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Story Line Today

e Can we do more than simply configuring hyperparameters by also taking the
architectures of DNNs into consideration?

How can we model architecture search spaces efficiently?

How to optimize architectures efficiently?

Can we combine model training and architecture search?

Can we even approximate the quality of an architecture without training at all?
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Development of new Neural Architectures

e Performance improvements on various tasks due to novel architectures
e Can we automate this design process, potentially discovering new
components/topologies?

Image Classification on ImageNet

Leaderboard Dataset

FixResNeXt-101 32x48d
NASNET-A(6)
ResNet-152

AlexNet

TOP 1 ACCURACY

Source:
Paperswithcode

2014 2015 2016 2017 2018 2019

Other models State-of-the-art models
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Manual Development of Architectures

e Manual design of architectures is time consuming
e Complex state-of-the-art architectures are a result of years of trial and errors
by experts

(3 ]

Inception-v3 [Szegedy et al. 2015]
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https://arxiv.org/pdf/1512.00567.pdf

Manual Development of Architectures

e Manual design of architectures is time consuming
e Complex state-of-the-art architectures are a result of years of trial and errors

by experts

Filter concat

256-din 256-din

256-d out

Filter concat

256-d out

ResNet/ResNeXt blocks
[He et al. 2016; Xie et al. 2016]
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Filter concat

Inception-v4 blocks [Szegedy et al. 2016]
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https://arxiv.org/pdf/1602.07261.pdf
https://arxiv.org/pdf/1603.05027.pdf
https://arxiv.org/pdf/1611.05431.pdf

Neural Architecture Search

e Goal: automatically find neural architectures with strong performance

o  Optionally, subject to a resource constraint

e A decade-old problem, but main stream since 2017

and now intensely researched
e One of the main problems AutoML is known for
e |Initially extremely expensive
e By now several methods promise

low overhead over a single model training
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https://www.automl.org/automl/literature-on-neural-architecture-search/

History of NAS

First NAS NAS with RL Differentiable Failure Modes Zero-Cost
ideas, e.g. Zoph et al. NAS (DARTS) of DARTS, e.g. Proxies, e.g.
Tenorio and Liu et al. Zela et al. Abdellfatah et
Wei-Tsih 1988 al.

800 GPUs for

2 weeks 4 GPU days NAS in

for CIFAR-10 for CIFAR-10 minutes?

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger
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https://openreview.net/forum?id=0cmMMy8J5q

NAS Components [Elsken et al. 2019]

architecture
ace A
Search Space Search Pgn‘tqrm?nce
A Strategy stimation
Strategy
performance

estimate of a

e Search Space: the types of architectures we consider; micro, macro,
hierarchical, etc.

e Search Strategy: Reinforcement learning, evolutionary strategies, Bayesian
optimization, gradient-based, etc.

e Performance Estimation Strategy: validation performance, lower fidelity
estimates, one-shot model performance, etc
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https://jmlr.org/papers/volume20/18-598/18-598.pdf

NAS Components cont'd [white et al. 2023]

One-shot methods: jointly learning
architecture hyperparameters and weights

) ] (e (] (] (] (] [ ~
g \
Architecture { FECIEE e |

encoding | acA

] - rln ( _———~| Performance ]!
Search Space A L Search Strategy Estimation |
J I L Strategy |
| Performance |
\ estimate of a /

NG o o ) (] ) e {5 o (o] i ot -

e For one-shot methods, the search strategy and performance estimation
strategy are inherently coupled.
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https://arxiv.org/pdf/2301.08727.pdf

NAS (Core) Definition

Given
e a search space A,
e adatasetD,
e a training pipeline P,
e and a time or computation budget t,

the goal is to find an architecture a € A within budget t which has the highest
possible validation accuracy when trained using dataset D and training pipeline P

miﬂ Lo (™ (n),a) 86 w'(e) c avgmin,, L (w,a).
ac
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NAS Search Spaces



Macro Search Space

Chain-structured space More complex space
(different colours: with multiple branches
different layer types) and skip connections
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Cell Search Spaces [zoph et al. 2018]

Normal cell:

preserves spatial e ——
resolution
RedUCtion Ce” RS O LR RS
reduces spatial
resolution
.......................................
Two possible cells ArchltectL.Jre composed
of stacking together
individual cells
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https://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf

Details on Cell Search Spaces

softmax

controller
hidden layer

layer

e 2 types of cells: normal and reduction cells

e For each type of cell: B blocks, each with 5 choices
o Choose two previous feature maps (from this cell)

o For each of these, choose an operation (3x3 conv, max-pool, etc.)
o Choose a merge operation to combine the two results (concat or add)

Select one Select second Select operation for Select operation for Select method to

=X hidden state hidden state first hidden state second hidden state combine hidden state

\ A A\ A A A
\
—\-—> > —> —> > —
\ - L \ VoL
v 7 \ 7 \ 7 v 7 \ 7/

-~ -~ — ~ -~

ESSAI SummerSchol 2023
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{ repeat B times

e SE T T
:new hidden Iayer:
1

3 x 3 conv 2 x 2 maxpool
: hidden layer A : hidden layer B |
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Example of an architecture sample with B=5

Softmax

I

Normal Cell x N

A

Reduction Cell

y add [ add | | add |

\ 4 T
Normal Cell x N iden avg | | avg se;; sep
A tity 3x3 | | 3x3 5x5 | | 3x3

Reduction Cell

A

Normal Cell x N

A

Image I Normal Cell

le‘jARlO
Architecture Reduction Cell
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What are pros and cons of cell search
spaces”?
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Pros of Cell Search Space

e Reduced search space size
e speed-ups in terms of search time
e Transferability to other datasets
(e.g., cells found on CIFAR-10 transfer to ImageNet)
o be careful with that!
e Stacking repeating patterns is proven to be a useful design principle

(ResNet, Inception, etc.)
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Cons of Cell Search Spaces

e Still need to (manually) determine the macro architecture,
l.e., the way in which cells are connected.

e Limiting if different cells work better in different parts of the network
o E.g., different spatial resolutions may favour different convolutions
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Hierarchical Search Spaces

e Reuse of substructures, like in cell search spaces
e But choices on many different levels
e Some examples in the literature,
but understudied
e Potential example for
an element of
a hierarchical space:
Transformers

Scaled Dot-Product l

Attention

Multi-Head
Attention

Positional Positional
Encoding & Encoding

Output
Embedding

I

Outputs
(shifted right)
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Hierarchical representation of search space [Liu et al. 2017]

Directed Acyclic Graph (DAG) representation of architectures
Each node is a latent representation; each edge is an operation/motif

There are different levels of motivs

e Level-1 primitives: standard operators; e.g., 3x3 conv, max pooling, . . .
e Level-2 motivs: combinations of level-1 primitives

I3 = III("I‘L(j(’,(()(Il) (.172)_ 0‘,1)(.1'] ))

&

0(1)
1 (1) 1x1
20 = 083051 09 1x1 conv  3x3 conv  3x3 max-pooling assemi ble 3x3
(1) 1 (1 )
Ogl) <1 01 Oé ) O3 ) pooling
(2) (2)
G; 01
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https://openreview.net/pdf?id=BJQRKzbA-

Hierarchical representation of search space [Liu et al. 2017]

e Level-3 motivs: combinations of level-2 motivs

o
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Formulation of Search Spaces by Context-free Grammars

e Choices on multiple levels of the architecture

e Can be described by context-free grammars [Schrodi et al. 2022]

e At each level, we apply another production rule to add more detail

e Allows for compact and powerful representation of architectures
S S S

S —» Linear(S, S, S) O > >O—0

-+ Linear(Residual(S, S, S),
Residual(S, S, S), linear) . &
-+ Linear(Residual(conv, 1d conv)
Residual(conv, id, conv) llnear mea

Level 1

Level 2

Level 3
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Search Methods for NAS: Black-Box



NAS as an HPO-Problem

NAS can be formulated as a HPO problem

e E.g., cell search space by [Zoph et al. 2018]

has 5 categorical choices per block
o 2 categorical choices of hidden states
o 2 categorical variables choosing between operations
o 1 categorical variable choosing the combination method

e Total number of hyperparameters for the cell:

5B (with B=5 by default)
e In general: one may require
conditional hyperparameters

E.g., chain-structured search space . i
o Top-level hyperparameter: number of layers L ol Tt e

o Hyperparameters of layer k conditional on L = k Reduction Cell
ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger [(cc)s\UAY 26



https://arxiv.org/abs/1707.07012

Early Work on Neuroevolution (already since the 1990s)

Evolves architectures & often also their weights

e Typical approach:

o Initialize a population of N random architectures

o Sample N individuals from that population (with replacement) according to their fithess
o  Apply mutations to those N individuals to produce the next generation’s population

o  Optionally: elitism to keep best individuals in the population

e Mutations include adding, changing or removing a layer
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NAS by Reinforcement Learning [zoph et al. 2017]

e Use RNN (“Controller”) to generate a NN architecture piece-by-piece

e Train this NN ("Child Network™) and evaluate it on a validation set

e Use Reinforcement Learning (RL) to update the parameters of the Controller
RNN to optimize the performance of the child models

e = Outdated and suboptimal use of Reinforcement Learning

Sample architecture A
with probability p

Number Filter Filter Stride Stride Number Filter
* |[of Filters[, | Height [+ [ width [\ | Height [+ Width [ |of Filters|, | Height [\

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

1 J

Compute gradient of p and e . > <« .
scale it by R to update Layer N-1 Layer N Layer N+1
the controller

"
'
‘4
0
N
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https://arxiv.org/pdf/1611.01578.pdf

NAS by Reinforcement Learning [White et al. 2023]

Algorithm 1 General Reinforcement Learning NAS Algorithm

Input: Search space A, number of iterations 7.

Randomly initialize weights 6 of the controller architecture.

fort = 1,i0:54 dO
Train architecture a ~ 7(a;0), randomly sampled from the controller policy 7 (a;8).
Update controller parameters ¢ by performing a gradient update Vo E, . (q.0)[Lval(a)].

end for

Output: Architecture selected from the trained policy 7(a;6*)
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https://arxiv.org/pdf/2301.08727.pdf

Regularized Evolution [Real et al. 2018]

e Quite standard evolutionary algorithm
o But oldest solutions are dropped from population, instead of the worst
(a.k.a. “regularization”)
e Standard SGD for training weights; fixed-length (HPO) search space

L |

0.92 Ev :
olution i
Hidden State LS__] £ e
sep avg Mutat:on se (+) avg - ~ =
7x7 T 3x3 b)i @ s
P ©
5
AME  doh e RL
U /
< 7l
______________________________ o {
(=
=
£ EX 8
i op i ~
: X a
sep /avg Mutation sepyr o)
1 3x3 lxﬂ =

[ﬂ ﬂ Fﬂ 2] (3] ] 9:8% Experiment Time (hours) 200
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https://arxiv.org/pdf/1802.01548.pdf

NAS by Evolutionary Algorithms [white et al. 2023]

Algorithm 2 General Evolutionary NAS Algorithm

Input: Search space A, number of iterations 7.

Randomly sample and train a population of architectures from the search space A.

fori=1,s:4;1 dO
Sample (based on accuracy) a set of parent architectures from the population.
Mutate the parent architectures to generate children architectures, and train them.
Add the children to the population, and kill off the architectures that are the oldest
(or have the lowest accuracy) among the current population.

end for

Output: Architecture from the population with the highest validation accuracy.
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https://arxiv.org/pdf/2301.08727.pdf

Bayesian Optimization

e Encode the architecture space by categorical hyperparameters

e Strong performance with tree-based models
o TPE [Bergstra et al. 2013]

o SMAC3 [Zimmer et al. 2021, Lindauer et al. 2022] 100 - Glfar 10
e Kernels for GP-based NAS 28 ;

o Arc kernel [Swersky et al. 2013] 70 |

o NASBOT [Kandasamy et al. 2018] 60

50
40

e There are also several
promising BO approaches based on NN

validation accuracy

30 — GDAS
o BANANAS [White et al. 2019] 20 no warmstart BO
) no warmstart BOHB —— SETN
o Local search seems to be more important 10 portfolio BOHB ENAS
. . . o | .
than encoding of architecture encoding 180 =

[Schneider et al. 2022]

e BO is very competitive [Zimmer et al. 2021]
o has also outperformed RL [Ying et al. 2019]

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications
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https://proceedings.mlr.press/v28/bergstra13.html
https://arxiv.org/abs/2006.13799
https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
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https://arxiv.org/pdf/1910.11858.pdf
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https://arxiv.org/pdf/1902.09635.pdf

NAS by Bayesian Optimization [white et al. 2023]

Algorithm 3 General Bayesian Optimization NAS Algorithm

Input: Search space A, number of iterations 7T, acquisition function ¢.
Randomly sample and train a population of architectures from the search space A.
fort=1,...,7T do
Train a surrogate model based on the current population.
Select architecture a; by maximizing ¢ (a) , based on the surrogate model.
Train architecture a; and add it to the current population.
end for
Output: Architecture from the population with the highest validation accuracy.
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https://arxiv.org/pdf/2301.08727.pdf

Speeding Up Black-Box NAS

1. Multi-fidelity optimization

o see HPO lecture
2. Learning curve prediction

o Predict how the learning curve will extend with further training

and continue only the promising architectures

3. Meta-learning across datasets

o e.g., learning promising architectures as portfolio [Zimmer et al. 2021]
4. Network morphisms & weight inheritance

o learn how to grow network size while training by using network morphisms
[Chen et al. 2016; Wei et al. 2016; Cai et al. 2017]

A Deeper Model Contains

Original Model Layers that Initialized as Identity Mapping Initialized Layers

Identity Mapping

T B =

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications Marius Lindauer / Katharina Eggensperger
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One-Shot NAS



One-Shot: Idea [Pham et al. 2018: Bender et al, 2018]

Nodes - latent representations.
Edges (dashed) - operations.

e Architecture optimization problem:

The one-shot model can be seen as a directed acyclic multigraph
O
O

Find optimal path from the input to the output

/ N ( \ /
{ Cr-1 \ 4 {

Ck-2 Ck2 Ck-1 Ck2 Cyo
By o S : ; - ] \\\1\‘// :
S i : , . AR v L
) . [or1] ’, ) (op1) (op:]
| ™ sty R ! |\ ; \\
\ e R . ; : | [ T ‘
\ e > 2 : 5 ; \ T2 ‘
\> o’ R s :
() » > 2 () > 2
T ! — —
(a) One-shot search
ESSAI SummerSchol 2023

(b) Final evaluation
AutoML: Accelerating Research on and Development of Al Applications
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https://arxiv.org/pdf/1802.03268.pdf
http://proceedings.mlr.press/v80/bender18a/bender18a.pdf

Neural Fabrics [Saxena and Verbeek. 2017]

e A one-shot model is a big model that has all architectures in a search

space as submodels
o This allows weights sharing across architectures
o One only needs to train the single one-shot model,
and implicitly trains an exponential number of individual architectures

e The first type of one-shot models: convolutional neural fabrics
. /. N/

Input |\ >
X

ra

7]
- Q
o =
=] N
s //

Each path from the input to the output represents an architecture

The nodes represent tensors

The edges represent computations (e.g., convolution / strided convolution)
Weights for the operation on an edge are shared

o Across all (exponentially many) architectures that have that edge

o O O O
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https://arxiv.org/pdf/1606.02492.pdf

One-shot models for cell search spaces

e Directed acyclic multigraph to capture all

(exponentially many) cell architectures
o The nodes represent tensors
o The edges represent computations
o The results of operations on multiple edges
between two nodes are combined

e Individual architectures are subgraphs
of this multigraph

o  Weights for the operation on an edge are shared
across all (exponentially many) architectures
that have that edge

Y Y

Cell Node 0
Structure
A J

e Goal: Extract the best performing
architecture from one-shot model

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications
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Why can’t we simply train the one-shot model?

e One-shot model is an acyclic graph;
thus, backpropagation applies
o Simplest method: standard training with SGD
o This implicitly trains an
exponential number of architectures
e Potential issue: co-adaptation of weights
o Weights are implicitly optimized to
work well on average across all architectures
o They are not optimized specifically
for the top-performing architecture

ESSAI SummerSchol 2023 AutoML: Accelerating Research on and Development of Al Applications
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Training One-Shot Models

e At each mini-batch iteration during the training of the one-shot model sample
a single architecture from the search space

o Random Search with Weight Sharing [Li and Talwalkar. 2020]
— sample from uniform distribution

o ENAS [Pham et al. 2018] — sample from the learned policy of a RNN controller
e Update the parameters of the one-shot model corresponding to only that
architecture
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https://arxiv.org/pdf/1902.07638.pdf
https://arxiv.org/pdf/1802.03268.pdf

How to utilize the trained one-shot model?

e After training the one-shot model we have to select the best individual
architecture from it

e There are multiple ways we can approach this. Some of these are:
o 1. Sample uniformly at random M architectures and rank them based on their
validation error using the one-shot model parameters
o 1b. (Optional) Select top K (K < M) and retrain them from scratch
for a couple of epochs

o 2. Return the top performing architecture to retrain from scratch for longer

e Pitfall: the correlation between architectures evaluated with the one-shot

weights and retrained from scratch (stand-alone models) should be high
o If not, selecting the best architecture based on the one-shot weights is
sub-optimal.
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DARTS: Differentiable Architecture Search



DARTS: Differentiable Architecture Search [Liu et al, 2018]

e Use one-shot model with continuous architecture weight a for each
operator

; ex (1 J) i
x(]) — Zi<J 0( 7.] (:,E( )) Zz<_} ZOEO Z p( ) _ 0(3:( ))

)
()/EOC‘BP( - )

e By optimizing the architecture
weights a, DARTS assigns
importance to each operation

0.24
o Since the a are continuous, we Sous | oo
can optimize them with gradient o y
descent
(a) Initialization (b) Search end
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DARTS: Differentiable Architecture Search [Liu et al, 2018]

ESSAI SummerSchol 2023

~N

Operation
candidates

Randomly Initialized Architecture
Hyperparameters &

\

AN

VoL (w*(a), @) & VaLlva (W — Vi Lirain(w, @), )

Joint Optimization of
Weights and Architecture

Hyperparameters

J

\

S

Output
(4,9)

ohi) € arg max,eco 0o

Discretization

J

Re-training From Scratch

- J
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From [White et al. 2023]
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DARTS: Training

The optimization problem (a — b) is a bi-level optimization problem:

ming Lval(w™* (a), )
s.t. w*(a) € argmin, Linain(w, )

This is solved using alternating SGD steps on architectural parameters a and weights w

Algorithm 4 DARTS - Differentiable Architecture Search
Input: Search space A, number of iterations 7T, hyperparameter &.
Randomly initialize a one-shot model based on A with weights w and architecture hy-
perparameters c.
fori=1,:s:;1 do
Perform a gradient update on the architecture weights «
Perform a gradient update on w according to V,Lirain(w, a).
end for
Output: Derive the final architecture by taking the argmax of «, across all operation
choices, and then retrain this architecture from scratch.
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Performance of DARTS

e E.g., original CNN search space
o 8 operations on each MixedOp
o 28 MixedOps in total

e >10% possible architectures
e Performance: <3% error on CIFAR-10 in less than 1 GPU day of search
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7% S T " ski u)nnul:.
c {k 1} s(.p L()ll\ 1‘(‘ __[_nux__[x)()l_:‘x} g
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Figure 4: Normal cell learned on CIFAR-10. Figure 5: Reduction cell learned on CIFAR-10.

e BUT: DARTS can be very brittle; e.g. convergence to only skip connections
ESSAI SummerSchol 2023 Marius Lindauer / Katharina Eggensperger
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Selecting the final Architecture from DARTS

e Problem: Selecting according to highest weights might not be optimal
o Weights are not indicative about overall importance of operator

e lterative selection of final architecture [wang et al. 20211

Algorithm 1: Perturbation-based Architecture Selection

Input: A pretrained supernet S, Set of edges £ from S, Set of nodes N from S
Result: Set of selected operations {0} }.ce
while |£]| > 0 do
randomly select an edge e € £ (and remove it from &);
forall operation o on edge e do
| evaluate the validation accuracy of S when o is removed (ACC)\,);
end
select the best operation for e: 0} < argmin, ACC\,;

discretize edge e to o} and tune the remaining supernet for a few epochs;

end
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Memory Issue of DARTS

e DARTS keeps the entire one-shot model in memory, together with its
computed tensors

o This constrains the search space size and the fidelity used to train the one-shot
model

o Impossible to run on large datasets as ImageNet
e Alot of research aims to fix this issue:
e GDAS [Dong et al, 2019]

o samples from a Gumbel-Softmax distribution to keep only a 1 architecture in RAM
e ProxylessNAS [Cai et al, 2019]

o computes approximate gradients on a keeping only 2 edges between two nodes in
memory at a time

e PC-DARTS [Xu et al, 2020]
o performs the search on a subset of the channels in the one-shot model
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Zero-Cost Proxies
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From expensive to cheap NAS?

e All NAS methods depend on evaluating several different architectures
(both in black-box methods and differentiable architectures)

e Vision: Can we estimate the performance of an architecture without training it
o intermediate step: multi-fidelity techniques or one-epoch training
o ultimate goal: use few statistics from an architecture to estimate their performance
m e.g., only a few forward passes

e = Zero-Cost (ZC) proxies
o can be computed in a few seconds
o instead of training for minutes, hours or days
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ZC-Proxy: Linear Seperable at Initialization [Melior et al. 2021]

e Exemplary ZC-Proxy: For mini-batch of data points, check whether points are
well seperable in a DNN with ReLUs

1. 2. 3. 4.

/

T —-

Input space Al

i -
vy B

A3 B3
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Data-Dependent and Data-Agnostic ZC-Proxies

e Data-dependent ZC-Proxies
o (few) Forward passes with mini-batches
m typically, not using the entire dataset
o No gradient updates to the network weights
o For example, the intra- and inter-class correlations of the prediction Jacobian
matrices [Lopes et al. 2021]
e Data-agnostic ZC-Proxies
o ignores dataset at hand
o assumes existence of (near) universal architecture(s)
o Zen-Score approximates the neural network by piecewise linear functions
conditioned on activation patterns and computes the Frobenius norm
[Lin et al. 2021]
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Correlation between Zero-Cost Proxy and Validation

Loss
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S s3s e To ensure high quality of zero-cost proxy and NAS
performance, correlation should be high
o e.g., Kendall-Tau should be close to 1
o In practice 71 is often between 0.2 and 0.6 according to
[Mellor et al. 2021] or between -0.1 and 0.8 according to

[White et al. 2022]
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Problems of ZC-Proxies [white et al. 2022]

1. Best ZC-proxy depends on the task at hand
o there is no single best
2. #FLOPS and number of parameters are competitive baselines
o — larger networks perform better
3. data-agnostic ZC-proxies perform inconsistently
o — Assumption of NAS (/AutoML): Datasets need different architectures
o — data-agnostic ZC-proxies imply that there are universal architectures
o — data-agnostic ZC-proxies can only exclude poor architectures?
4. Even if the NAS part can be sped up by ZC-Proxies, the training of the final architecture
can still be expensive — limiting the overall possible speed up
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Augmenting NAS with ZC-Proxies

e Pre-Filtering and Initialization
o use ZC-Proxies to start with a decent set of architectures, e.g., using an
evolutionary algorithm [Mellor et al. 2021]
e Additional context-information for surrogate-based optimizers
o surrogate model of Bayesian Optimization can additionally get ZC-proxy
information to better predict the performance of an architecture [\White et al. 2021]
e Faster selection of final architecture in DARTS
o Pertubation-based filtering can be augmented by good ranking of architectures
[Xiang et al. 2021]
e Combination of ZC-Proxies can be more powerful [Chen et al. 2022]
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Conclusion
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Neural Architecture Search: Final Thoughts

e While first NAS approaches required 100s of GPU hours, good architectures
with NAS within few hours these days are feasible — tremendous speedup
e Gradient-based NAS is the fastest, but not the most stable
o Bayesian Optimization with some tricks can be quite competitive
e Zero-cost proxies can provide additional information how well an architecture
can perform

BUT:

e NAS is still quite limited in its expressive capabilities;
e.g., will NAS be able to rediscover the Transformer architecture?
e NAS is not easily applicable to very expensive models (e.g., LLMs)
[Tornede et al. 2023]
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Recommendations

e Surveys:
o Neural Architecture Search: Insights from 1000 Papers by White et al. 2023
o Neural Architecture Search: A Survey by Elsken et al. 2019
e Software Packages:
o Auto-Keras
o NNI
o Auto-PyTorch
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Thanks.

See you tomorrow!
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