

Deep Learning 2.0: Towards AI that Builds and Improves AI

Frank Hutter

University of Freiburg fh@cs.uni-freiburg.de

European Research Council

Towards AI that Builds and Improves AI

Image credit: DALLE-2

... to be more trustworthy

- performant
- fair
- calibrated
- energy-efficient
- robust
- ...
- aligned with human values

Deep Learning 2.0: Towards AI that Builds and Improves AI

Overview of Deep Learning 2.0

- Deep Dive: Meta-Learning a New ML Algorithm
- Outlook

Traditional ML practice before Deep Learning

end-to-end joint optimization

Data

UNI FREIBURG

From Deep Learning 1.0 to Deep Learning 2.0

UNI FREIBURG

Traditional ML practice before Deep Learning

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

From Deep Learning 1.0 to Deep Learning 2.0

UNI FREIBURG

Deep Learning 2.0

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

From Deep Learning 1.0 to Deep Learning 2.0

UNI FREIBURG

Deep Learning 2.0: Trustworthy AI by Design

 domain expert can specify objectives

UNI FREIBURG

- fairness
- robustness
- model calibration

- interpretability
- Iatency of predictions
- size(memory) of the model

UNI FREIBURG

• Paradigm-changing: democratizing Deep Learning

- DL 2.0 projects possible without a DL expert
- DL 2.0 directly optimizes for user's objectives

 \rightarrow Trustworthy AI by design

DL 2.0 will be even more pervasive than DL 1.0, with huge impact on the billion-dollar DL market UNI FREIBURG

- Paradigm-changing: democratizing Deep Learning
 - DL 2.0 projects possible without a DL expert
 - − DL 2.0 directly optimizes for user's objectives
 → Trustworthy AI by design

DL 2.0 will be even more pervasive than DL 1.0, with huge impact on the billion-dollar DL market

- Hyperparameter optimization (HPO)
- Neural architecture search (NAS)
- Multi-objective AutoML
- AutoML systems
- Meta-learning entire algorithms

• Hyperparameter optimization (HPO)

AlphaGo: tuning 10 hyperparameters improved win rate from 50% to 65% before playing Lee Sedol

Hyperparameter Group	Hyperparameters
Finetuning Strategies	Percentage of the Model to Freeze, Layer Decay, Linear Probing, Stochastic Norm, SP-Regularization, DELTA Regularization, BSS Regularization, Co-Tuning
Regularization Techniques	MixUp, MixUp Probability*, CutMix, Drop-Out, Label Smoothing, Gradient Clipping
Data Augmentation	Data Augmentation Type (Trivial Augment, Random Augment, Auto-Augment), Auto-Augment Policy*, Number of operations*, Magnitude*
Optimization	Optimizer type (SGD, SGD+Momentum, Adam, AdamW, Adamp), Beta-s*, Momentum*, Learning Rate, Warm-up Learning Rate, Weight Decay, Batch Size
Learning Rate Scheduling	Scheduler Type (Cosine, Step, Multi-Step, Plateau), Patience*, Decay Rate*, Decay Epochs*

Hyperparameters for fine-tuning foundation models

Too many choices [Pineda et al, 2023]

HPO as Blackbox Optimization

Speeding up HPO: Beyond Blackbox Optimization

• Multi-fidelity optimization

 Speedups by cheap proxies, reducing #epochs, resolution, #classes, #data points, width, depth

Meta-learning

UNI Freiburg

- Learning to transfer across tasks
- Learning to extrapolate learning curves [NeurIPS'23]
- Integrating human expert priors
 - Bridging the gap to manual search [ECML-PKDD'21, ICLR'22]
 - Combined with multi-fidelity optimization [NeurIPS'23]

Frank Hutter - DL 2.0: Towards AI that Builds and Improves AI

Important Parts of DL 2.0 / AutoML

• Hyperparameter optimization (HPO)

• Neural architecture search (NAS)

The choice of architecture matters – can we find automatically find better architectures?

[Image credit: Canziani et al., arXiv 2017]

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Neural Architecture Search (NAS)

- Find neural architecture A such that deep learning works best for given data
 - Measured by validation error of architecture A with trained weights $w^*(A)$

$$\min_{A \in \mathcal{A}} \mathcal{L}_{\text{val}}(w^*(A), A)$$

s.t. $w^*(A) \in \operatorname{argmin}_w \mathcal{L}_{\operatorname{train}}(w, A)$

Outer level: optimize the architecture

Inner level: optimize the weights

- Famously tackled by reinforcement learning [Zoph & Le, ICLR 2017]
 - 12.800 architectures trained fully
 - 800 GPUs for 2 weeks (about \$60.000 USD)

Making NAS Efficient – DARTS: Differentiable Architecture Search

- Relax the discrete NAS problem (a \rightarrow b)
 - One-shot model with continuous architecture weight α for each operator

- Mixed operator:
$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

• Solve the bi-level optimization problem (c)

 $\begin{aligned} \min_{\alpha} \mathcal{L}_{\text{val}}(w^*(\alpha), \alpha) \\ \text{s.t. } w^*(\alpha) \in \operatorname{argmin}_{w} \mathcal{L}_{\text{train}}(w, \alpha) \end{aligned}$

• In the end, discretize to obtain a single architecture (d)

[Visualization taken from Liu et al, 2019]

UNI FREIBURG

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

[Liu et al., ICLR 2019]

Main Research Trends in NAS

- Robustness of DARTS & successors
- Extensions of HPO techniques to NAS
 - Speedups: multi-fidelity, meta-learning, priors

Figure: Failure mode of DARTS only picking skip connections

- "Holy grail": discovering entirely novel architectures
 - E.g., hierarchical search spaces based on grammars [NeurIPS'23]
- Heavily used in industry: hardware-aware NAS, trading off various objectives
 - Accuracy
 - Memory
 - Test-time latency
 - Energy usage

Optimizing latency of transformers

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Important Parts of DL 2.0 / AutoML

- Hyperparameter optimization (HPO)
- Neural architecture search (NAS)
- Multi-objective AutoML

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Can DL 2.0 Help with Fairness? A Case Study in Face Recognition

- Facial recognition (FR) systems are known to exhibit bias
 - sociodemographic dimensions, like gender and race

98.7% 68.6% 100% 92.9%

UNI Freiburg

- Face recognition is used by law enforcement agencies for sensitive applications
 - Identifying suspects; tracking down missing persons; biometric security
- How can we improve this?
 - Pre-processing, training, and post-processing methods have failed to close the gap
 - Can Deep Learning 2.0 help?

Deep Learning 2.0 to find better & fairer models [NeurIPS'23 oral]

- Dataset: CelebA face recognition
- Protected attribute: Gender

UNI Freiburg

• Fairness metric: difference in quality of classification ("Rank disparity")

• Result: fairer and more accurate than traditional fairness mitigation algorithms

Important Parts of DL 2.0 / AutoML

- Hyperparameter optimization (HPO)
- Neural architecture search (NAS)
- Multi-objective AutoML
- AutoML systems: optimize the entire data science pipeline
 - E.g., Scikit-learn [Pedregosa et al, 2011]
 - 15 classifiers with a total of 59 hyperparameters
 - 13 feature preprocessors
 - 4 data preprocessors
 - In total:
 - 110 hyperparameters

alaasifiar		preprocessor	$\#\lambda$
classifier	$\#\lambda$	extreml rand trees prepr	5
AdaBoost (AB)	4	fast ICA	4
Bernoulli naïve Bayes	2	feature agglomeration	4
decision tree (DT)	4	kernel PCA	5
extreml. rand. trees	5	rand. kitchen sinks	2
Gaussian naïve Bayes	-	linear SVM prepr.	3
gradient boosting (GB)	6	no preprocessing	-
kNN	3	nystroem sampler	5
LDA	4	PCA	2
linear SVM	4	polynomial	3
kernel SVM	7	random trees embed.	4
multinomial naïve Bayes	2	select percentile	2
passivo aggrossivo	2	select rates	3
	ン つ	one-hot encoding	2
QDA	2 5	imputation	1
Tanuom forest (KF)	Э 10	balancing	1
Linear Class. (SGD)	10	rescaling	1

AutoML Systems

UNI Freiburg

- First full AutoML systems for tabular data:
 - Auto-WEKA [KDD 2013]
 KDD 2023 test of of time award
 - Auto-sklearn [NeurIPS 2015] and Auto-sklearn 2.0 [JMLR 2022]

- Auto-sklearn won both the 1st and 2nd AutoML challenges
 - Much better than base-level systems & human experts
 - 20k monthly downloads
- ♥Fork1.2k☆Star6.8k

- Auto-Gluon: fantastic engineering, and fully embracing ensembling [arXiv 2020]
- To be discussed later in the talk: TabPFN [ICLR 2023], CAAFE [NeurIPS 2023]

- AutoML systems
- Hyperparameter optimization (HPO)
- Neural architecture search (NAS)
- Multi-objective AutoML
- Meta-learning entire algorithms

def train(weight, gradient, momentum, lr): update = interp(gradient, momentum, β_1) update = sign(update) momentum = interp(gradient, momentum, β_2) weight_decay = weight * λ update = update + weight_decay update = update * lr return update, momentum

Learned Lion optimizer [Chen et al, 2023]

TabPFN: learned tabular classification algorithm

Learned matrix multiplication algorithm [Fawci et al, 2022]

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Deep Learning 2.0: Towards AI that Builds and Improves AI

- Overview of Deep Learning 2.0
- Deep Dive: Meta-Learning a New ML Algorithm
- Outlook

- Overview of Deep Learning 2.0
- Deep Dive: Meta-Learning a New ML Algorithm
 Premises and Preview of Results
 - PFNs: Transformers can approximate Bayesian Inference
 - TabPFN: PFNs with a prior over tabular datasets
- Outlook

Premises

UNI Freiburg

- Tabular data is the most common type of data
 - Yet, deep learning did not traditionally excel on it
 - SVMs, random forests, gradient-boosting, Auto-sklearn, ...
- Neural networks excel for large amounts of data
 - But they are slow to train
 - But they are prone to overfitting on small datasets
- We care about the long tail of small datasets
 - Especially in scientific data
 - Biology
 - Medicine
 - Climate research
 - .

company	division	sector	tryint
00nil_Combined_Company	00nil_Combined_Division	00nil_Combined_Sector	
apple	00nil_Combined_Division	00nil_Combined_Sector	
apple	hardware	00nil_Combined_Sector	
apple	hardware	business	
apple	hardware	consumer	
apple	software	00nil_Combined_Sector	
apple	software	business	
apple	software	consumer	
microsoft	00nil_Combined_Division	00nil_Combined_Sector	
microsoft	hardware	00nil_Combined_Sector	
microsoft	hardware	business	
microsoft	hardware	consumer	
microsoft	software	00nil_Combined_Sector	
microsoft	software	business	
microsoft	software	consumer	

All datasets sorted by dataset size

- TabPFN is a transformer pretrained to do tabular classification
- Framed as next-word prediction: $x_1, y_1, ..., x_n, y_n, x_{n+1}$, ?

• To be more precise:

$$\{(x_1, y_1), ..., (x_n, y_n)\}, x_{n+1} \longrightarrow \text{TabPFN} \longrightarrow \hat{y}_{n+1}$$

• To be even more precise:

$$\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}, \mathbf{x}_{n+1} \longrightarrow \text{TabPFN} \longrightarrow p(\mathbf{y}_{n+1} \mid \mathbf{x}_{n+1}, \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\})$$

- TabPFN is a transformer with weights $\boldsymbol{\theta}$
 - A single forward pass directly approximates $p(y_{n+1} | x_{n+1}, \{(x_1, y_1), ..., (x_n, y_n)\})$
- We optimize $\boldsymbol{\theta}$ to minimize average cross entropy loss across datasets
 - Across which datasets?
 - Millions of synthetically generated ones: $\{(x_1, y_1), ..., (x_{n+1}, y_{n+1})\}$
 - How do we train it?
 - Very standard transformer architecture (just drop the positional encoding)
 - Standard supervised learning with SGD

 $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}, \mathbf{x}_{n+1} \longrightarrow \text{TabPFN}_{\theta} \longrightarrow p(\mathbf{y}_{n+1} \mid \mathbf{x}_{n+1}, \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\})$

UNI Freiburg

- TabPFN works astonishingly well
 - A single forward pass \rightarrow **10.000x faster** than Auto-sklearn
 - But nevertheless SOTA performance
- A very different approach to algorithm design
 - We do not code an algorithm but merely
 define the type of data the algorithm should work well for
 - The algorithm is fully learned
 - It lives in the weights of a transformer
- Received a lot of attention
 - → Best paper award at NeurIPS 2022 workshop on tabular representation learning
 - \rightarrow **1M views** of the **tweet** introducing the method

- Overview of Deep Learning 2.0
- Deep Dive: Meta-Learning a New ML Algorithm
 - Premises and Preview of Results
 - PFNs: Transformers can approximate Bayesian Inference
 - TabPFN: PFNs with a prior over tabular datasets
- Outlook

PFN approximates Bayesian predictions

Prior over functions parameterized by latents t

Posterior
$$p(t|D) = \frac{p(D|t)p(t)}{p(D)}$$

Intractable to compute exactly!

Posterior predictive distribution $p(y|x, D) = \int p(y|x, t)p(t|D)dt$

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Illustration of Prior-Fitted Networks (PFNs)

PFNs can predict the true posterior arbitrarily closely

UNI FREIBURG

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

[ICLR 2022]

PFNs enable Bayesian deep learning in a forward pass [ICLR 2022]

• Prior: weights of a given neural net

UNI Freiburg

- Posterior predictive: Bayesian neural net
 - 10000x speedups over MCMC etc

- Prior: different neural architectures & their weights
- Posterior predictive: "Bayesian NAS"
 - Not even possible with MCMC etc

- Overview of Deep Learning 2.0
- Deep Dive: Meta-Learning a New ML Algorithm
 - Premises and Preview of Results
 - PFNs: Transformers can approximate Bayesian Inference
 - TabPFN: PFNs with a prior over tabular datasets
- Outlook

Sample & initialize a causal graph

UNI FREIBURG

TabPFN prior: simplicity principle

Prior likelihood

Graph Complexity

The generated datasets look similar to real datasets

UNI FREIBURG

Parkinsons dataset

Wine dataset

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Relation to Bayesian supervised learning

Prior over functions parameterized by latents t

• Structural causal model: graph structure, weights, activation functions, etc

Posterior predictive distri

?

Feature

Posterior
$$p(t|D) = \frac{p(D|t)p(t)}{p(D)}$$

ibution
$$p(y|x,D) = \int p(y|x,t)p(t|D)dt$$

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI

Quantitative result (87 numerical datasets without missing values)

- Better performance in 1s than than any other ML / AutoML method in 1h
 - Disclaimer: these are average results; TabPFN is not the best on every single dataset

Current limitations

UNI FREIBURG

- Size: up to 1000 data points, 100 features, 10 classes
- Not (yet) designed for: categorical features, missing values, uninformative features
- High inference time

TabPFN summary

- TabPFN computes posterior Bayesian inference for the given prior
 - In our prior: elements of causality & simplicity
- SOTA performance on small tabular datasets

- Potentially disruptive to ML algorithm development
 - TabPFN is fully learned
 - Instead of manual algorithm development:
 Just state the type of data to fit well on and hit "train"

Deep Learning 2.0: Towards AI that Builds and Improves AI

- Overview of Deep Learning 2.0
- Deep Dive: Meta-Learning a New ML Algorithm
- 🔷 Outlook

TabPFN Follow-ups

• Fix remaining limitations

UNI Freiburg

- Goal: create new default algorithm for tabular data, better & faster than XGBoost
- Approach for fixing the prediction latency issue: learning to distill
 - Use a hypernetwork (a "hen") that generates the weights of a simple MLP (an "egg")
 - Training the hypernetwork (hen) is like usual TabPFN training
 - Loss function for a given meta-dataset D: how good are the y_{test} predictions by the egg laid for D and x_{test}
 - Given a new actual dataset D':
 - Fit: Use the hen to lay an egg for D'
 - Predict: Use the egg to make very fast predictions for new test samples
- Many open research questions
 - Understanding how the learned TabPFN algorithm works
 - This might also lead to general insights about in-context learning
 - Also approximating posterior inference over the model parameters
 - E.g., answer questions like "What's the probability that X causes Y?"

- Foundation models for HPO and NAS
 - Optformer [Chen et al, 2022]
- Large language models for semi-automated data science
 - CAAFE: use GPT-4 to engineer new features based on problem context [NeurIPS'23]

AutoML for Foundation Models

- Optimize choices for the training process (budget: < 2 full trainings)
 - Transformer tuning by gradient-based NAS with weight entanglement
 - Multi-objective gradient-based NAS
 - Exploiting scaling laws
 - Exploiting subsidiary objective functions (training stability, etc)
- AutoML for fine-tuning foundation models
 - Fine-tuning is cheap (especially parameter-efficient fine-tuning, like LoRa)
 - Select which model to fine-tune & how [ICML'22; under review]
 - We can thus easily afford multi-objective AutoML
 - Objectives: robustness, truthfulness, lawfulness, alignment, etc

Call to arms: Trustworthy AI is key

- Al is currently progressing at an incredible pace
 - AI systems will govern an ever-increasing part of our lifes
- We need to ensure that we can trust these systems!
- If you can, please work on trustworthy AI!
 - Robustness
 - Interpretability
 - Lawfulness
 - Fairness
 - Privacy
 - Alignment with human values

Take-aways

UNI FREIBURG

Deep Learning 2.0: expert-guided Auto-DL for the objectives at hand

1. Trustworthy AI by design

- DL 2.0 directly optimizes for user's objectives

2. Breakthrough results

- DL 2.0 is now SOTA on tabular data

3. It doesn't have to be expensive

DL 2.0 includes many speedup methods

all our code is open-source: github.com/automl

get involved: AutoML conference series automl.cc

Thank you for your attention!

BOSCH

UNI FREIBURG

European Research Council

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

My fantastic team

We're hiring!

Frank Hutter – DL 2.0: Towards AI that Builds and Improves AI