UNI

FREIBURG

TabPFN: SOTA Tabular AutoML in 1 Second?

Frank Hutter

University of Freiburg & Bosch Center for Al
fh@cs.uni-freiburg.de

Based on joint work with Samuel Miller, Noah Hollmann & Katharina Eggensperger
ICLR 2023 & best paper at the NeurlPS 2022 Workshop on Tabular Data

i @FrankRHutter
UNI @AutoML_org
FREIBURG

These slides are available at


http://www.automl.org/talks

UNI
FREIBURG

Preview

* A radically new (GPT-3 like) approach for tabular classification

Current limitations

— Size: up to 1000 data points,
100 features, 10 classes

— Not (yet) designed for:
categorical features,
missing values,
uninformative features

— High inference time
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» Better performance in 1s than than any other ML / AutoML method in 1h
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* Tabular data is the most common type of data =

apple hardware

— Yet, deep learning did not traditionally excel on it -
* Neural networks excel for large amounts of data = ==

— But they are slow to train
— But they are prone to overfitting on small datasets

* We care about the long tail of small datasets

— Biological data
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TabPFN is Similar to Language Models Like GPT-3
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 TabPFN is a transformer pretrained to do tabular classification
* Framed as next-word prediction: Xy, V4, v X Vi Xpa1r ¢

* To be more precise:

X Y1)y ew Ky V)b X — EEEE —— Voa

* To be even more precise:

{0 Y1) o (o V)b Xy —— e Pt [ X1 {0 Y1), o (R YD)
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§ TabPFN approximates Bayesian predictions
=
< .
Feature | X Feature
Prior over functions Posterior p(t|D) = p(D[t)p(t)
parameterized by latents ¢ J p(D[t)dt

Intractable to compute exactly!

Posterior predictive distribution p(y|z, D) = /p(y|a:,t)p(t]D)dt
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lllustration of Prior-Fitted Networks (PFNs) [ICLR 2022]
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Learn a model to predict

test from train

We call this model a
prior-fitted network (PFN)

Ny

Target

We have thus meta-learned to
approximate Bayesian inference,
purely by supervised learning

of data generated with the prior

Samples from the prior:
a data-generating mechanism
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PFNs can predict the true posterior arbitrarily closely [ICLR 2022]

Barely visible

1.9 —

approximation errors

y Example comparing to exact posterior Gaussian process \
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PFNs Enable Bayesian Deep Learning in a Forward Pass  [ICLR 2022]

 Prior: different neural architectures &
their weights

* Posterior predictive: “Bayesian NAS”
— Not even possible with MCMC etc

Prior: weights of a given neural net

Posterior predictive: Bayesian neural net
— 10000x speedups over MCMC etc

Frank Hutter — SOTA Tabular AutoML in 1 Second? Slides at: http.//automl.org/talks



TabPFN Prior: Integrating Principles from Causality
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Sample & initialize
a causal graph Build dataset:  output >0.2?

)}

((.22,.08), ((0.,1.1),

), ),

Sample noise
per example
& forward pass
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TabPFN Prior: Simplicity Principle

Prior likelihood

Graph Complexity
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Synthetic
datasets
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The generated datasets look similar to real ones
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5 Relation to Bayesian Supervised Learning
==
-] T
5 B\
Feature | X Feature

Prior over functions , p(DIt)p(t)
parameterized by latents ¢ Posterior p(f|D) = | p(D]t)dt

* Noise values, graph structure,
weights, activation functions, etc

Posterior predictive distribution ply|lxz, D) = /p(y|a:,t)p(t]D)dt
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Simplifying AutoML for Real-time Training

* AutoML pipeline

Xirain, Yirai
{ trains Ltrain [ meta-

learning

|

S

l—(BayeSlan optlmlzatlon system

I

data pre- feature build
Cl&SSlﬁel“
Processor Preprocessor ensemble

ML pipeline |

AutoML

E Y;test
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Simplifying AutoML for Real-time Training
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 TabPEN pipeline

4 N
{ Xtrain, Yiraing TabPFN forward pass )
Xtest; — (and optional ensembling) — Yiest
budget }
\ y
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OpenML-CC18 suite subset with < 1000 examples, numerical features & no missing values
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Results confirmed on 67 additional datasets
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Limitations (other than size)
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Has Categorical Features Has Nans in Features

Tabular PFN
Autosklearn2
Autogluon
Catboost
XGB

LGBM

Reg. Cocktail
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Evaluation on a total of 180 datasets
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TabPFN Makes Smooth, Intuitive Predictions
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What Does This Mean For AutoML?

The first of many AutoML foundation models to come

|s standard AutoML rendered unnecessary?

— No! This simply shakes up the space of base-level algorithms
— This is meta-learning and as such anyways part of AutoML

— AutoML systems should simply include TabPFN

TabPFN is as green as AutoML will ever get ©
TabPFN’s speed enables true user interaction
TabPFN is user-centric & data-centric,

not model-centric & ML expert-centric

— No more need for the user to know anything about
XGBoost etc & their hyperparameters
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Conclusions

 TabPFN is fully learned, based on a synthetic data-generating mechanism
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TabPFN computes posterior Bayesian inference for the given prior
— In our prior: elements of causality & simplicity

* Excellent performance on small datasets
— Up to 1000 data points, purely numerical, no missing values
— Training + prediction costs less than 1s
— Better predictions on average than any other ML / AutoML method in 1h

 We will found a startup on TabPFN
— Please talk to me to share your advice, or if you’re interested
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