

## TabPFN: SOTA Tabular AutoML in 1 Second?

#### **Frank Hutter**

University of Freiburg & Bosch Center for AI fh@cs.uni-freiburg.de

Based on joint work with Samuel Müller, Noah Hollmann & Katharina Eggensperger ICLR 2023 & best paper at the NeurIPS 2022 Workshop on Tabular Data







These slides are available at <u>www.automl.org/talks</u>

#### Preview

UNI Freiburg

- A radically new (GPT-3 like) approach for tabular classification
- Better performance in 1s than than any other ML / AutoML method in 1h

#### • Current limitations

- Size: up to 1000 data points, 100 features, 10 classes
- Not (yet) designed for:
  categorical features,
  missing values,
  uninformative features
- High inference time



#### Premises

UNI Freiburg

- Tabular data is the most common type of data
  - Yet, deep learning did not traditionally excel on it
- Neural networks excel for large amounts of data
  - But they are **slow** to train
  - But they are prone to overfitting on small datasets
- We care about the long tail of small datasets
  - Biological data
  - Medical data
  - Climate data



#### All datasets sorted by dataset size

| ompany                | division                | sector                | tryint |
|-----------------------|-------------------------|-----------------------|--------|
| Onil_Combined_Company | 00nil_Combined_Division | 00nil_Combined_Sector | 14625  |
| pple                  | 00nil_Combined_Division | 00nil_Combined_Sector | 10125  |
| pple                  | hardware                | 00nil_Combined_Sector | 4500   |
| pple                  | hardware                | business              | 1350   |
| pple                  | hardware                | consumer              | 3150   |
| pple                  | software                | 00nil_Combined_Sector | 5625   |
| pple                  | software                | business              | 4950   |
| pple                  | software                | consumer              | 675    |
| nicrosoft             | 00nil_Combined_Division | 00nil_Combined_Sector | 4500   |
| nicrosoft             | hardware                | 00nil_Combined_Sector | 1890   |
| nicrosoft             | hardware                | business              | 855    |
| nicrosoft             | hardware                | consumer              | 1035   |
| nicrosoft             | software                | 00nil_Combined_Sector | 2610   |
| nicrosoft             | software                | business              | 1215   |
| picrosoft             | software                | consumer              | 1395   |



## TabPFN is Similar to Language Models Like GPT-3

- TabPFN is a transformer pretrained to do tabular classification
- Framed as next-word prediction: x<sub>1</sub>, y<sub>1</sub>, ..., x<sub>n</sub>, y<sub>n</sub>, x<sub>n+1</sub>, ?
- To be more precise:

$$\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}, \mathbf{x}_{n+1} \longrightarrow \text{TabPFN} \longrightarrow \hat{\mathbf{y}}_{n+1}$$

• To be even more precise:

 $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}, \mathbf{x}_{n+1} \longrightarrow \text{TabPFN} \longrightarrow p(\mathbf{y}_{n+1} \mid \mathbf{x}_{n+1}, \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\})$ 

#### **TabPFN** approximates Bayesian predictions



Prior over functions parameterized by latents t Posterior  $p(t|D) = \frac{p(D|t)p(t)}{\int p(D|t)dt}$ 

Intractable to compute exactly!

**Posterior predictive distribution**  $p(y|x, D) = \int p(y|x, t)p(t|D)dt$ 

Frank Hutter – SOTA Tabular AutoML in 1 Second?

## Illustration of Prior-Fitted Networks (PFNs)

## [ICLR 2022]



Frank Hutter – SOTA Tabular AutoML in 1 Second?

## PFNs can predict the true posterior arbitrarily closely



UNI FREIBURG

[ICLR 2022]



- Prior: weights of a given neural net
- Posterior predictive: Bayesian neural net
  - 10000x speedups over MCMC etc



- Prior: different neural architectures & their weights
- Posterior predictive: "Bayesian NAS"
  - Not even possible with MCMC etc





# Sample & initialize a causal graph





#### TabPFN Prior: Simplicity Principle



#### Prior likelihood

**Graph Complexity** 

Frank Hutter – SOTA Tabular AutoML in 1 Second?

#### The generated datasets look similar to real ones



UNI FREIBURG

Synthetic

datasets









Wine dataset

#### **Relation to Bayesian Supervised Learning**



Prior over functions parameterized by latents t

• Noise values, graph structure, weights, activation functions, etc

Posterior predictive distribution

Frank Hutter – SOTA Tabular AutoML in 1 Second?

?

Posterior 
$$p(t|D) = \frac{p(D|t)p(t)}{\int p(D|t)dt}$$

$$p(y|x, D) = \int p(y|x, t)p(t|D)dt$$



• AutoML pipeline





• TabPFN pipeline



#### Results

UNI FREIBURG

**OpenML-CC18** suite subset with < 1000 examples, numerical features & no missing values



#### **Results confirmed on 67 additional datasets**

Frank Hutter – SOTA Tabular AutoML in 1 Second?



#### Limitations (other than size)



#### Has Categorical Features

#### **Evaluation on a total of 180 datasets**

Frank Hutter – SOTA Tabular AutoML in 1 Second?

Slides at: http://automl.org/talks

Has Nans in Features



## TabPFN Makes Smooth, Intuitive Predictions





## What Does This Mean For AutoML?

- The first of many AutoML foundation models to come
- Is standard AutoML rendered unnecessary?
  - No! This simply shakes up the space of base-level algorithms
  - This is meta-learning and as such anyways part of AutoML
  - AutoML systems should simply include TabPFN
- TabPFN is as green as AutoML will ever get 🙂
- TabPFN's speed enables true user interaction
- TabPFN is user-centric & data-centric, not model-centric & ML expert-centric
  - No more need for the user to know anything about
    XGBoost etc & their hyperparameters





- TabPFN is fully learned, based on a synthetic data-generating mechanism
- TabPFN computes **posterior Bayesian inference** for the given prior
  - In our prior: elements of causality & simplicity
- Excellent performance on small datasets
  - Up to 1000 data points, purely numerical, no missing values
  - Training + prediction costs less than 1s
  - Better predictions on average than any other ML / AutoML method in 1h
- We will found a **startup** on TabPFN
  - Please talk to me to share your advice, or if you're interested