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The need of AutoML!?



4Marius Lindauer

Rise of Literacy

● Only priests were able to 
read and write

● People believed that they 
don’t need to read and write

● They went to the holy 
buildings

Photo by Anna Hunko on Unsplash

● Today, everyone can read and 
write

● No one doubts the benefits of it

● ⇒ Democratization of literacy

Inspired by Andrew Ng

https://unsplash.com/es/@annahunko?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/library?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://www.youtube.com/watch?v=reUZRyXxUs4
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AI Literacy?

Photo by Max Duzij on Unsplash

● Only highly educated people 
can program new AI 
applications

● Power only with the large IT 
companies

● In an age of limited resources, the 
need for efficient use gets more 
important

● AutoML contributes to AI literacy!
[See also my TEDx Talk]

https://unsplash.com/es/@max_duz?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/programming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://www.youtube.com/watch?v=F5Dl-guzSjs
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A case study with engineers [Denkena et al. 2020]

https://www.ai.uni-hannover.de/de/forschung/publikationen/publikationen-detailansicht?tx_t3luhpublications_publications%5Baction%5D=show&tx_t3luhpublications_publications%5Bcontroller%5D=Publication&tx_t3luhpublications_publications%5Bpublication%5D=7583&cHash=c7647012e346b23dfbfb8af564426811
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Shape Error Prediction in Milling Processes 

State of the art

Better than state of the art 
after 27 sec!
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AutoML Landscape
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AutoML A-Z
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AutoML A-Z
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Hyperparameter Optimization
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Hyperparameter Optimization

Optimize for
● Accuracy (& co)
● Memory consumption
● Energy consumption
● Inference time
● Training time
● Fairness
● Robustness
● Uncertainty 

quantification
● …
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Optimizers for HPO
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Optimizers for HPO

Further alternatives:
● Grid search
● Random search
● Reinforcement 

Learning
● Planning
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Speeding Up
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Speeding Up

Observed Predicted

#Epochs
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#Epochs
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Stop 1Stop 2
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HPO Packages 

last update of table in 2021
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Neural Architecture Search (NAS)
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Neural Architecture Search (NAS)
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The Components of NAS

Search Space Search 
Strategy

Performance 
Estimation 

Strategy

Architecture

Performance Estimate
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Search Space 1: Macro NAS

Source: [Tan & Le. 2019]→ direct relationship to HPO: NAS as HPO

https://arxiv.org/pdf/1905.11946.pdf
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Search Space 2: Cell-based NAS

Source: [Liu et al. 2019]

https://arxiv.org/pdf/1806.09055.pdf
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Search Space 3: Hierarchical NAS

Search on multiple levels of the hierarchy
● Lower levels: create reusable building blocks 
● Higher levels: combine building blocks 

Like transformers are composed of lower-level building blocks (e.g., attention)

Source: [Liu et al, 2018]

https://openreview.net/forum?id=BJQRKzbA-
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AutoDL: Joint NAS & HPO
1. DL also includes complex pipelines 
2. NAS & HPO need to go hand in hand

⇒ Auto-PyTorch  [Zimmer et al. 2021] and Auto-PyTorch for 
Time Series Forecasting [Deng et al. 2022]

Inspired by
 [Zimmer et al. 2021]

AutoML Optimizer

Evaluation Scheme

Imputation

Normalization

Encoding

Resampling

Architecture

DL Optimizer

Loss

https://arxiv.org/abs/2006.13799
https://arxiv.org/abs/2205.05511
https://arxiv.org/abs/2006.13799
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Meta-Learning
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Meta-Learning
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Learning about Learning Algorithms

Hyperparameter 
Effects & Importance

Learning NN weight 
initializations

Source: [Finn et al, 2017]

Performance 
prediction

Log(#Layers)

Va
lid

at
io

n 
Lo

ss

Source: [Moosbauer et al. 2021]

– ground truth
– estimate

https://arxiv.org/abs/1703.03400
https://arxiv.org/pdf/2111.04820.pdf
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Dynamic AutoML

Dynamic Optimizer ML Training

Hyperparameter 
Configuration

State Information
& Loss

● Population-based Training 
[Jaderberg et al. 2017]

● Population-based Bandits
[Parker-Holder et al. 2020]

● Dynamic Algorithm 
Configuration via RL
[Biedenkapp et al. 2020,
Adriaensen et al. 2022]

● Adapting Bayesian 
Optimization
[Benjamins et al. 2022]

https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/2002.02518
https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/20-ECAI-DAC.pdf
https://arxiv.org/abs/2205.13881
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Final Step of AutoML
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Ensembling vs Stacking

Input

Model 1 Model 2 … Model n

Prediction

w1
w2

wn

Input

Model 1 Model 2 … Model n

Prediction

w1
w2

wn

Concat

Model 1 Model 2 … Model n

Source [Erickson et al. 2020]

https://arxiv.org/pdf/2003.06505.pdf
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Auto-Sklearn [Feurer et al. 2015, Feurer et al. 2022] &
Auto-PyTorch [Zimmer et al. 2021]

Training & 
Validation

Multi-fidelity
Optimizer

Configuration
Validation Loss

Configuration 
Space

Warmstarting 
& Strategy

Robust 
Portfolio

Meta Training 
Datasets

Dataset Ensembling of 
Models

https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/15-NIPS-auto-sklearn-preprint.pdf
https://www.jmlr.org/papers/v23/21-0992.html
https://ieeexplore.ieee.org/document/9382913
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Meta-Data & 
Reproducibility

Trajectory of 
AutoML

Effects & 
Importance of 

Hyperparameters
Performance

Monitoring AutoML [Sass et al. 2022]

Deep
CAVE

https://arxiv.org/abs/2206.03493
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Selection of Open Challenges

Scaling up AutoML 
for very large models

Finding substantially 
novel architectures

Green AutoML

AutoML

Human-centered AutoML
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Are Data Scientists still needed? Yes

Design the 
configuration space

Monitor AutoML

Determine your 
objectives, metrics 

and constraints

Bring in the domain 
knowledge

Determine Budgets

Running AutoML
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HPO → AutoML → AutoDS

Data Engineering Data 
Preprocessing

Model 
Selection MonitoringDeployment

Focus of AutoML

HPO
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Can we explain what AutoML figured out?
[Moosbauer et al. NeurIPS’21, Moosbauer et al. 2022]

https://arxiv.org/abs/2111.04820
https://arxiv.org/pdf/2206.05447.pdf
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Explaining Hyperparameter Effects via PDPs

Ground truth
PDP
incumbent
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Partial Dependence Plots

For, a subset S of the hyperparameters, the partial dependence function is:

and can be approximated by Monte-Carlo integration
on a surrogate model:

where                                                               and       for a set 
                                                                        of grid points.

→ Average of ICE curves.

Green: PDP
Black: Ground truth

[Hutter et al. 2014] showed how to do this efficiently for RFs as surrogate models.

https://ml.informatik.uni-freiburg.de/papers/14-ICML-HyperparameterAssessment.pdf
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Partial Dependence Plots with Uncertainties

→ requires a kernel correctly specifying the 
covariance structure (e.g., GPs).

Approximation:

→ Model-agnostic (local) approximation

Ground truth
PDP
Uncertainty
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Impact of Sampling Bias in Explaining AutoML

● Simply using all observations 
from AutoML tools might lead 
to misleading PDPs

● Uncertainty estimates help to 
quantify the poor fits

→ of course, sampling bias is 
wanted and the solution cannot be 
to change the sampling behavior
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Can AutoML consider expert knowledge? 
[Hvarfner et al. ICLR’22]

https://openreview.net/forum?id=MMAeCXIa89
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Bayesian Optimization vs Manual Tuning
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Bayesian Optimization with Expert Knowledge
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piBO

Acquisition Function User Prior Speed of forgetting user prior
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PiBO [Hvarfner et al. ICLR’22]

➔ Uses expert knowledge to speed up Bayesian Optimization
➔ Robust also against wrong believes
➔ Substantially speeds up AutoML

https://openreview.net/forum?id=MMAeCXIa89
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Will AutoML replace Data Scientists?
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Application DS

A
ut

oM
L

A
ut

oM
L

AutoML: Helping to 
bridge application 
and data science.
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Funded by:

/AutoML_org/

/automl/

https://tinyurl.com/automlyt

https://twitter.com/AutoML_org
https://github.com/automl/
https://tinyurl.com/automlyt
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Backup slides
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Portfolios for Warmstarting [Feurer et al. 2022] 

Algorithms

D
at

as
et

s
Best Portfolio

|P| = 1
Best Portfolio

|P| = 2
Best Portfolio

|P| = 3Ground Truth

P
er

fo
rm

an
ce

https://www.jmlr.org/papers/v23/21-0992.html


51Marius Lindauer

Oneshot NAS: Weight Sharing Across Architectures

● For each choice between operations, the supernet includes all of them

● A linear number of weights shared by an exponential number of architectures

● Thus, updating the weights of one architecture simultaneously updates parts of 
the weights of exponentially many other architectures
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Zero-Cost Proxies for NAS

Very hot topic in NAS, but no consistent improvements 
over trivial baselines, such as #parameters or FLOPs

ZC proxy
(a few seconds) Score
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Zero-Cost Proxies for NAS

ZC proxies are a particular type of performance predictor
● They aim to judge the performance of an architecture in a few seconds
● Often by a single forward pass on a mini-batch
● Thus, the term “zero-cost”

Examples
● Change of error when dropping network weights
● Dissimilarity of activation patterns for points in a batch 

Very hot topic in NAS, but no consistent improvements 
over using number of parameters or FLOPS
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Learning to learn

E.g., “Learning to learn by gradient descent by gradient descent“ [Chen et al. 2016]

E.g., Alpha-Zero [Silver et al. 2017]

Source: [Chen et al. 2016]

https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1606.04474


55Marius Lindauer

Maturity of AutoML ML

Supervised
Learning

Reinforcement 
Learning

Recommender 
System

Unsupervised
Learning


