

AutoML: From Full Automation to A Human-Centric Approach Prof. Marius Lindauer

Why does ML development take a lot of time?

From ML Alchemy to Science

"You can teach an old dog new tricks" [Ruffinelli et al. 2020]

→ Hyperparameter optimization might not be the only required solution, but without it, it will also be hard.

ML vs AutoML

Do we want this?

0

This might be better!

0

5 Hypotheses for Human-Centered AutoML

[Lindauer, Karl, Klier, Moosbauer, Tornede, Müller, Hutter, Feurer, Bischl. Submission to ICML'24]

l l Leibniz I O Z Universitä I O O 4 Hannover

Hypothesis 1: Transparency and Interpretability are Key for ML and AutoML in Many Applications and on Many Levels

Hypothesis 2: Customizability and Flexibility Are Essential to Leverage the Potential of AutoML for Different User Groups

AutoMLorg

Hypothesis 3: AutoML Tools Have to Integrate with the Data Science Workflow Allowing for an Iterative Interaction with the User

00

Hypothesis 4: Since Human Experts Are Essential to Machine Learning Processes, AutoML Will Only Reach Its Full Potential by Collaborating with Them

Hypothesis 5: Human-Centered AutoML Empowers Users Instead of Making Them Dependent on a System They Do Not Understand

Δ

Explaining I: Partial Dependence Plots

Explaining Hyperparameter Effects via PDPs [Moosbauer et al. NeurIPS'22]

Leibniz

10

Universität

Hannover

Partial Dependence Plots

[Moosbauer et al. NeurIPS'22]

For, a subset S of the hyperparameters, the partial dependence function is:

$$c_S(\lambda_S) := \mathbb{E}_{\lambda_C} \left[c(\lambda) \right] = \int_{\Lambda_C} c(\lambda_S, \lambda_C) d\mathbb{P}(\lambda_C)$$

and can be approximated by Monte-Carlo integration on a surrogate model:

$$\hat{c}_S(\lambda_S) = \frac{1}{n} \sum_{i=1}^n \hat{m}\left(\lambda_S, \lambda_C^{(i)}\right)$$

where $\left(\lambda_C^{(i)}\right)_{i=1} \sim \mathbb{P}(\lambda_C)$ and λ_S for a set of grid points.

 \rightarrow Average of ICE curves.

AutoML.org

Partial Dependence Plots with Uncertainties

[Moosbauer et al. NeurIPS'22]

$$\hat{s}_{S}^{2}(\lambda_{S}) = \mathbb{V}_{\hat{c}} \left[\hat{c}_{S} \left(\lambda_{S} \right) \right]$$
$$= \mathbb{V}_{\hat{c}} \left[\frac{1}{n} \sum_{i=1}^{n} \hat{c} \left(\lambda_{S}, \lambda_{C}^{(i)} \right) \right]$$
$$= \frac{1}{n^{2}} \mathbf{1}^{\top} \hat{K} \left(\lambda_{S} \right) \mathbf{1}.$$

 \rightarrow requires a kernel correctly specifying the covariance structure (e.g., GPs).

Approximation:

$$\hat{s}_{S}^{2}(\lambda_{S}) \approx \frac{1}{n} \sum_{i=1}^{n} \hat{K}(\lambda_{S})_{i,i}$$

 \rightarrow Model-agnostic (local) approximation

Impact of Sampling Bias in Explaining AutoML [Moosbauer et al. NeurIPS'22]

Exploration Strategy for Interpretability [Moosbauer et al. 2023]

• Main idea: Optimize for getting better interpretability of the HPO problem

Exploration Strategy for Interpretability [Moosbauer et al. 2023]

- 1. Bayesian Optimization (BO) with EI leads to bad PDPs
- 2. Bayesian Algorithm Executation (BAX) leads to good PDPs, but poor optimization performance
- 3. Interleaving BO and BAX leads to good PDPs and strong optimization performance

Explaining II: Symbolic Regression

Symbolic Explanations for AutoML [Segel et al. AutoML'23]

- Hyperparameter optimization (HPO) methods can find well-performing configurations efficiently
- Their lack of transparency can lead to missing trust of the users [Hasebrock et al. 2023]

Symbolic Explanations to the Rescue!

$$egin{aligned} &s(lpha, ext{batch size}))\ &= 0.078\cdot \exp\left((lpha/ ext{batch size})^{rac{1}{4}}
ight) \end{aligned}$$

Symbolic Explanations for AutoML [Segel et al. AutoML'23]

 I
 I
 Leibniz

 I
 I
 Leibniz

 I
 I
 I

 AutoMLorg
 I
 I

- How to get more insights into hyperparameter effects?
 - Employ symbolic regression to learn an interpretable formula that captures the relationship between hyperparameter configurations and model performance

DeepCAVE [Sass et al. 2022]

- **Interactive Dashboard** to self-analyze optimization runs/processes.
- Analyzing while optimizing
- **Exploration of multiple areas** like performance, hyperparameter and budget analysis.
- **Modularized plugin** structure with access to selected runs/groups to provide maximal flexibility.
- Asynchronous execution of expensive plugins and caching of their results.
- **API mode** gives you full access to the code

Parallel Coordinates		٥
swe		* .
Objective	Budget @	
Cost	~ Combined	· · ·
Show Important Hyperparameters (1)		
Yes		~
Process		
5	5 No No	
0 0 100		• and

	Partial Depende	ncies		
Y View	nn,3			÷
Igurations	Objective		Budget @	
	accuracy		~ Combined	~
Over Time	Hyperparameter #1		Hyperparameter #2	
in ratios Date	learning_rate		 Select hyperparameter 	~
to Front And Coversimates	Process			
	Show confidence (1)		Show ICE curves @	
Analysis pet Correlation	105		Y Yes	, v
arameter Analysis ortances				
al Dependencies	1			
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
	0.6			
	Le-4	le-3	0.01 learning_rate	1.1

Interaction I: Expert-Priors

Bayesian Optimization vs Manual Tuning for HPO

Bayesian Optimization with Expert Knowledge

piBO [Hvarfner et al. ICLR'22]

piBO [Hvarfner et al. ICLR'22]

- → Uses expert knowledge to speed up Bayesian Optimization
- → Robust also against wrong believes
- → Substantially speeds up AutoML
- → Follow up with PriorBand [Mallik et al. NeurIPS'23]

Interaction II: Preferences for Multi-Objective AutoML

Multi-Objective AutoML

latency

In practice, we often care about more than a single objective, e.g.

- error,
- inference time,
- unfairness,
- energy consumption,
- model complexity,
- and many more

Goal: Find a Neural Network with high accuracy and low latency

Goal: Find the Pareto Set of Neural Networks that balance accuracy and latency.

Interactive HPO in Multi-Objective Problems via Preference Learning [Giovanelli et al. AAAI'24]

- Multi-objective (Auto)ML gets more and more important
 - e.g., hardware-aware NAS, fairness-aware AutoML or energy-efficient AutoML
- Practical challenge: Different multi-objective indicators lead to different approximated Pareto fronts and users cannot always mathematically describe their preferences → interactively learn Pareto front preferences

Evaluation of Preference-Learned Indicators

- Benchmark:
 - LCBench
 - Accuracy vs. Energy-Consumption
- Let's assume : User randomly chose a multi-objective (MO) indicator, but was actually hoping for the behavior of another MO indicator
- ⇒ learned preferences are better than randomly choosing a MO indicator

PB/IB	$ $ $HV \uparrow$	$SP\downarrow$	$ MS\uparrow$	$ $ $R2\downarrow$
$HV\uparrow$	$\begin{array}{c c} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} \textbf{0.77} \\ (\pm \textbf{0.17}) \end{array}$	$\begin{array}{c c} \textbf{0.76} \\ (\pm \textbf{0.17}) \end{array} \setminus \begin{array}{c} 0.52 \\ (\pm 0.24) \end{array}$	$\begin{array}{ c c c c c c c c } \textbf{0.76} & 0.52 \\ (\pm \textbf{0.17}) & (\pm 0.21) \end{array}$	$ \begin{array}{c c} 0.76 \\ (\pm 0.17) \end{array} \setminus \begin{array}{c} 0.77 \\ (\pm 0.16) \end{array} $
$SP\downarrow$	$\begin{array}{c c} \textbf{0.01} & 0.03 \\ (\pm \textbf{0.01}) & (\pm 0.02) \end{array}$	$\begin{array}{c c} 0.01 & & 0.01 \\ (\pm 0.01) & & (\pm 0.0) \end{array}$	$\begin{array}{c c} \textbf{0.01} & 0.04 \\ (\pm \textbf{0.01}) & (\pm 0.03) \end{array}$	0.01 (±0.04) (±0.02)
$MS\uparrow$	0.61 0.19 (±0.09) \ 0.19 (±0.08)	0.61 (±0.19 (±0.12) (±0.12)	$\begin{array}{c c} 0.61 \\ (\pm 0.09) \end{array} \setminus \begin{array}{c} \textbf{0.65} \\ (\pm \textbf{0.06}) \end{array}$	0.61 \ 0.23 (±0.11)
$R2\downarrow$	$\begin{array}{c c} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} 0.22 \\ (\pm 0.16) \end{array}$	$\begin{array}{c c} \textbf{0.23} \\ (\pm \textbf{0.16}) \end{array} \setminus \begin{array}{c} 0.47 \\ (\pm 0.23) \end{array}$	$\begin{array}{c c} \textbf{0.23} \\ (\pm \textbf{0.16}) \end{array} \setminus \begin{array}{c} 0.45 \\ (\pm 0.21) \end{array}$	$\begin{array}{c c} 0.23 \\ (\pm 0.16) \end{array} \setminus \begin{array}{c} 0.21 \\ (\pm 0.16) \end{array}$

AutoML in Constrained Applications

AutoML in Heavily Constrained Applications [Neutatz et al. VLDBJ'23]

Leibniz

Default AutoML Configuration

Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 66/33 yes yes no
ML Hyperparameter space:	Vee
SVM:	Yes
SVM_tol:	Yes
SVM_C:	Yes
Extra Trees:	Yes
KNN:	Yes
Multilayer Perceptron:	Yes
Any Feature Preprocessor:	Yes
302 hyperparameters	Yes

Dynamic AutoML Configuration

Validation Strategy: Ensembling: Incremental Training: Validation split reshuffle:	Holdout 46/54 no yes yes
ML Hyperparameter space:	
SVM:	Yes
SVM_tol:	Yes
SVM_C:	No
Extra Trees:	Yes
KNN:	No
Multilayer Perceptron:	No
Any Feature Preprocessor:	No
302 hyperparameters	Yes/No

ML Pipeline

For SVM, the model parameters are the weights w: $\left[\frac{1}{n}\sum_{i=1}^{n} \max\left(0, 1 - y_i(\mathbf{w}^{T}\mathbf{x}_i - b)\right)\right] + \lambda \ \mathbf{w}\ ^2.$		
ML Hyperparameters:		
SVM:	Yes	
SVM_tol:	1e-5	
SVM_C:	1.0 (default)	
Extra Trees:	No	
KNN:	No	
Multilayer Perceptron:	No	
Any Feature Preprocessor:	No	
302 hyperparameters		

Adapt AutoML parameters to ML task and deactivate undesired ML hyperparameters

Searches for the optimal ML pipeline in the defined search space. A pipeline is defined by the selected ML hyperparameters.

AutoML in Heavily Constrained Applications [Neutatz et al. VLDBJ'23]

Possible application constraints:

- AutoML budget
- Inference time
- Memory consumption
- Energy consumption
- Fairness thresholds

...

Can it learn to select different configuration spaces? [Neutatz et al. 2023]

scaler — StandardScaler

Take-Aways for Meta-Learning AutoML Conf.

- Assumption: If we invest more time into the development of AutoML packages (incl. meta-learning), we save a lot of compute resources for using it
- **Positive** take-away:
 - Yes, we can meta-learn how to configure AutoML systems and achieve new state-of-the-art performance
- **Negative** take-away:

We cannot easily do it for large AutoML budgets (beyond 10min) without enormous compute resources

• **Future challenge**: How to configure AutoML on expensive tasks;

"Expensive" can mean:

- very expensive ML models (e.g., LLMs)
- very complex configuration spaces with thousands of ML trainings

AutoML 🔶 LLMs

AutoML → LLMs [Tornede et al. 2023]

Challenges

- 1. Cost of Pre-Training Base Models
- 2. Multitude of Different Stages
- 3. Multitude of Performance Indicators
- Combination of Different Learning Paradigms

5. Determining Neural Architectures for LLMs

AutoML ← LLMs [Tornede et al. 2023]

Our Research Foci

Core AutoML

Green AutoML

Human-centered AutoML

AutoRL

AutoML Weeks 2024

Date: September 2nd - 6th 2024

Place: Hannover, Germany

Find Us

in luh-ai

×

Funded by:

Deutscher Akademischer Austauschdienst German Academic Exchange Service

Federal Ministry for Economic Affairs and Energy Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

