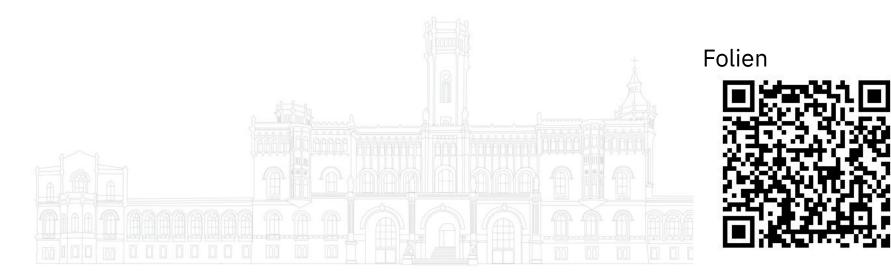


AutoML: From Full Automation to A Human-Centric Approach Prof. Marius Lindauer



Rise of Literacy

Photo by Anna Hunko on Unsplash

- Only priests were able to read and write
- People believed that they don't need to read and write
- They went to the holy buildings

- Today, everyone can read and write
- No one doubts the benefits of it
- ⇒ Democratization of literacy

Rise of AI Literacy?

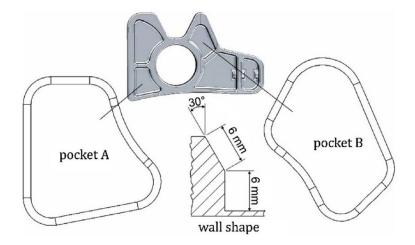
Photo by Max Duzij on Unsplash

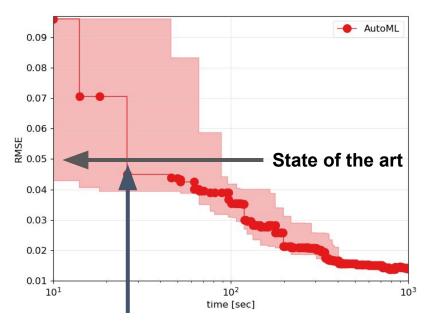
- Only highly educated people can program new Al applications
- Power lies only with the large IT companies

- In an age of limited resources, the need for efficient use gets more important
- AutoML contributes to Al literacy!

[See also my TEDx Talk]

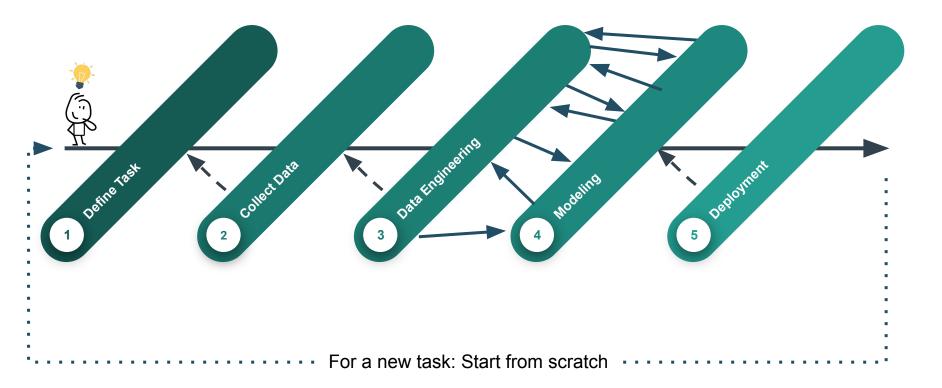
Shape Error Prediction in Milling Process [Denkena et al. SSRN'20]



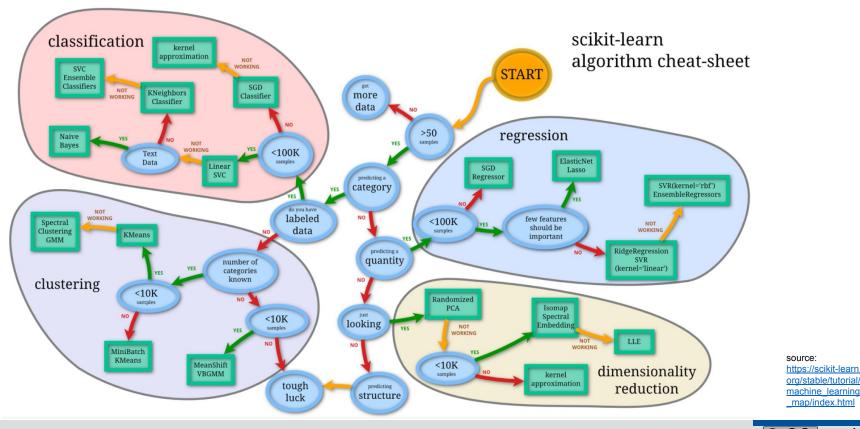


Better than state of the art in less than 30sec!

Why does ML development take a lot of time?



Design-Decisions?



ESSAI Brofn Marius Lindauer

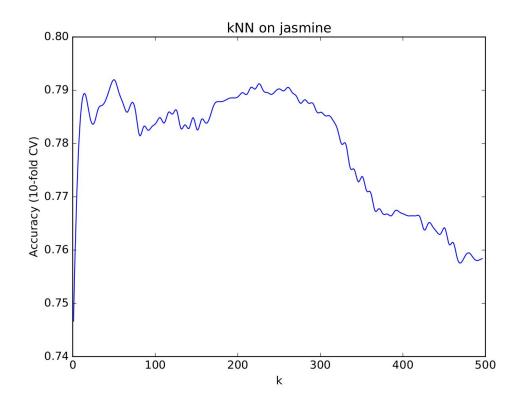
AutoML: Accelerating Research on and Development of AI Applications

CC () () BY SA 6



Toy Example: kNN

- k-nearest neighbors (kNN) is one of the simplest ML algorithms
- Size of neighbourhood (k)
 is very important for its
 performance
- The performance function depending on k is quite complex (not at all convex)

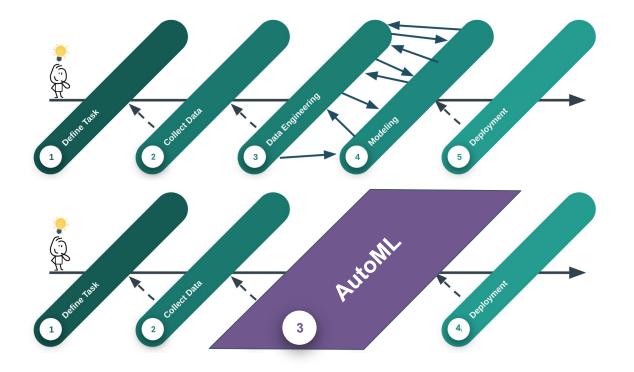


From ML Alchemy to Science

"You can teach an old dog new tricks" [Ruffinelli et al. 2020]

→ Hyperparameter optimization might not be the only required solution, but without it, it will also be hard.

ML vs AutoML



Topics of AutoML

- **model selection** (e.g., Neural Architecture Search, ensembling)
- **configuration/tuning** (e.g., hyperparameter optimization via evolutionary algorithms, Bayesian optimization)
- **AutoML methodologies** (e.g., reinforcement learning, meta-learning, in-context learning, warmstarting, portfolios, multi-objective optimization, constrained optimization)
- **pipeline automation** (e.g., automated data wrangling, feature engineering, pipeline synthesis, and configuration)
- **automated procedures for diverse data** (e.g., tabular, relational, multimodal, etc.)
- **ensuring quality of results in AutoML** (e.g., fairness, interpretability, trustworthiness, sustainability, robustness, reproducibility)
- supporting **analysis and insight** from automated systems



Advantages

AutoML enables

More efficient research and development of ML applications

 \rightarrow AutoML has been shown to outperform humans on subproblems

More **systematic** research and development of ML applications

 \rightarrow no (human) bias or unsystematic evaluation

→ since it is systematic!

Broader use of ML methods

- → less required ML expert knowledge
- \rightarrow not only limited to computer scientists

Challenges

But, it is not that easy, because

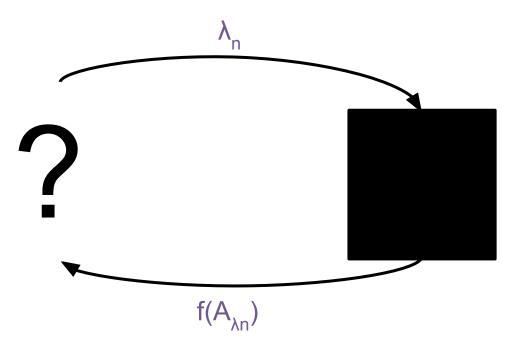
- Each dataset potentially requires **different optimal ML-designs**
 - \rightarrow Design decisions have to be made for each dataset again
- Training of a single ML model can be quite expensive → We can not try many configurations
- ? Mathematical relation between design and performance is (often) unknown
 - \rightarrow Gradient-based optimization not easily possible

🚼 👔 Optimization in **highly complex spaces**

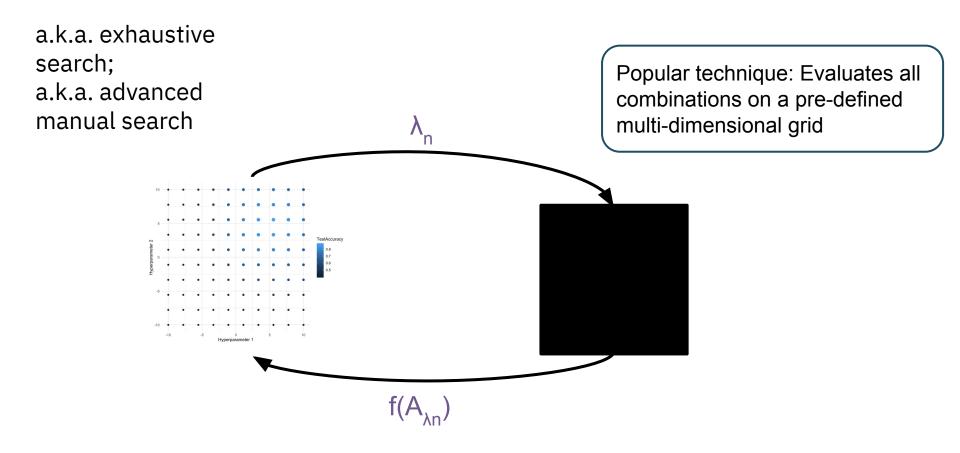
 \rightarrow including categorical, continuous and conditional dependencies

Some Basics on Hyperparamter Optimization

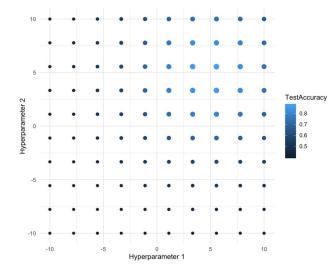
Black-Box Optimization Problem



Option 1: Grid Search



Option 1: Grid Search II



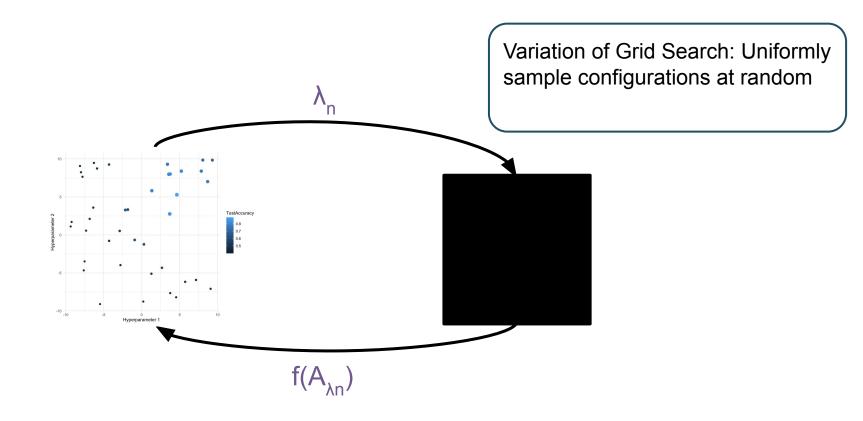
Advantages

- Very easy to implement
- Very easy to parallelize
- Can handle all types of hyperparameters

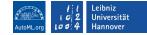
Disadvantages

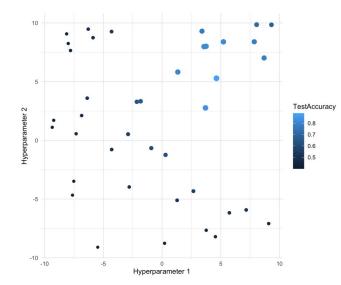
- Scales badly with #dimensions
- Inefficient: Searches irrelevant areas
- Requires to manual define discretization
- All grid points need to be evaluated

Option 2: Random Search



Option 2: Random Search II





Advantages

- Very easy to implement
- Very easy to parallelize
- Can handle all types of hyperparameters
- No discretization required
- Anytime algorithm: Can be stopped and continued based on the available budget and performance goal.

Disadvantages

- Scales badly with #dimensions
- Inefficient: Searches irrelevant areas

Grid Search vs. Random Search

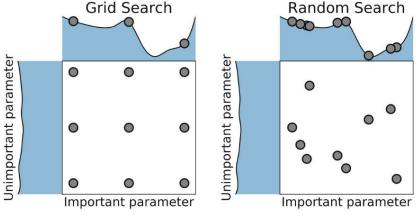
With a **budget** of T iterations:

Grid Search evaluates only $T^{\frac{1}{d}}$ unique values per dimension

Random Search evaluates (most likely)

T different values per dimension

→ Grid search can be disadvantageous if some hyperparameters have little of no impact on the performance [Bergstra et al. 2012]



Model-based Optimization

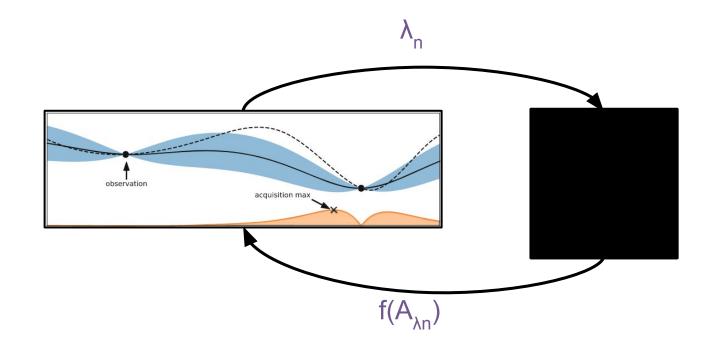
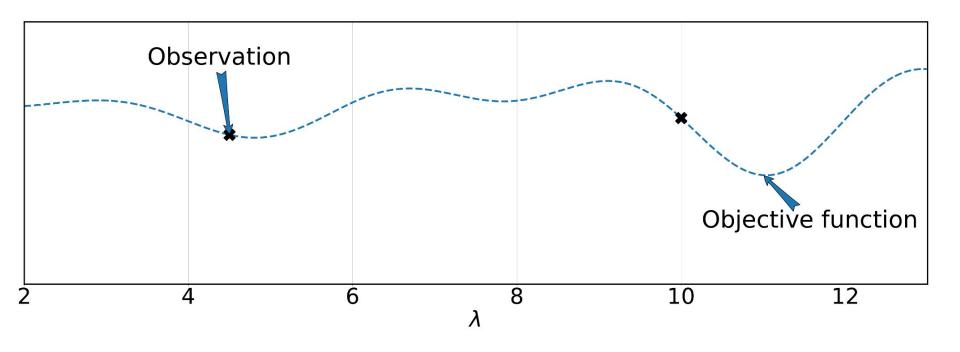
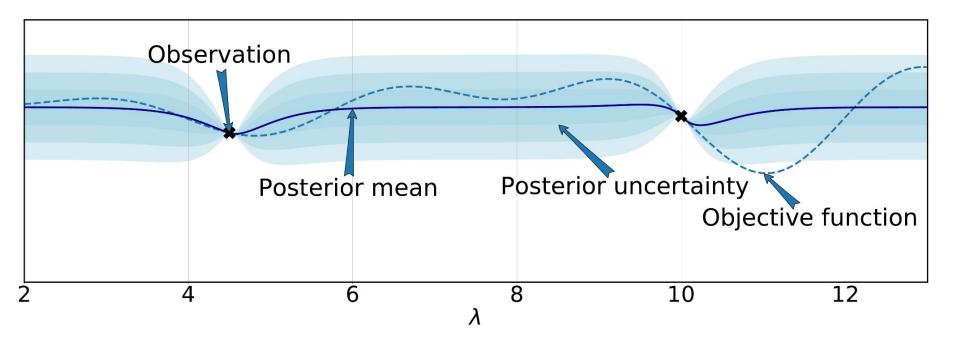
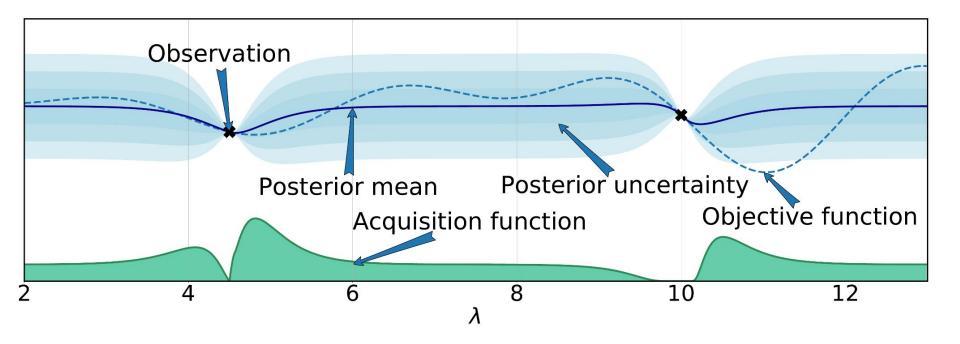
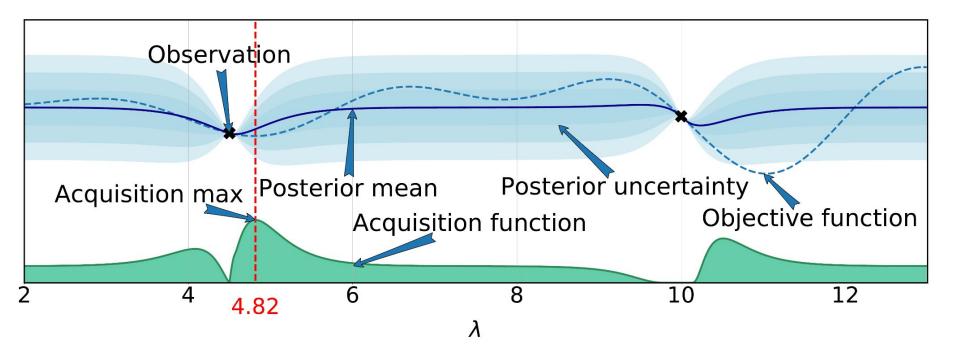


Photo by <u>Wilhelm Gunkel</u> on <u>Unsplash</u> Image by Feurer, Hutter; Hypernaramete In: Automated Machine Learning









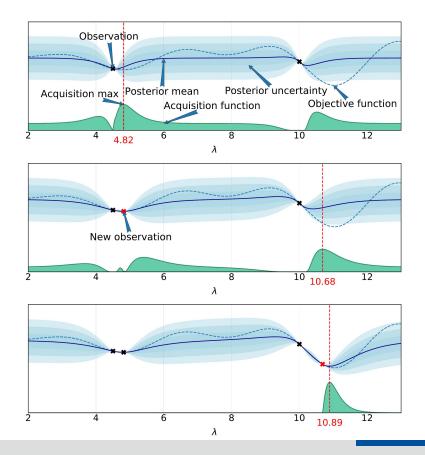
General approach

- Fit a probabilistic model to the collected function samples (λ, c(λ))
- Use the model to guide optimization, trading off exploration vs exploitation

Popular approach in the statistics literature since Mockus et al. [1978]

- Efficient in #function evaluations
- Works when objective is nonconvex, noisy, has unknown derivatives, etc.
- Recent convergence results

[Srinivas et al. 2009; Bull et al. 2011; de Freitas et al. 2012; Kawaguchi et al. 2015]



BO loop

Require: Search space Λ , cost function c acquisition function u predictive model \hat{c} , maximal number of function evaluations T

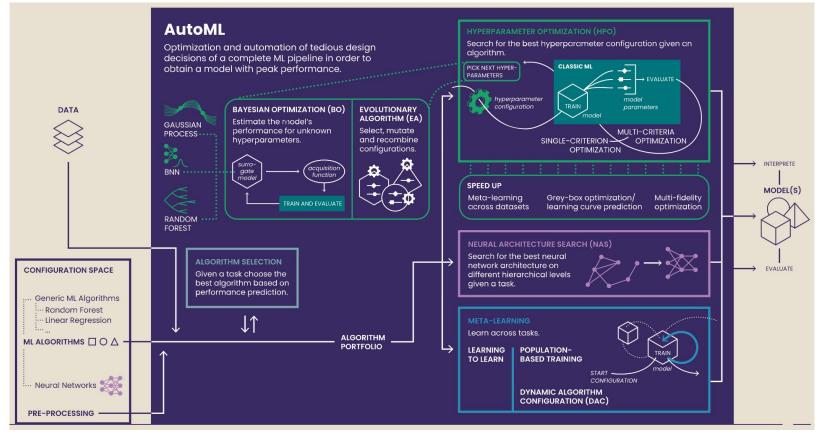
Result : Best configuration $\hat{\lambda}$ (according to \mathcal{D} or \hat{c})

- 1 Initialize data $\mathcal{D}^{(0)}$ with initial observations
- 2 for t=1 to T do

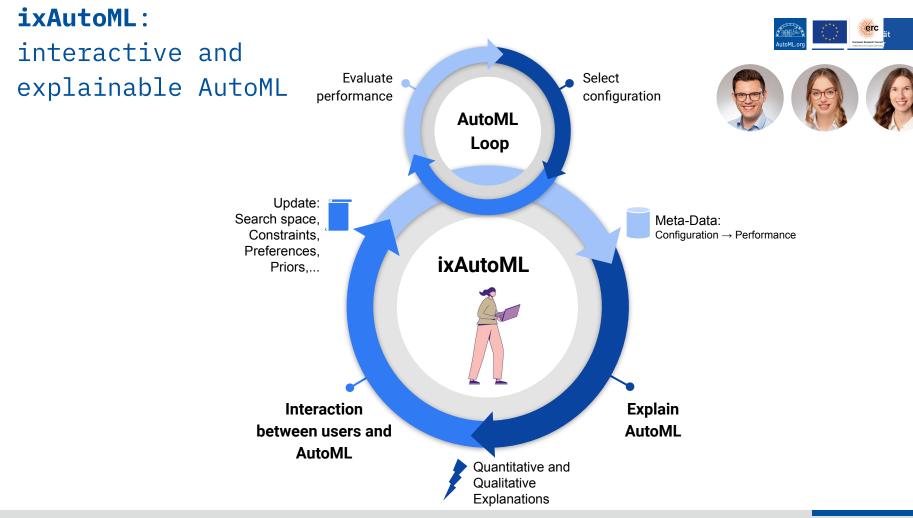
3 | Fit predictive model
$$\hat{c}^{(t)}$$
 on $\mathcal{D}^{(t-1)}$

- 4 Select next query point: $\lambda^{(t)} \in \arg \max_{\lambda \in \Lambda} u(\lambda; \mathcal{D}^{(t-1)}, \hat{c}^{(t)})$ 5 Query $c(\lambda^{(t)})$
- 6 Update data: $\mathcal{D}^{(t)} \leftarrow \mathcal{D}^{(t-1)} \cup \{\langle \boldsymbol{\lambda}^{(t)}, c(\boldsymbol{\lambda}^{(t)}) \rangle\}$

Is there more to AutoML?



Human-Centered AutoML



Explaining I: Partial Dependence Plots

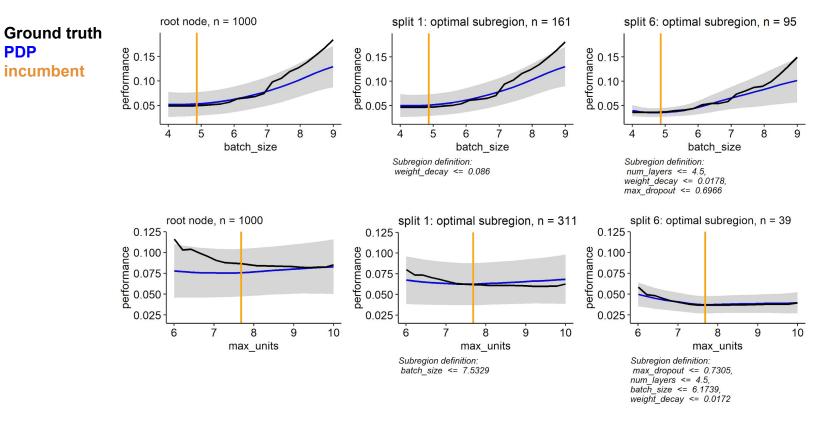
Explaining Hyperparameter Effects via PDPs [Moosbauer et al. NeurIPS'22]

Leibniz

10

Universität

Hannover



Partial Dependence Plots

[Moosbauer et al. NeurIPS'22]

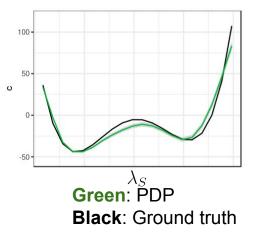
For, a subset S of the hyperparameters, the partial dependence function is:

$$c_{S}(\lambda_{S}) := \mathbb{E}_{\lambda_{C}} \left[c(\lambda) \right] = \int_{\Lambda_{C}} c(\lambda_{S}, \lambda_{C}) d\mathbb{P}(\lambda_{C})$$

and can be approximated by Monte-Carlo integration on a surrogate model:

$$\hat{c}_S(\lambda_S) = \frac{1}{n} \sum_{i=1}^n \hat{m}\left(\lambda_S, \lambda_C^{(i)}\right)$$

where $\left(\lambda_C^{(i)}\right)_{i=1} \sim \mathbb{P}(\lambda_C)$ and λ_S for a set of grid points.



 \rightarrow Average of ICE curves.

AutoML.org

Partial Dependence Plots with Uncertainties

[Moosbauer et al. NeurIPS'22]

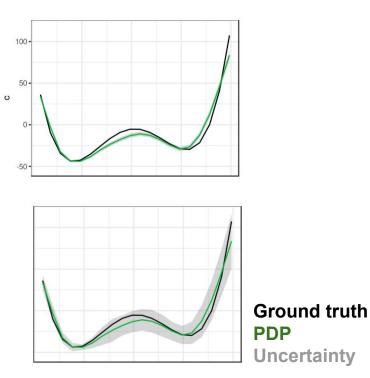
$$\hat{s}_{S}^{2}(\lambda_{S}) = \mathbb{V}_{\hat{c}} \left[\hat{c}_{S} \left(\lambda_{S} \right) \right]$$
$$= \mathbb{V}_{\hat{c}} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{c} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) \right]$$
$$= \frac{1}{n^{2}} \mathbf{1}^{\top} \hat{K} \left(\lambda_{S} \right) \mathbf{1}.$$

 \rightarrow requires a kernel correctly specifying the covariance structure (e.g., GPs).

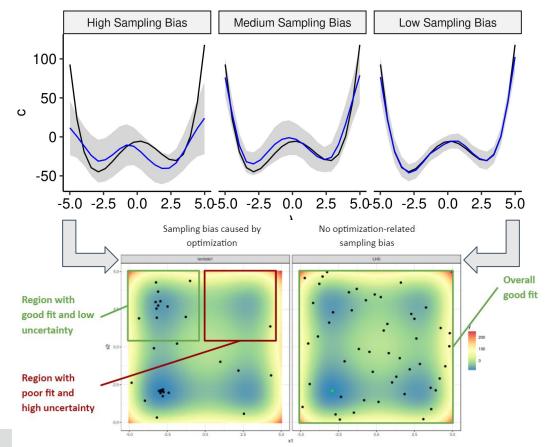
Approximation:

$$\hat{s}_{S}^{2}(\lambda_{S}) \approx \frac{1}{n} \sum_{i=1}^{n} \hat{K}(\lambda_{S})_{i,i}$$

 \rightarrow Model-agnostic (local) approximation



Impact of Sampling Bias in Explaining AutoML [Moosbauer et al. NeurIPS'22]



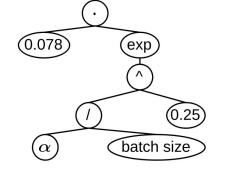
Explaining II: Symbolic Regression

Symbolic Explanations for AutoML [Segel et al. AutoML'23]

- Hyperparameter optimization (HPO) methods can find well-performing configurations efficiently
- Their lack of transparency can lead to missing trust of the users [Hasebrock et al. 2023]

Symbolic Explanations to the Rescue!

$$egin{aligned} &s(lpha, ext{batch size}))\ &= 0.078\cdot \exp\left((lpha/ ext{batch size})^{rac{1}{4}}
ight) \end{aligned}$$



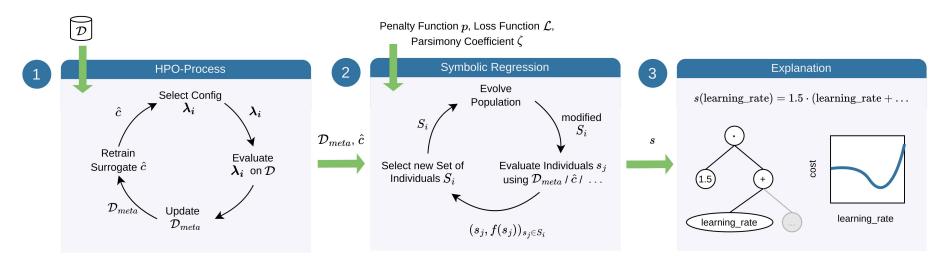
Leibniz Universität

Symbolic Explanations for AutoML [Segel et al. AutoML'23]

AutoML.org

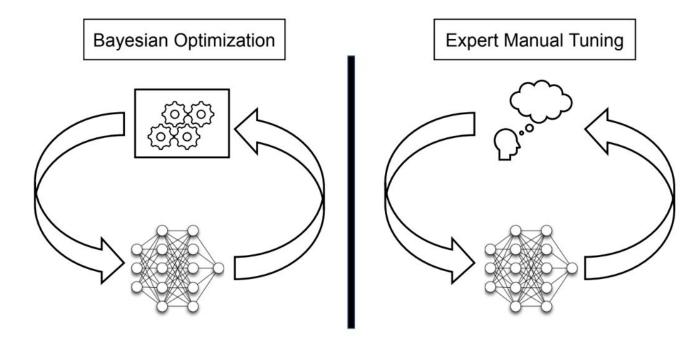
How to get more insights into hyperparameter effects?

 Employ symbolic regression to learn an interpretable formula that captures the relationship between hyperparameter configurations and model performance

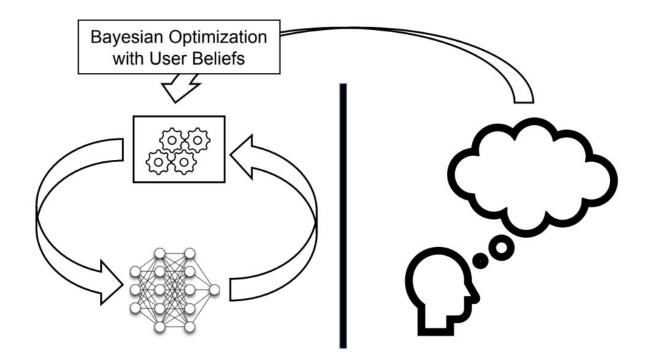


Interaction I: Expert-Priors

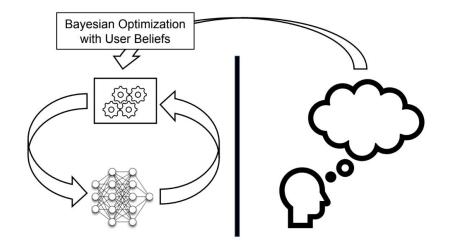
Bayesian Optimization vs Manual Tuning for HPO

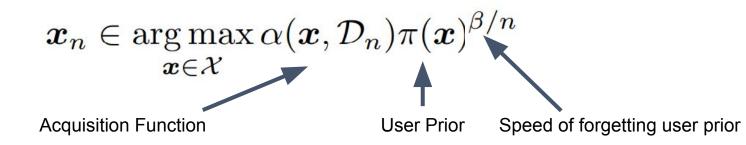


Bayesian Optimization with Expert Knowledge

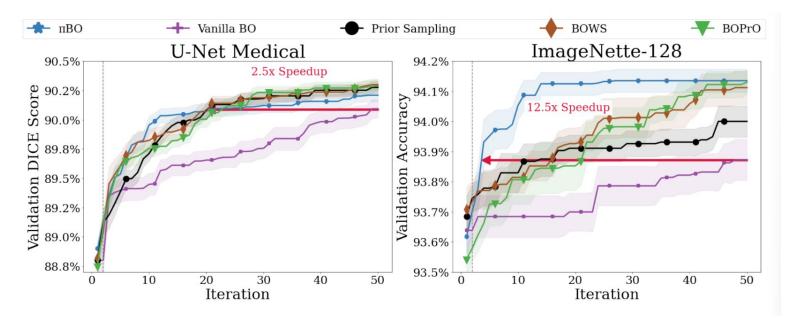


piBO [Hvarfner et al. ICLR'22]





piBO [Hvarfner et al. ICLR'22]



- → Uses expert knowledge to speed up Bayesian Optimization
- → Robust also against wrong believes
- → Substantially speeds up AutoML
- → Follow up with PriorBand [Mallik et al. NeurIPS'23]

Interaction II: Preferences for Multi-Objective AutoML

Multi-Objective AutoML

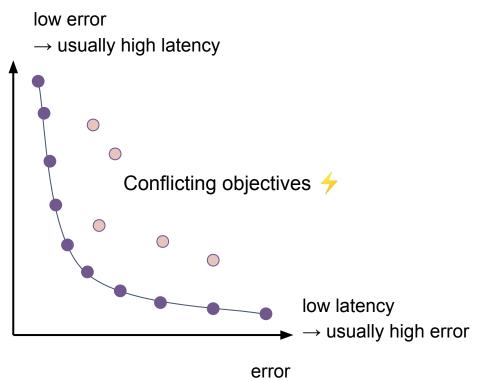
latency

In practice, we often care about more than a single objective, e.g.

- error,
- inference time,
- unfairness,
- energy consumption,
- model complexity,
- and many more

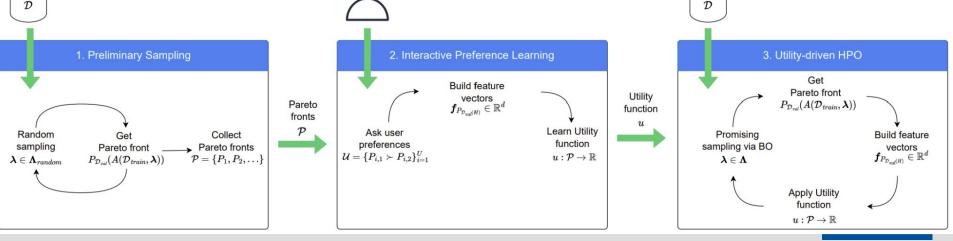
Goal: Find a Neural Network with high accuracy and low latency

Goal: Find the Pareto Set of Neural Networks that balance accuracy and latency.



Interactive HPO in Multi-Objective Problems via Preference Learning [Giovanelli et al. AAAI'24]

- Multi-objective (Auto)ML gets more and more important
 - e.g., hardware-aware NAS, fairness-aware AutoML or energy-efficient AutoML
- Practical challenge: Different multi-objective indicators lead to different approximated Pareto fronts and users cannot always mathematically describe their preferences → interactively learn Pareto front preferences



Evaluation of Preference-Learned Indicators [Giovanelli et al. AAAI'24]

- Benchmark:
 - LCBench
 - Accuracy vs. Energy-Consumption
- Let's assume : User randomly chose a multi-objective (MO) indicator, but was actually hoping for the behavior of another MO indicator
- ⇒ learned preferences are better than randomly choosing a MO indicator

PB/IB	$HV\uparrow$	$SP\downarrow$	$MS\uparrow$	$R2\downarrow$
$HV\uparrow$	$\begin{array}{ccc} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} \textbf{0.77} \\ (\pm \textbf{0.17}) \end{array}$	$\begin{array}{c c} \textbf{0.76} \\ (\pm \textbf{0.17}) \end{array} \setminus \begin{array}{c} 0.52 \\ (\pm 0.24) \end{array}$	0.76 (±0.17) \ 0.52 (±0.21)	$ \begin{array}{c c} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} \textbf{0.77} \\ \textbf{(\pm 0.16)} \end{array} $
$SP\downarrow$	0.01 (±0.03 (±0.02) 0.03	$\begin{array}{c c} 0.01 \\ (\pm 0.01) \end{array} \setminus \begin{array}{c} 0.01 \\ (\pm 0.0) \end{array}$	$\begin{array}{c c} \textbf{0.01} & 0.04 \\ (\pm \textbf{0.01}) & (\pm 0.03) \end{array}$	0.01 (±0.04) (±0.02) 0.04
$MS\uparrow$	0.61 (±0.09) (±0.08) (±0.08)	0.61 \ 0.19 (±0.09) \ (±0.12)	$\begin{array}{c c} 0.61 \\ (\pm 0.09) \end{array} \setminus \begin{array}{c} \textbf{0.65} \\ (\pm \textbf{0.06}) \end{array}$	0.61 (±0.09) \ 0.23 (±0.11)
$R2\downarrow$	$\begin{array}{ccc} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} \textbf{0.22} \\ (\pm \textbf{0.16}) \end{array}$	$\begin{array}{c} \textbf{0.23} \\ (\pm \textbf{0.16}) \end{array} \setminus \begin{array}{c} 0.47 \\ (\pm 0.23) \end{array}$	$\begin{array}{c} \textbf{0.23} \\ (\pm \textbf{0.16}) \end{array} \setminus \begin{array}{c} 0.45 \\ (\pm 0.21) \end{array}$	$\begin{array}{c c} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} \textbf{0.21} \\ (\pm \textbf{0.16}) \end{array}$

AutoML in Constrained Applications

AutoML in Heavily Constrained Applications [Neutatz et al. VLDBJ'23]

Leibniz

Default AutoML Configuration

Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 66/33 yes yes no
ML Hyperparameter space:	Vee
SVM:	Yes
SVM_tol:	Yes
SVM_C:	Yes
Extra Trees:	Yes
KNN:	Yes
Multilayer Perceptron:	Yes
Any Feature Preprocessor:	Yes
302 hyperparameters	Yes

Dynamic AutoML Configuration

Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 46/54 no yes yes
ML Hyperparameter space:	
SVM:	Yes
SVM_tol:	Yes
SVM_C:	No
Extra Trees:	Yes
KNN:	No
Multilayer Perceptron:	No
Any Feature Preprocessor:	No
302 hyperparameters	Yes/No

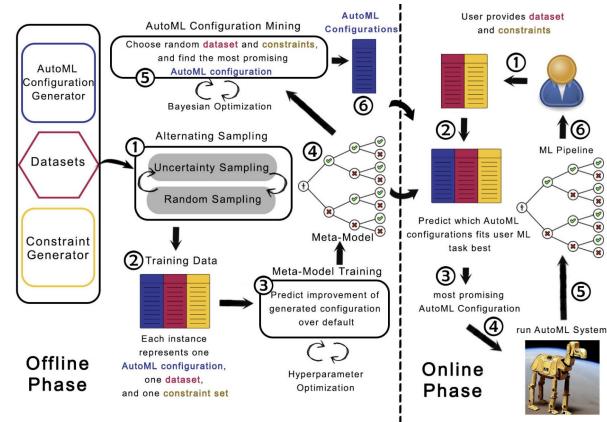
ML Pipeline

For SVM, the model parameter weights w: $\left[\frac{1}{n}\sum_{i=1}^{n} \max\left(0, 1 - y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} - \mathbf{w}^{T}\mathbf{x}_{i})\right]\right]$	2
ML Hyperparameters:	
SVM:	Yes
SVM_tol:	1e-5
SVM_C:	1.0 (default)
Extra Trees:	No
KNN:	No
Multilayer Perceptron:	No
Any Feature Preprocessor:	No
302 hyperparameters	

Adapt AutoML parameters to ML task and deactivate undesired ML hyperparameters

Searches for the optimal ML pipeline in the defined search space. A pipeline is defined by the selected ML hyperparameters.

AutoML in Heavily Constrained Applications [Neutatz et al. VLDBJ'23]

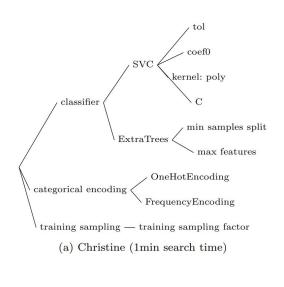


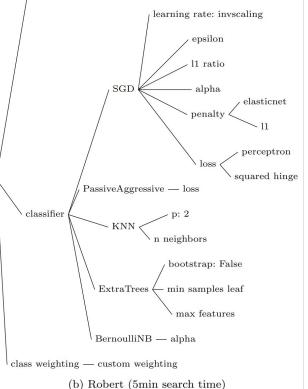
Possible application constraints:

- AutoML budget
- Inference time
- Memory consumption
- Energy consumption
- Fairness thresholds

...

Can it learn to select different configuration spaces? [Neutatz et al. 2023]





scaler — StandardScaler

Take-Aways for Meta-Learning AutoML Conf.

- Assumption: If we invest more time into the development of AutoML packages (incl. meta-learning), we save a lot of compute resources for using it
- Positive take-away:
 - Yes, we can meta-learn how to configure AutoML systems and achieve new state-of-the-art performance
- Negative take-away:

We cannot easily do it for large AutoML budgets (beyond 10min) without enormous compute resources

• **Future challenge**: How to configure AutoML on expensive tasks;

"Expensive" can mean:

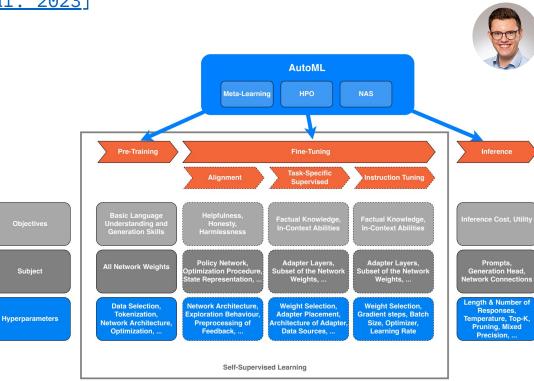
- very expensive ML models (e.g., LLMs)
- very complex configuration spaces with thousands of ML trainings

AutoML 🔶 LLMs

AutoML → LLMs [Tornede et al. 2023]

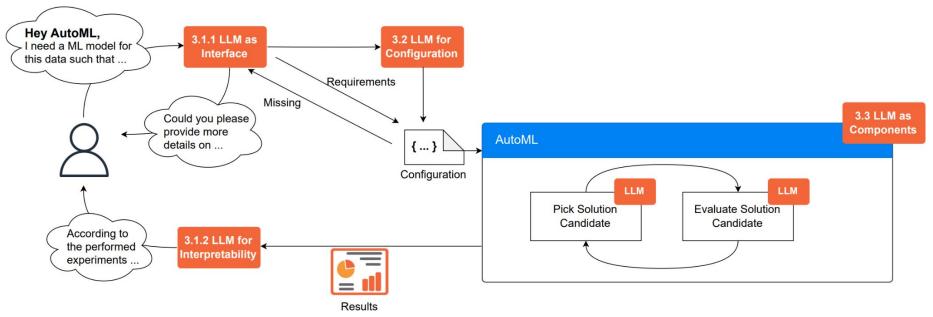
Challenges

- 1. Cost of Pre-Training Base Models
- 2. Multitude of Different Stages
- 3. Multitude of Performance Indicators
- Combination of Different Learning Paradigms



5. Determining Neural Architectures for LLMs

AutoML ← LLMs [Tornede et al. 2023]



Green AutoML

Green AutoML

Data compression, Zero-cost AutoML, multi-fidelity, intelligent stopping, ...

AutoML for Sustainability

Plastic Litter Detection, Green Assisted Driving, Predictive Maintenance, ...

Searching for Energy-Efficient Models

Model size constraint, Energy-aware objective functions, Energy efficient architectures, Model compression, ...

Create Attention

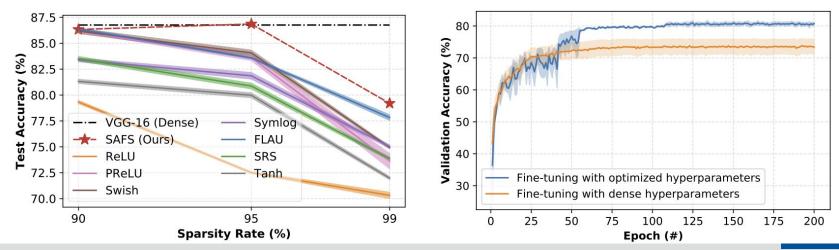
╋

Tracking emissions, awareness among students, researchers, industry partners, ...

Green AutoML

Learning Activation Functions for Sparse Neural Networks [Loni et al. AutoML'23]

- Sparsifying networks can help to save a lot of compute power
- Insights:
 - 1. Using the same activation function class as for the dense network is suboptimal for pruning
 - 2. Hyperparameters have to adapted accordingly



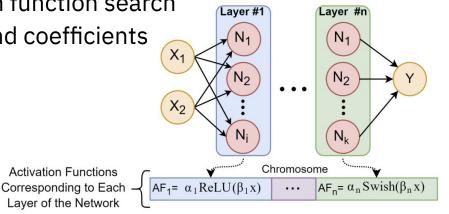
Universität

Learning Activation Functions for Sparse Neural Networks [Loni et al. AutoML'23]

Take-Aways:

- Search for activation functions for the pruning process
- Activation functions should even differ for different layers
 - Symlog and Acon in early layers
 - Swish in middle layers
- Stage 1: Use EA (LAHC) for activation function search
- Stage 2: Apply SGD-based HPO to find coefficients

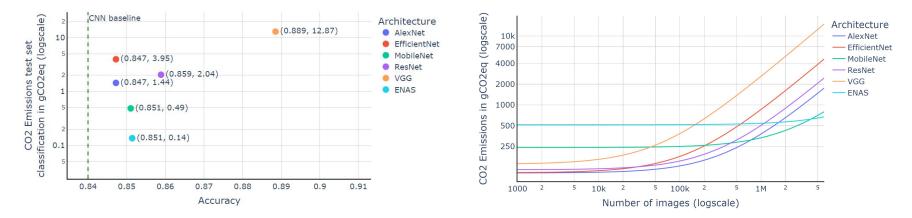
$$x \rightarrow \beta \rightarrow 0$$



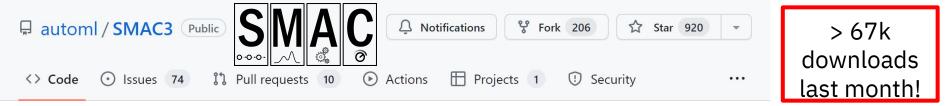
Green AutoML for Plastic Litter Detection [Theodorakopoulos et al. CCAI'23]

Insights:

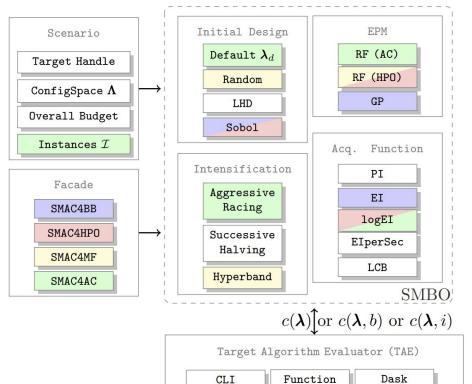
- 1. Architecture of DNNs with better accuracy
- 2. Architecture with lower CO₂ emissions
- 3. CO₂ emissions of AutoML training is compensated at inference

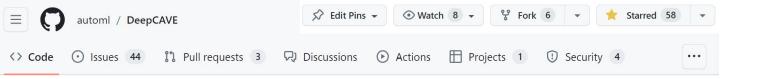


Packages from my Group



- Covers all kind of hyperparameter optimization use cases
- State-of-the-art techniques and performance
 - Bayesian Optimization
 - Multi-fidelity optimization
 - Multi-objective optimization
 - Algorithm configuration
- Highly configurable and modular
- Parallelizable





DeepCAVE [Sass et al. 2022]

- **Interactive Dashboard** to self-analyze optimization runs/processes.
- Analyzing while optimizing
- **Exploration of multiple areas** like performance, hyperparameter and budget analysis.
- **Modularized plugin** structure with access to selected runs/groups to provide maximal flexibility.
- Asynchronous execution of expensive plugins and caching of their results.
- **API mode** gives you full access to the code

DeepCAVE			Vatplotib 🕫
General	Parallel Coordinates		۲
Summary Q. Deerview	SMAC		v
2 Configurations	Objective	Budget @	
Objective Analysis	Cost ~	Combined	~
25 Cost Over Time	Yes		×
vS. Paneto Front 20 Panelel Coordinates	Process		
Dudget Analysis	Linit Hyperparameters @	Show Unsuccessful Configurations (D No	~
Hyperparameter Analysis Importances — Partial Dependencies	$\langle \langle \rangle \rangle$		
	L L C C C C C C C C C C C C C C C C C C		0.99059 0.6 0.4 0.4 0.3
	Raw Data		

	Partial Depende	ncies		4
r Iew	NU.3			v
purations guration Footprint	Objective		Budget @	č
Analysis	Accuracy Hyperparameter #1		Uperparameter #2	, , , , , , , , , , , , , , , , , , ,
puration Cube	learning_rate Process		v Select hyperparameter	×
el Coordinates malysis et Correlation	Show confidence ()		Show KE curves @	
tameter Analysis tances I Dependencies				
	4000000 000			
	8 0.7 0.6 1e4	le3	0.64	
			learning_rate	

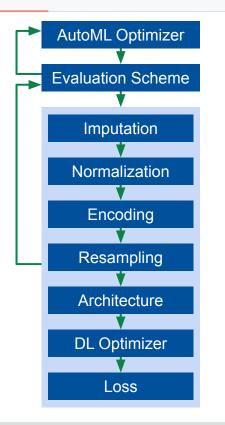
automl / Auto-PyTorch Public

A Notifications

😵 Fork 266

☆ Star 2.2k 💌

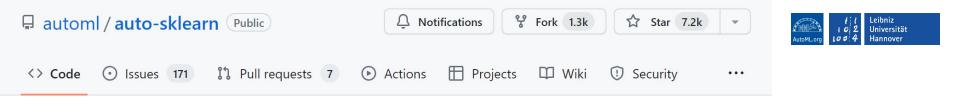
<> Code 💿 Issues 50 11 Pull requests 20 🕟 Actions 🗄 Projects 3 🖽 Wiki 😲 Security …



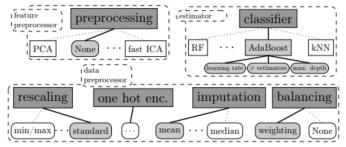
- 1. Automatic deep learning covering the entire DL pipeline
- 2. Joint hyperparameter and neural architecture search
- → Auto-PyTorch Tabular # initialise Auto-PyTorch api [Zimmer et al. IEEE TPAMI'21] api = TabularClassificationTask()
- → State-of-the-art on tabular data with regularization cocktails [Kadra et al. NeurIPS'21]
- → Auto-PyTorch for Time Series Forecasting [Deng et al. ECML'22]

```
# Search for an ensemble of machine learning algorithms
api.search(
    X_train=X_train,
    y_train=y_train,
    X_test=X_test,
    y_test=y_test,
    optimize_metric='accuracy',
    total_walltime_limit=300,
    func_eval_time_limit_secs=50
```

```
# Calculate test accuracy
y_pred = api.predict(X_test)
```



Takes care of finding well-performing ML-pipeline

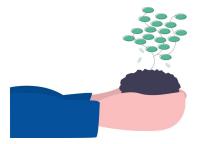


Easy-to-use

import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)

Our Research Foci

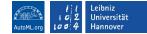
Core AutoML



Green AutoML

Human-centered AutoML

AutoRL



AutoML Weeks 2024

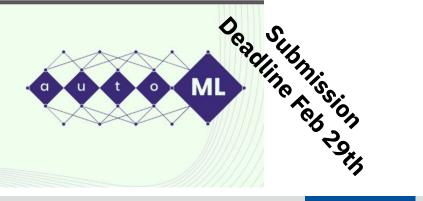
Date: September 2nd - 6th 2024

Place: Hannover, Germany

AUTOML24

International Conference on Automated Machine Learning

September 09.-12. in Paris



Find Us

in luh-ai LUH-AI \Box

@luh-ai

×

Funded by:

Deutscher Akademischer Austauschdienst German Academic Exchange Service

Federal Ministry for Economic Affairs and Energy

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

23

