

Efficient algorithm design via automated algorithm selection and configuration

Alexander Tornede & Marius Lindauer

Euro PhD School Data Science Meets Combinatorial Optimisation

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

Program For Today

9:00 – 10:30
 Algorithm Selection

10:50 – 12:20
 Algorithm Configuration

Lunch Break

15:00 – 16:30
 Algorithm Configuration & Hyperparameter Optimization Hands-on with SMAC

Who are we? Alexander Tornede

- 2015/2018
 B.Sc/M.Sc. in Computer Science from Paderborn University
- 06/2023
 Defended Ph.D. in Computer Science on Machine Learning for Algorithm Selection at Paderborn University
- Since 09/2022:

PostDoc of Marius' AutoML research group at Leibniz University Hannover

- Current research focus
 - Interactive and Explainable AutoML
 - LLMs for AutoML
 - (Uncertainty in AutoML)
- Hobbies:
 - Outdoor, sports, board games, computer games, reading

Who are we? Marius Lindauer

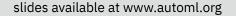
- 2007/2010
 B.Sc./M.Sc. in Computer Science from Potsdam University
- 2015
 Defended Ph. D. in Computer Science on Automated Algorithm Selection, Schedules and Configuration at Potsdam University
- 2014-2019

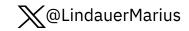
PostDoc in Frank Hutter's lab at the University of Freiburg

Since 2019

Prof. of (Automated) Machine Learning at Leibniz University Hannover

- Current research focus
 - AutoML, Explainability, Reinforcement Learning, ...
- Hobbies:
 - Go, Taekwondo, Computer Games





Efficient algorithm design via automated <u>algorithm selection</u> and configuration

<u>Alexander Tornede</u> & Marius Lindauer

Euro PhD School Data Science Meets Combinatorial Optimisation

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

Session's Story

- What is Algorithm Selection (AS)?
 - Motivation
 - Idea
 - Important Concepts
- Foundations of AS
 - Application Conditions
 - Instance Features
 - Loss Functions in AS
- Learning Selectors from Data
 - Desired Properties
 - Instantiations
- Latest Trends & Open Problems
 - Algorithm Features
 - Censored Data
 - Open Problems

What is Algorithm Selection?

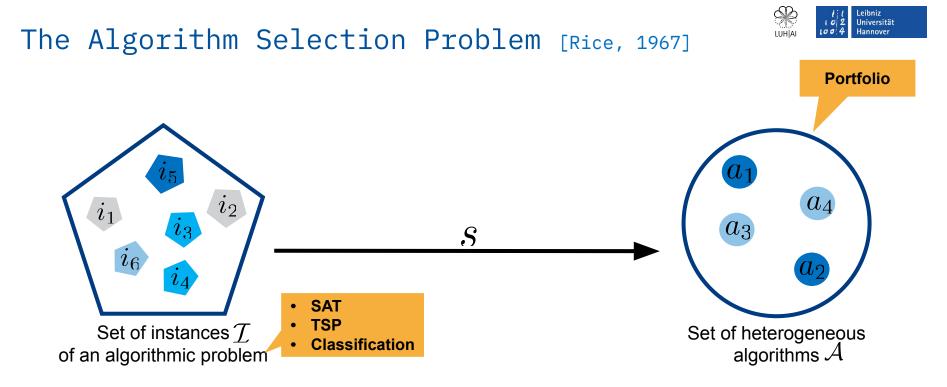
Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

Assume You Want to Sort An Array

- Which algorithm would you choose and why?
- Would you always choose that algorithm?
- Can you think of an array where some algorithm might be faster than another?
 - Sorted array? \rightarrow Insertion sort: O(n)

Source: Wikipedia

Name +	Best •	Average +	Worst +	Memory +	Stable +	Method +	Other notes
Quicksort	$n \log n$	$n \log n$	n^2	$\log n$	No	Partitioning	Quicksort is usually done in-place with O(log n) stack space. ^{[5][6]}
Merge sort	$n\log n$	$n\log n$	$n\log n$	n	Yes	Merging	Highly parallelizable (up to $O(\log n)$ using the Three Hungarians' Algorithm). ^[7]
In-place merge sort	-	-	$n\log^2 n$	1	Yes	Merging	Can be implemented as a stable sort based on stable in-place merging. ^[8]
Introsort	$n \log n$	$n \log n$	$n \log n$	$\log n$	No	Partitioning & Selection	Used in several STL implementations.
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection	
Insertion sort	n	n^2	n^2	1	Yes	Insertion	O(n + d), in the worst case over sequences that have d inversions.
Block sort	n	$n\log n$	$n\log n$	1	Yes	Insertion & Merging	Combine a block-based $O(n)$ in-place merge algorithm ^[9] with a bottom-up merge sort.
Timsort	п	$n\log n$	$n\log n$	n	Yes	Insertion & Merging	Makes n-1 comparisons when the data is already sorted or reverse sorted.
Selection sort	n^2	n^2	n^2	1	No	Selection	Stable with $O(n)$ extra space, when using linked lists, or when made as a variant of Insertion Sort instead of swapping the two items. ^[10]
Cubesort	n	$n\log n$	$n\log n$	n	Yes	Insertion	Makes n-1 comparisons when the data is already sorted or reverse sorted.
Shellsort	$n\log n$	$n^{4/3}$	$n^{3/2}$	1	No	Insertion	Small code size.
Bubble sort	n	n^2	n^2	1	Yes	Exchanging	Tiny code size.
Exchange sort	n^2	n^2	n^2	1	No	Exchanging	Tiny code size.
Tree sort	$n\log n$	$n \log n$	n log n (balanced)	n	Yes	Insertion	When using a self-balancing binary search tree.
Cycle sort	n^2	n^2	n^2	1	No	Selection	In-place with theoretically optimal number of writes.
Library sort	$n \log n$	$n \log n$	n^2	n	No	Insertion	Similar to a gapped insertion sort. It requires randomly permuting the input to warrant with-high-probability time bounds, which makes it not stable.
Patience sorting	n	$n\log n$	$n\log n$	n	No	Insertion & Selection	Finds all the longest increasing subsequences in $O(n \log n)$.
Smoothsort	n	$n\log n$	$n\log n$	1	No	Selection	An adaptive variant of heapsort based upon the Leonardo sequence rather than a traditional binary heap.
Strand sort	п	n^2	n^2	n	Yes	Selection	
Tournament sort	$n\log n$	$n \log n$	$n \log n$	n ^[11]	No	Selection	Variation of Heapsort.
Cocktail shaker sort	n	n^2	n^2	1	Yes	Exchanging	A variant of Bubblesort which deals well with small values at end of list
Comb sort	$n\log n$	n^2	n^2	1	No	Exchanging	Faster than bubble sort on average.
Gnome sort	n	n^2	n^2	1	Yes	Exchanging	Tiny code size.
Odd-even sort	п	n^2	n^2	1	Yes	Exchanging	Can be run on parallel processors easily.



Goal: For a given instance, choose algorithm which is optimal with respect to some loss function \mathbf{T}

$$\ell:\mathcal{I} imes\mathcal{A}
ightarrow\mathbb{R}$$

Solving Algorithm Selection

(Unknown) Oracle

$$s^*(i) = \arg\min_{a \in \mathcal{A}} \mathbb{E}[\ell(i, a)]$$

Naive Solution: Exhaustive enumeration

$$s(i) = \arg\min_{a \in \mathcal{A}} \frac{1}{N} \sum_{n=1}^{N} \ell(i, a)$$

Costly to evaluate!

Solving AS: Surrogate Loss Functions

Learn surrogate loss function based on training instances \mathcal{I}_D

Canonical algorithm selector

$$s(i) \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \widehat{\ell}(i,a)$$

Represented
by features

Static Selection: Single-Best Solver (SBS)

 Single best solver (SBS) always selects the algorithm best on average on the training data

$$\widehat{\ell}_{SBS}(i,a) = \frac{1}{|\mathcal{I}_D|} \sum_{i' \in \mathcal{I}_D} \ell(i',a)$$

- a : an algorithm
- i : an instance
- \mathcal{I}_D : training instances
 - : original loss function
 - : surrogate loss function

Questions?

Kahoot Quiz 1: kahoot.it

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

Foundations of AS

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

1. Multiple Algorithms Available

2. Performance Complementarity Among Algorithms

3. Availability of Instance Features

Instance Features

- Required to learn good surrogate loss functions from data
 - Generalization to unseen instances

Need to fulfill certain requirements / desiderata

slides available at www.automl.org

Instance Feature Properties

- 1. Correlation
 - Value of a feature should correlate with loss of an/multiple algorithm/s
- 2. Computation time
 - Fast to compute
- 3. Feature amount
 - Total amount should be as small as possible
- 4. Complementarity
 - Features should be complementary to each other in terms of their information
- 5. Domain independence
 - Feature should be ideally domain-independent

Types of Instance Features

Syntactic

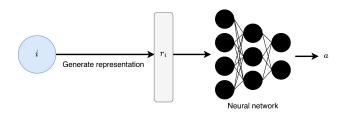
- Based on statistical properties of the instance
- Information extracted from structures of the instance
- Examples
 - number of decision variables
 - number of nodes of graph representation

Probing

- Extracted from the trajectory of a short run of an algorithm
- Examples
 - ELA features (blackbox optimization)
 - landmarkers (meta-learning)

Deep Learning Based

- Automatically learn
 complex features from
 an instance
- Examples
 - [Loreggia et al. 2016]
 - Sigurdson et al. 2017]
 - Sievers et al. 2019]



Requirements	Instance feature kind				
	Syntactic	Probing	Deep learning-based		
Correlation					
Computation time					
Feature amount					
Complementarity					
Domain independence					

Leibniz Universität

Hannover

slides available at www.automl.org

Time

21

Common AS Loss Functions

We will distinguish loss functions tailored towards

- Constraint satisfaction problems
 - Find any solution to the problem quickly

- Constraint **optimization** problems
 - Find an **as-good-as-possible** solution the problem **quickly**

Constraint Satisfaction Problems: Loss Functions (1)

- Time is of importance \rightarrow Can we just focus on algorithm runtime?
 - No! Time until solution is found is more important!

Algorithm runtimes

Selection time

Feature computation time

- What happens if the algorithm does not find a solution (in our lifetime)?
 - Return without a solution н.
 - Takes extremely long

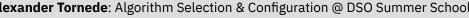
But even if it finds a solution... н.

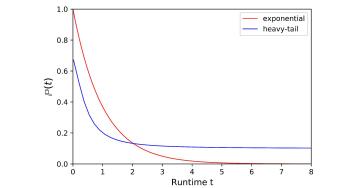
Time until solution is found

 a_1

 a_2

s





eibniz

Universität

Constraint Satisfaction Problems: Loss Functions (2)

- Goal
 - Account for instances which we could not solve under a certain cutoff
 - Account for selection and feature computation time

- Solution
 - Penalized Average Runtime

$$\ell_{prK}(i,a) = \begin{cases} \ell_{runtime}(i,a) & \text{if } \ell_{runtime}(i,a) \le C\\ K \cdot C & \text{else} \end{cases}$$
$$\mathcal{L}_{PARK}(I,s) = \frac{1}{|I|} \sum_{i \in I} \ell_{prK}(i,s(i))$$

a : an algorithm *i* : an instance

 \mathcal{I}_D : training instances

: original loss function : surrogate loss function

Problems of the ParK?

- 1. Choice of K
 - Hard to make
 - Arbitrary
 - Larger $K \rightarrow$ large penalty for timeouts
 - How does a concrete requirement of a relative number of timeouts relate to a concrete K?

- 2. Hides a much more complicated underlying multi-objective problem
 - Very rough solution to the problem, but still SOTA

 $\ell_{prK}(i,a) = \begin{cases} \ell_{runtime}(i,a) & \text{if } \ell_{runtime}(i,a) \le C\\ K \cdot C & \text{else} \end{cases}$

Constraint Optimization Problems: Loss Functions

Solution quality

- E.g. a (inverse) machine learning loss function in case of machine learning as an algorithmic problem
 - accuracy
 - F1 score
 - etc.

Questions?

Kahoot Quiz 2: kahoot.it

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

Learning Selectors From Data

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School

l slides available at www.automl.org

Learning a Selector / Surrogate Loss From Data

Surrogate Loss Function

$$\widehat{\ell}:\mathcal{I} imes\mathcal{A} o\mathbb{R}$$

Canonical algorithm selector

$$s(i) = \arg\min_{a \in \mathcal{A}} \widehat{\ell}(i, a)$$

- a: an algorithm
- i : an instance

Learn this!

- \mathcal{I}_D : training instances
- ℓ : original loss function
- : surrogate loss function

Should mimic the original loss? 2.

Cheap to evaluate

Weaker: We want it to be **order-preserving**

$$\forall i \in \mathcal{I}, a_1, a_2 \in \mathcal{A} : \ell(i, a_1) \le \ell(i, a_2) \Rightarrow \widehat{\ell}(i, a_1) \le \widehat{\ell}(i, a_2)$$

 $\forall i \in \mathcal{I}, a \in \mathcal{A} : \ell(i, a) \approx \widehat{\ell}(i, a)$

a: an algorithm

Selection time

- : an instance
- \mathcal{I}_D : training instances
 - : original loss function
- : surrogate loss function

Desired Properties of a Surrogate Loss

 a_1

 a_2

s

Time until solution is found

Algorithm runtimes Feature computation time

Order-Preserving Surrogate Losses

$$\forall i \in \mathcal{I}, a_1, a_2 \in \mathcal{A} : \ell(i, a_1) \le \ell(i, a_2) \Rightarrow \widehat{\ell}(i, a_1) \le \widehat{\ell}(i, a_2)$$

- Can we weaken that even more?

If so, do we want to do that?

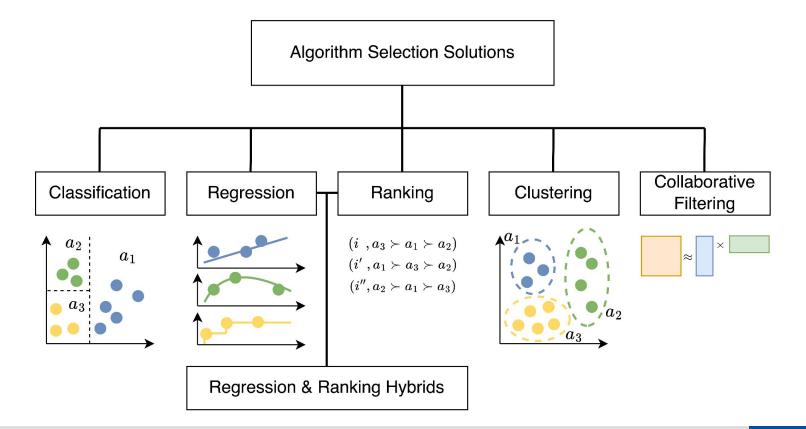
Desired Properties of Surrogate Losses

- 1. Cheap to evaluate
- 2. Order-preserving

 If we can fulfill these two properties on the complete instance space and for all algorithms, what does it entail for the selector?

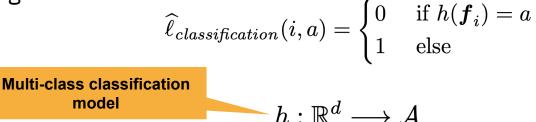
$$s(i) \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \widehat{\ell}(i, a)$$

Concrete Surrogate Loss Instantiations



Multi-Class Classification

Surrogate loss



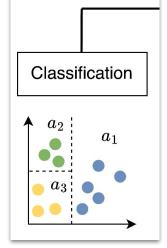
Training data

 $\mathcal{D}_{classification} = \{ (\boldsymbol{f}_i, a^*) | i \in \mathcal{I}_D \land \forall a \in \mathcal{A} : \ell(i, a^*) \le l(i, a) \}$

Examples: [Guerri et al. 2004, Gent et al. 2010, Xu et al. 2011]

Disadvantages? н.

Alexander Tornede: Algorithm Selection & Configuration @ DSO Summer School



SATzilla'11

SATzilla'11 [Xu et al. 2011]

- One-vs-one decomposition for multi-class classification
 - One binary classification model for each pair of algorithms

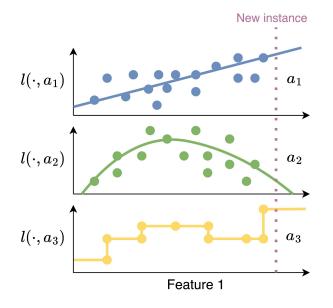
- Cost-sensitive classification
 - The more different two algorithms are in terms of their loss the higher the penalty for misclassification

Multi-Target Regression

 Multi-target regression problem where each algorithm's loss value is a regression target conditioned on the instance

- Often solved by decomposition into separate regression problems → one for each algorithm
 - Random forests are a common choice
 - Disadvantages?

 Examples: [<u>Nudelman et al. 2004</u>, <u>Xu et al.</u> 2008, <u>Haim et al. 2009</u>, <u>Hutter et al. 2006</u>]



Ranking

 Learn a model that does not concretely estimate the loss of each algorithm, but returns a ranking among these algorithms

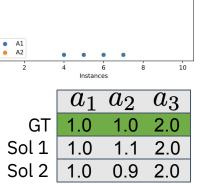
Select the highest ranked algorithm

Can be modeled as a label ranking problem [Vembu et al. 2010]

Disadvantages?

Desired Properties of Classification, Regression and Ranking?

- 1. Fast to compute
 - Holds for all
- 2. Order-preserving?
 - Classification:
 - No, at best top-1 preserving
 - Regression:
 - Yes, if solution is perfect.
 - Approximations can yield arbitrarily bad ranking performance
 - Actually much harder problem
 - Ranking:
 - Yes, but we might lose an idea of how close to algorithms are in terms of performance
 - Can yield arbitrarily bad regression performance
 - \rightarrow can be important for more sophisticated strategies



Questions?

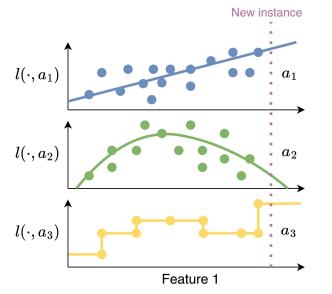
Kahoot Quiz 3: kahoot.it

Latest Trends & Open Problems

Disadvantages of Surrogate Decomposition

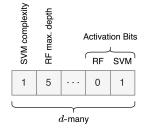
- Recall regression AS solution
 - Learn one regression model per algorithm
- Disadvantages?
 - Cannot exploit correlations between algorithms
 - Cannot handle unknown algorithms
 - Cannot account for algorithm behavior
- Solution?
 - Represent algorithms by features similar to instances!

→ Learn one joint model across the joint feature space!



Algorithm Features

- Should have similar properties as instance features
- Rather unstudied field so far
- Examples of works for algorithm features
 - <u>[Tornede et al. 2022]</u>: Use algorithm hyperparameters as features
 - <u>Pulatov et al. 2022</u>: Use source code features and control flow graph properties as features
 - <u>[Cenikj et al. 2023]</u>: Use time series features on the trajectory of the algorithm



Туре	Name	Name Explanation						
Code	Lines of code		2					
	Cyclomatic complexity	number of independent execution paths [McCabe, 1976]	2					
	Maxindent complexity	maximum level of indenta- tion [Tornhill, 2018]	2					
	Size of the sources		2					
	Number of files		1					
AST	Node count	1						
	Edge count	1						
	Degrees of the nodes	5						
	Transitivity	1						
	Clustering coefficient	4						
	Depth	5						
	Node type	based on Clang AST	6					
	Edge type transition	based on Clang AST	36					
	Operation type	7						
Dummy	ID	1 per algorithm						

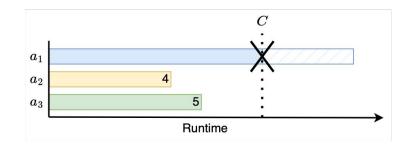
ble 2: Algorithm features considered in our study, grouped by type

Source: [Pulatov et al. 2022]

Censored Data

- Why are some datapoints missing?
 → Timeouts!
- What to do with these samples?
 - a. Drop the samples from the training data
 - b. Impute the samples with
 - Cutoff
 - Multiple of cutoff
 - Mean
 - Etc. ...

		a_1	a_2	a_3						a_{998}	a_{999}	a_{1000}
0.3, 2.7,	i_1		0.16									
1.3, 5.3,	i_2						0.91				0.34	
5.1, 6.7,					0.86			0.24				
1.0, 0.0,												
0.6, 1.9,	i_{699}			0.38					0.78			
0.25, 2.27,	i_{700}	0.01				0.67						



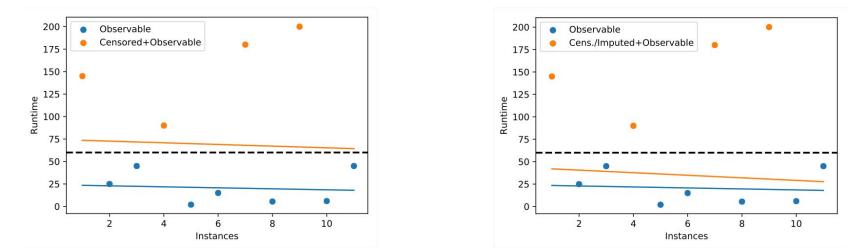
Dropping or Imputation?

Dropping

Systematic underestimation
 → Bad idea

Imputation with cutoff

- Systematic underestimation, but less severe than dropping
- Which imputation value to choose?



Survival Analysis (SA) to the Rescue

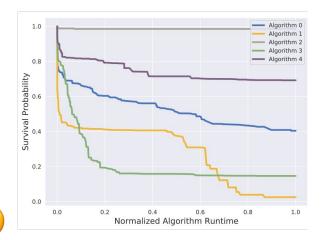
- Idea of Run2Survive[Tornede et al. 2020]
 - Model time until an algorithm stops as instance-dependent runtime / survival distribution
 - SA [Kleinbaum et al. 2012] can handle censored samples
- Learn a survival distribution for each algorithm

 $S_a(t,i) = \mathbb{P}(T_{a,i} \ge t|i)$

 Choose algorithm with minimum decision theoretic expected loss

$$\underset{a \in \mathcal{A}}{\operatorname{arg\,min}} \mathbb{E}[\mathcal{L}(T_{a,i})]$$

- Expected runtime with identity as loss function
- Do we always want the expected runtime?



Dangers of Expected Runtime

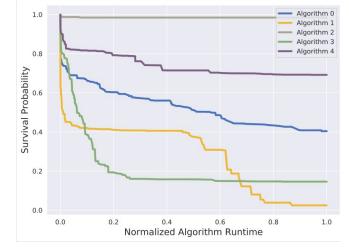
Recall PARK loss

$$\ell_{prK}(i,a) = \begin{cases} \ell_{runtime}(i,a) & \text{if } \ell_{runtime}(i,a) \leq C\\ K \cdot C & \text{else} \end{cases}$$

- Which algorithm would you choose in case of a large K?
- Algorithm 3 vs Algorithm 1
 - Alg. 3 has lower expected runtime, but larger risk of timeout

1.

- Alg. 1 has larger expected runtime, but lower risk of timeout
- Solution: Risk-averse algorithm selection [Tornede et al. 2020]



Some Open Problems

- Hybrid ranking and regression models
 - First work by [<u>Hanselle et al. 2020</u>, <u>Fehring et al. 2022</u>]
- Transfer learning across problems
 - First work by [<u>Deshpande et al. 2021</u>]
- Grey-Box Algorithm Selection
 - (Besides algorithm features) first work by
 [Mohan et al. 2022, Ruhkopf et al. 2023]

Caveat: Many of these concepts are also explored in related fields such as algorithm configuration.

Questions?

Kahoot Quiz 4: kahoot.it

AS Survey [Kotthoff 2016]

AS Survey [Kerschke et al. 2019]

• My dissertation :) [Tornede 2023]

KI Campus Course "Automated Machine Learning"

Find Us

@AutoML_org

@AIHannover LUH-AI

@luh-ai

Federal Ministry for Economic Affairs

and Energy

Funded by:

