	32	??	??	1	
0 ₃	223	21	234	12	0	
0 ₄	234	??	234	423	0	
0 ₅	3	23	232	66	1	

Idea I: Regularization against overfitting

- DNNs are overparameterized and tabular datasets are often much smaller than image or text datasets
- → Sufficiently strong regularization could lead to better performance of DNNs?
- There are many regularization techniques for DNNs, incl.
 - Weight Decay [Krogh & Hertz 1991]
 - Dropout [Srivastava et al. 2014]
 - Batch Normalization [loffe & Szegedy 2015]
 - FGSM Adversarial Learning [Goodfellow et al. 2015]
 - Skip Connection [He et al. 2016]
 - Snapshot Ensembles [Loshchilov & Hutter 2017]
 - Shake-Shake [Gastaldi 2017]
 - Cut-Out [Devries & Taylor 2017]
 - Stochastic Weight Averaging [Izmailov et al. 2018]
 - Shake-Drop [Yamada et al. 2018]
 - Mix-Up [Zhang et al. 2018]
 - Lookahead Optimizer [Zhang et al. 2019]
 - Cut-Mix [Yun et al. 2019]
- Most of them developed for other data modalities (often computer vision)

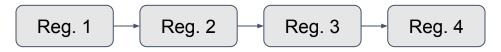
Idea II: Use AutoML to find a Regularization Cocktail

Group	Regularizer	Hyperparameter	Туре	Range	Conditionality
	BN	BN-active	Boolean	{True, False}	_
Implicit	SWA	SWA-active	Boolean	{True, False}	
	LA	LA-active Step size Num. steps	Boolean Continuous Integer	{True, False} [0.5, 0.8] [5, 10]	LA-active LA-active
W. Decay	WD	WD-active Decay factor	Boolean Continuous	$\{\text{True, False}\}\$ $[10^{-5}, 0.1]$	WD-active
Ensemble	DO	DO-active Dropout shape	Boolean Nominal	{True, False} {funnel, long funnel, diamond, hexagon, brick, triangle, stairs}	– DO-active
	05	Drop rate	Continuous	[0.0, 0.8]	DO-active
	SE	SE-active	Boolean	{True, False}	(m
Structural	SC	SC-active MB choice	Boolean Nominal	{True, False} {SS, SD, Standard}	SC-active
	SD	Max. probability	Continuous	[0.0, 1.0]	SC-active \land MB choice = SD
	SS	1.71	~	-	SC-active \land MB choice = SS
	-	Augment	Nominal	{MU, CM, CO, AT, None}	
Augmentation	MU	Mix. magnitude	Continuous	[0.0, 1.0]	Augment = MU
	СМ	Probability	Continuous	[0.0, 1.0]	Augment = CM
	СО	Probability Patch ratio	Continuous Continuous	$[0.0, 1.0] \\ [0.0, 1.0]$	Augment = CO Augment = CO
	AT	3 1 8	(.		Augment $=$ AT

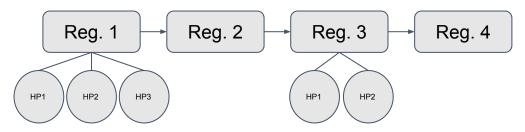
Challenges for AutoML

1. Training DNNs is fairly expensive

2. Pipeline of regularization techniques



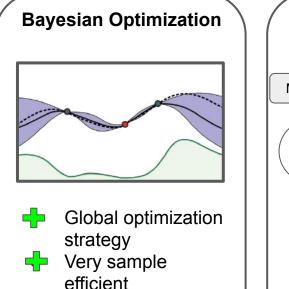
3. Each regularizer has its own hyperparameter \rightarrow structured space

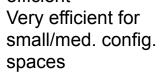


AutoML Techniques

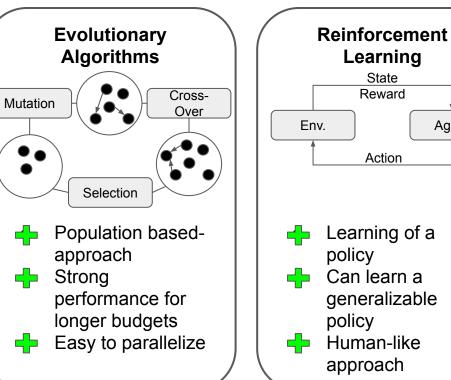
. . .

Agent



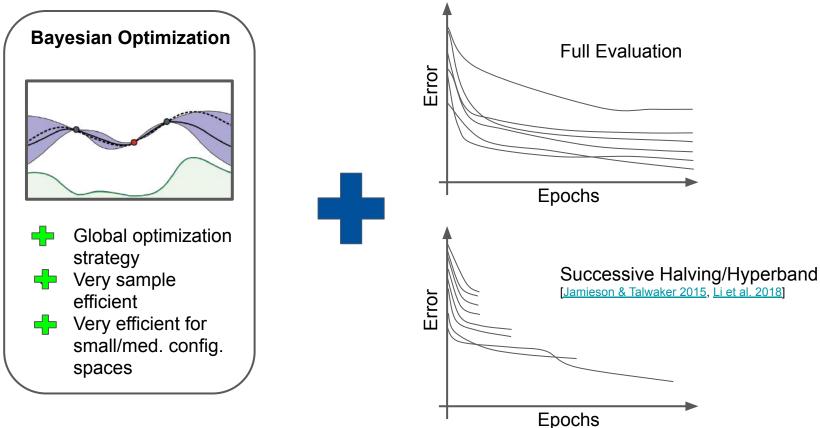


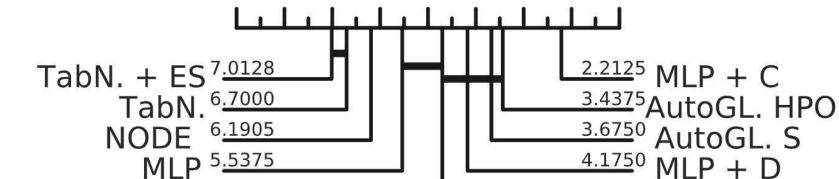
d b



Planning

BOHB: Bayesian Optimization + Hyperband [Falkner et al. 2018]





Ranks

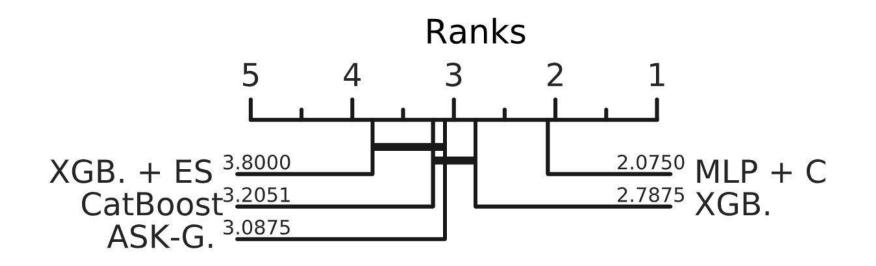
9 8 7 6 5 4 3 2 1

MLP + SELU^{4.7000}

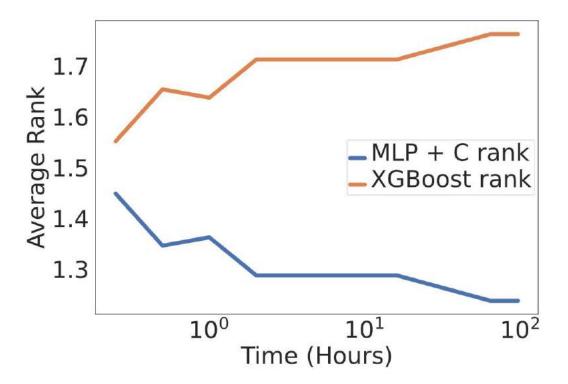
Automated Machine Learning

Hannover

Hypothesis 2: Regularization cocktails outperform Gradient-Boosted Decision Trees (GBDTs)



Hypothesis 3: Regularization cocktails are time-efficient and achieve strong anytime results.



Limitations

1. Only classification and

not regression, semi-supervised data or streaming data so far

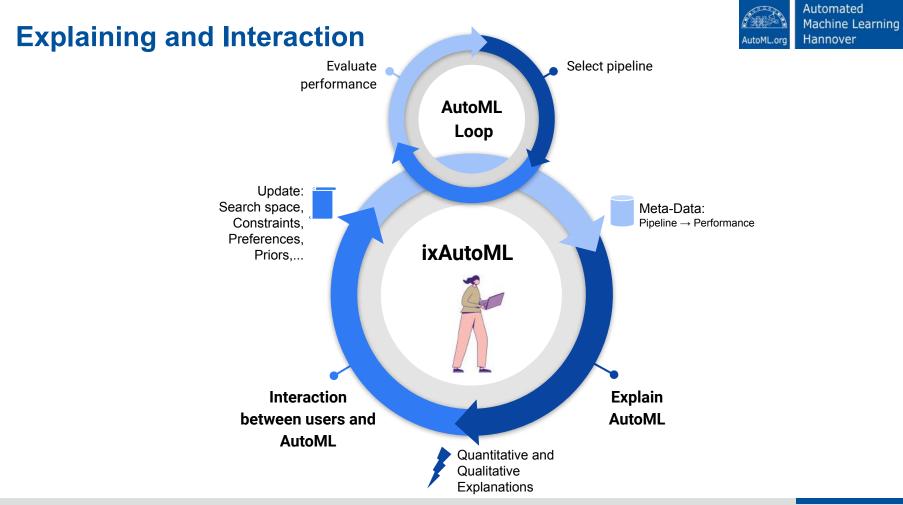
- 2. We considered only somewhat **well-balanced datasets**
- 3. We used a fairly **simple DNN architecture and no general HPO**
 - simple multilayer perceptron (MLP)
 - fixed hyperparameters of the general training
- 4. There are **better AutoML frameworks** by now
 - e.g., we know that SMAC3 [Lindauer et al. 2021] performs often better than BOHB

Humans and AutoML?

Towards Human-Centered AutoML

- Fully automated ML design can also receive pushback:
 - How to verify results (i.e., ML pipelines)?
 - How to bring in human expertise?
 - How to integrate into prototype-driven workflows?

• \rightarrow Human-centered AutoML instead of fully automated ML



Can we explain what AutoML figured out?

[Moosbauer et al. NeurIPS'21]

Partial Dependence Plots [Friedman 2001]

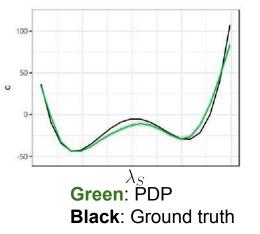
For, a subset S of the hyperparameters, the partial dependence function is:

$$c_S(\lambda_S) := \mathbb{E}_{\lambda_C} \left[c(\lambda) \right] = \int_{\Lambda_C} c(\lambda_S, \lambda_C) d\mathbb{P}(\lambda_C)$$

and can be approximated by Monte-Carlo integration on a surrogate model:

$$\hat{c}_S(\lambda_S) = \frac{1}{n} \sum_{i=1}^n \hat{m}\left(\lambda_S, \lambda_C^{(i)}\right)$$

where $\left(\lambda_C^{(i)}\right)_{i=1} \sim \mathbb{P}(\lambda_C)$ and λ_S for a set of grid points.



 \rightarrow Average of ICE curves.

Quantifying Uncertainties

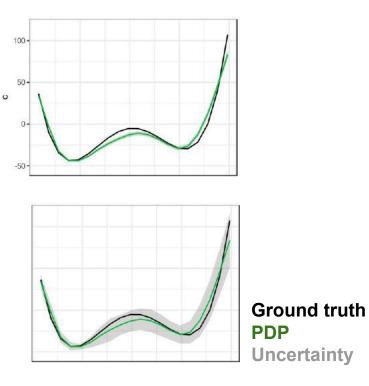
$$\hat{s}_{S}^{2}(\lambda_{S}) = \mathbb{V}_{\hat{c}} \left[\hat{c}_{S} \left(\lambda_{S} \right) \right]$$
$$= \mathbb{V}_{\hat{c}} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{c} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) \right]$$
$$= \frac{1}{n^{2}} \mathbf{1}^{\top} \hat{K} \left(\lambda_{S} \right) \mathbf{1}.$$

 \rightarrow requires a kernel correctly specifying the covariance structure (e.g., GPs).

Approximation:

$$\hat{s}_{S}^{2}(\lambda_{S}) \approx \frac{1}{n} \sum_{i=1}^{n} \hat{K}(\lambda_{S})_{i,i}$$

 \rightarrow Model-agnostic (local) approximation



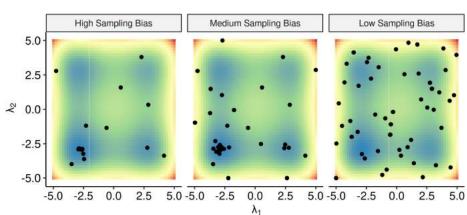
Problem of Biased Sampling

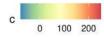
- PDPs assume that the data is i.i.d.
- Obviously not the case for efficient AutoML tools with a focus on high-performance regions

• Example:

- BO with GPs and LCB
- Different exploration rate for LCB to show different sampling bias

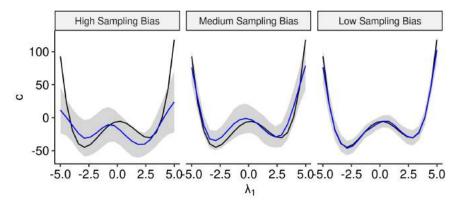
$$LCB(\lambda) = \mu(\lambda) + \beta \cdot \sigma(\lambda)$$

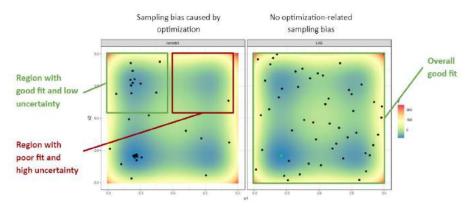




Impact of the Sampling Bias

- Simply using all observations from AutoML tools might lead to misleading PDPs
- Uncertainty estimates help to quantify the poor fits
- \rightarrow of course, sampling bias is wanted and the solution cannot be to change the sampling behavior





Partitioning of Space

Partition space to obtain interpretable subspaces \mathcal{N}^{\prime}

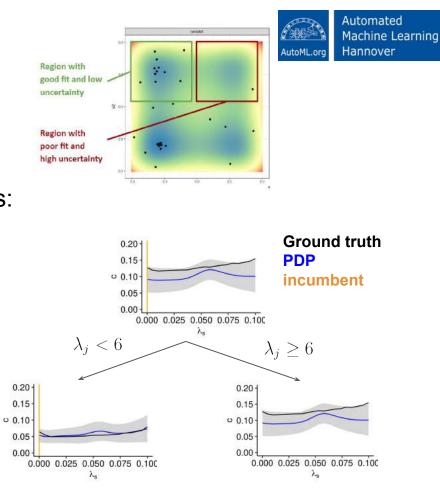
Uncertainty variation across all ICE estimates: $L(\lambda_{S}, \mathcal{N}') = \sum_{i \in \mathcal{N}} \left(\hat{s}^{2} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) - \hat{s}_{S|\mathcal{N}'}^{2} \left(\lambda_{S} \right) \right)^{2}$ $\hat{s}_{S|\mathcal{N}'}^{2} \left(\lambda_{S} \right) := \frac{1}{|\mathcal{N}'|} \sum_{i \in \mathcal{N}'} \hat{s}^{2} \left(\lambda_{S}, \lambda_{C}^{(i)} \right)$

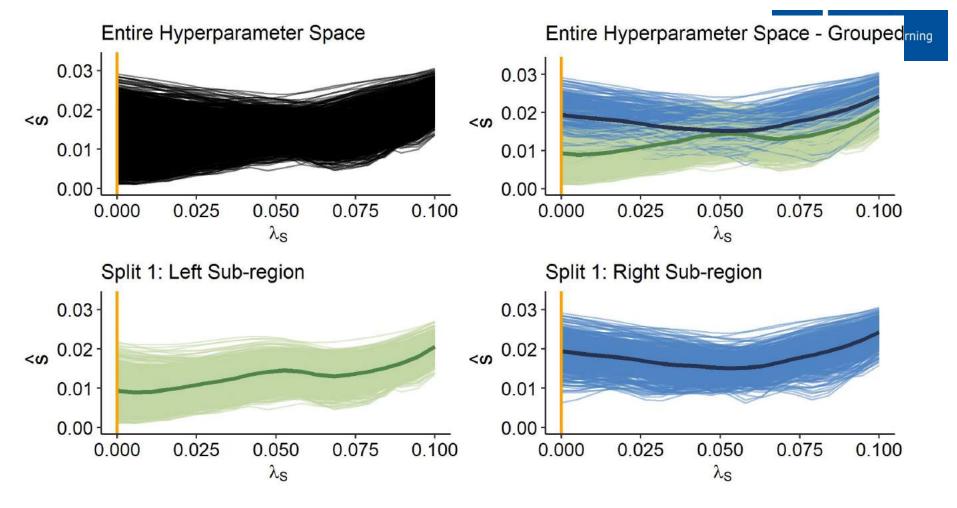
\rightarrow Uncertainty structure of ICE curves should maximally agree

Split Loss = Aggregation over all grid points:

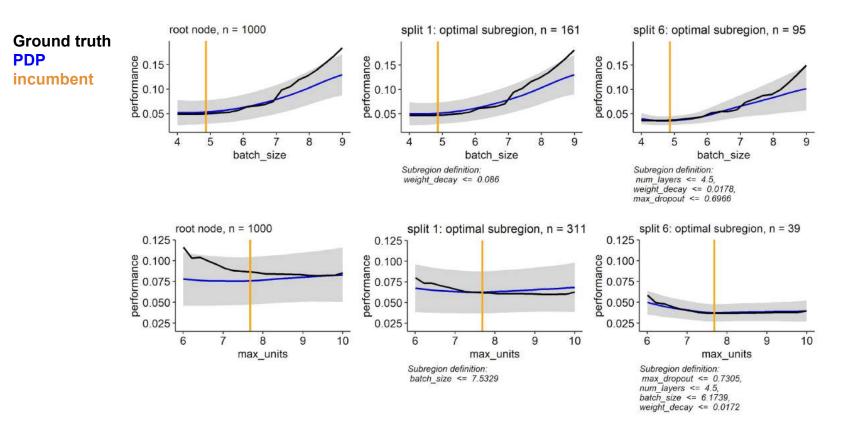
$$\mathcal{R}_{L2}(\mathcal{N}') = \sum_{g=1}^{G} L(\lambda_S^{(g)}, \mathcal{N}')$$

Note (i): Partition only along the marginalized dimensions





Explaining AutoML via PDPs

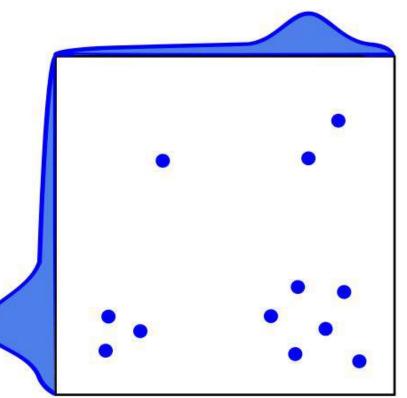


Can Developers also Bring in their Expertise? [Souza et al. ECML'21]

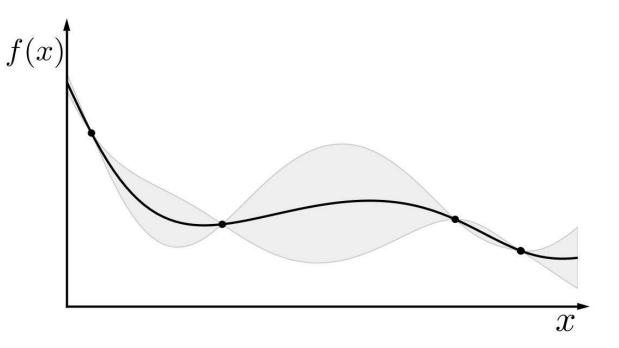
ML practitioners often have an

- intuition for promising hyperparameter configurations
- → Sampling of configurations should focus in these regions
- However, practitioners can also be wrong with their intuition
- → Over time, we should trust the evaluated configurations and the surrogate more than the human expert

Integrating Human-Prior Knowledge

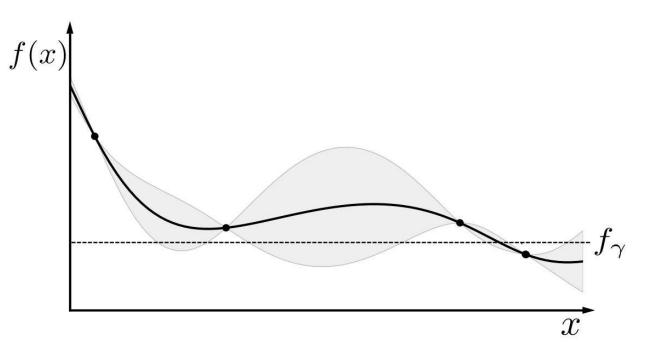


Human-Prior Knowledge -- BOPro



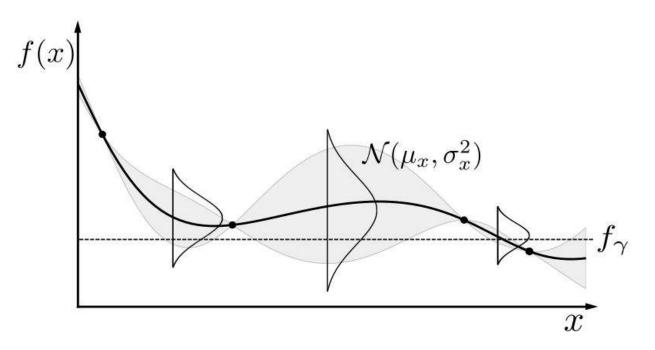
Automated Machine Learning AutoML.org Hannover

Human-Prior Knowledge -- BOPro



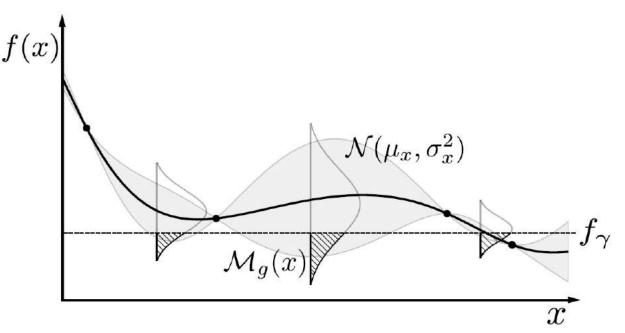
Automated Machine Learning AutoML.org Hannover

Human-Prior Knowledge -- BOPro



Automated Machine Learning AutoML.org Hannover

Human-Prior Knowledge -- BOPro



- Instead of modelling f(x), we model whether a configuration is "good" or "bad"
- Using the Gaussian distribution of a GP, we can determine the probability of being good

$$g(\boldsymbol{x}) \propto P_g(\boldsymbol{x}) \mathcal{M}_g(\boldsymbol{x})^{rac{m{\iota}}{m{eta}}}$$

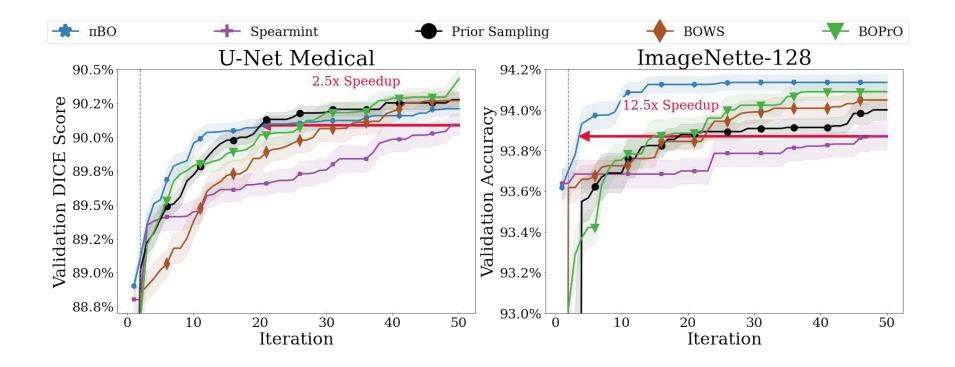
Human-Prior Knowledge -- πBO [Hvarfner et al. 2021]

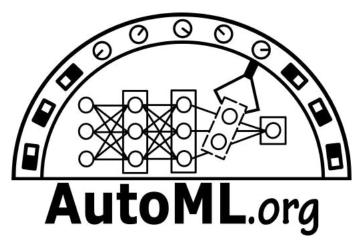
- BOPro has several assumptions on how to model the observations
- πBO is simpler: augment the the acquisition function of BO by a human prior preference

$$\alpha(x) = \hat{\mu}(x) + \kappa \hat{\sigma}(x)$$
$$\alpha_{\pi}(x) = \alpha(x)\pi(x)^{\frac{\beta}{t}}$$

- Advantages of πBO:
 - Can be combined with any acquisition function
 - Same convergence guarantees as with the original acquisition functions (e.g., EI)
 - Can again recover from misleading a-priori knowledge

Human-Prior Knowledge -- πBO [Hvarfner et al. 2021]





/AutoML_org/

/automl/

https://tinyurl.com/automlyt

Thank you!

Appendix

Cocktail Frequencies

